Slide background




Probabilities in Safety of Machinery

ID 4230 | | Visite: 3947 | Documenti normazione ENTIPermalink: https://www.certifico.com/id/4230

Probabilities in Safety of Machinery

Part 1: Risk Profiling and Farmer Matrix

The new control system standard ISO 13849-1 deals with the theoretical probabilities of hypothetical individual events; however, it avoids depicting them as relative frequencies. For the practical design engineers, a relative frequency approach is a more comprehensible form, because with the relative frequency a reconciliation with statistically acquired data is possible. This article closes some explanatory gaps caused by the one-sided emphasis on theoretical probability. In doing so, four contributions are provided in the context of field experience:

1. the concept of probability and the basic principles of distribution functions are elucidated using an “hourglass analogy”,

2. fitting of an empirical Weibull distribution in order to evidence the theoretical requirements,

3. risk profiling method: plausibly stretched “risk snapshots” integrated to a “risk film” over the machine’s lifetime,

4. proposals for a probabilistically founded dimensioning of enclosure.

This part 1 shall serve for a better understanding of the probabilistic concept, in particular for ongoing discussions of the merging of IEC 62061 & ISO 13849-1 into IEC/ISO 17305 in the Joint Working Group (JWG 1). Part 2 addresses more the practical design of machine tools and the corresponding standardization work of ISO/TC 39/SC 10 and before in CEN/TC 143. Together, part 1 and 2 are also intended to connect the world of International Standardization with the network of International Probabilistic Research, e.g. ESREL. For the sake of comparison with reality, a separate third paper of (Günnel et al. 2014) shows empiric findings of field data analyses

Part 2: Theoretical and Practical Design

As stated in part 1 of the article, standard ISO 13849-1 deals with the theoretical probabilities of hypothetical individual events and the possibility of reconciliation of this theoretical approach with empiric field data is partly neglected. In part 2 the problems arising during the real design of SRP/CS (Safety Related Part of a Control System) of machines are addressed on the background of relevant safety standards. Using the informative theoretical appendix A of ISO 13849-1 to determine the Performance Level required (PLr) may cause sometimes technically impracticable requirements, which are far beyond the state of the art in existing type C standards. For the sake of connection between theory and practice, the probability of occurrence of a hazardous situation must be taken into account in order to appropriately consider the required risk reduction of a SRP/CS in the context of the three-step-method of ISO 12100. For this purpose two practical solutions are provided:

1) a methodology for PLr definition for safety functions considering a realistic probability of occurrence of hazards, using a hybrid approach of ISO 13849-1 and IEC 62061.

2) A "table based" methodology for the design of machine tool control system considering all the realistic "occurrences" as stated also in the “new” ISO/TR 14121-2

Those two contributions are extracted from the work during the ISO/TC 39/SC 10/WG4 meetings (ISO/CD 16090 for milling machines). The selected safety function for 2.) is very similar to the safety function “prevention of unexpected start-up of a movement of a linear or rotational axis with an incorrectly clamped workpiece” of the standard ISO 16090-1. This safety function was chosen in another paper of Mödden, Günnel for ESREL 2014. Therein, the analysis of field data of real milling machines shows that a reliability between PL=a and PL=b is actually being achieved with state of the art design. This finding connects quite well theory and practice of state of the art milling machines.

Armin Bornemann Deckel Maho, Pfronten, Germany
Yannick Froese Fachhochschule, Frankfurt am Main, University of Applied Sciences
Luca Landi Department of Engineering, University of Perugia, Perugia, Italy
Heinrich Mödden German Machine Tool Builders Association, Frankfurt am Main

DescrizioneLinguaDimensioneDownloads
Scarica questo file (Probabilities in safety of machinery part 1-2.pdf)Probabilities in Safety of Machinery - Part 1-2
 
IT756 kB2673

Tags: Normazione EN ISO 13849-1

Articoli correlati

Ultimi archiviati Normazione

ANSI ASSP Z244 1 2016  R2020
Mar 14, 2024 116

ANSI/ASSP Z244.1-2016 (R2020)

ANSI/ASSP Z244.1-2016 (R2020) / The Control Of Hazardous Energy Lockout, Tagout And Alternative Methods ID 21508 | 14.03.2024 / Preview in allegato [box-info]ANSI/ASSE Z244.1-2016 / ANSI/ASSP Z244.1-2016 (R2020) Alcuni utenti precedenti di questo standard potrebbero essere confusi dalla… Leggi tutto
UNI EN 303 5 2023   Requisiti caldaie per combustibili solidi Pn max 500 kW
Feb 15, 2024 287

UNI EN 303-5:2023

UNI EN 303-5:2023 / Requisiti caldaie per combustibili solidi Pn < 500 kW ID 21366 | 15.02.2024 / Preview in allegato Caldaie per riscaldamento - Parte 5: Caldaie per combustibili solidi, con alimentazione manuale o automatica, con una potenza termica nominale fino a 500 kW - Terminologia,… Leggi tutto
UNI 11763 2 2024   Requisiti casseforme orizzontali
Feb 12, 2024 227

UNI 11763-2:2024

UNI 11763-2:2024 / Requisiti casseforme orizzontali ID 21350 | 12.02.2024 / Preview in allegato UNI 11763-2:2024 Attrezzature provvisionali - Casseforme - Parte 2: Casseforme orizzontali - Requisiti generali per la progettazione, la costruzione e l'uso Data disponibilità: 01 febbraio 2024 La norma… Leggi tutto
UNI PdR 93 4 2024
Feb 08, 2024 244

UNI/PdR 93.4:2024 - Linee guida verifica funzionale del contatore termico

UNI/PdR 93.4:2024 - Linee guida verifica funzionale del contatore termico ID 21331 | 08.02.2024 UNI/PdR 93.4:2024 Linee guida per la verifica funzionale del contatore di energia termica effettuata su richiesta del cliente del servizio di teleriscaldamento e teleraffrescamento La prassi di… Leggi tutto

Più letti Normazione