CAPITOLO 6.

PROGETTAZIONE GEOTECNICA

6.1. DISPOSIZIONI GENERALI

6.1.1. OGGETTO DELLE NORME

Il presente capitolo riguarda gli aspetti geotecnici della progettazione e della esecuzione di opere ed interventi che interagiscono con il terreno ed in particolare tratta di :

- opere di fondazione;
- opere di sostegno;
- opere in sotterraneo;
- opere e manufatti di materiali sciolti naturali o di provenienza diversa;
- fronti di scavo:
- consolidamento;
- miglioramento e rinforzo dei terreni e degli ammassi rocciosi;
- consolidamento di opere esistenti.

Il presente capitolo riguarda, altresì, la sicurezza dei pendii naturali e la fattibilità di interventi che hanno riflessi su grandi aree.

6.1.2. PRESCRIZIONI GENERALI

Le scelte progettuali devono tener conto delle prestazioni attese delle opere, dei caratteri geologici del sito e delle condizioni ambientali. I risultati dello studio rivolto alla caratterizzazione e modellazione geologica, dedotti da specifiche indagini, devono essere esposti in una specifica relazione geologica di cui al § 6.2.1.

Le analisi di progetto devono essere basate su modelli geotecnici dedotti da specifiche indagini definite dal progettista in base alla tipologia dell'opera o dell'intervento e alle previste modalità esecutive.

Le scelte progettuali, il programma e i risultati delle indagini, la caratterizzazione e la modellazione geotecnica di cui al § 6.2.2, unitamente alle analisi per il dimensionamento geotecnico delle opere e alla descrizione delle fasi e modalità costruttive devono essere illustrati in una specifica relazione geotecnica.

6.2. ARTICOLAZIONE DEL PROGETTO

Il progetto delle opere e degli interventi si articola nelle seguenti fasi:

- 1. caratterizzazione e modellazione geologica del sito;
- 2. scelta del tipo di opera o di intervento e programmazione delle indagini geotecniche;
- 3. caratterizzazione fisico-meccanica dei terreni e delle rocce presenti nel volume significativo e definizione dei modelli geotecnici di sottosuolo (cfr. § 3.2.2);
- 4. definizione delle fasi e delle modalità costruttive;
- 5. verifiche della sicurezza e delle prestazioni
- 6. programmazione delle attività di controllo e monitoraggio.

6.2.1. CARATTERIZZAZIONE E MODELLAZIONE GEOLOGICA DEL SITO

Il modello geologico di riferimento è la ricostruzione concettuale della storia evolutiva dell'area di studio, attraverso la descrizione delle peculiarità genetiche dei diversi terreni presenti, delle dinamiche dei diversi termini litologici, dei rapporti di giustapposizione reciproca, delle vicende tettoniche subite e dell'azione dei diversi agenti morfogenetici.

La caratterizzazione e la modellazione geologica del sito deve comprendere la ricostruzione dei caratteri litologici, stratigrafici, strutturali, idrogeologici, geomorfologici e, più in generale, di pericolosità geologica del territorio, descritti e sintetizzati dal modello geologico di riferimento.

In funzione del tipo di opera, di intervento e della complessità del contesto geologico nel quale si inserisce l'opera, specifiche indagini saranno finalizzate alla documentata ricostruzione del modello geologico.

Il modello geologico deve essere sviluppato in modo da costituire elemento di riferimento per il progettista per inquadrare i problemi geotecnici e per definire il programma delle indagini geotecniche

La caratterizzazione e la modellazione geologica del sito devono essere esaurientemente esposte e commentate in una relazione geologica, che è parte integrante del progetto. Tale relazione comprende, sulla base di specifici rilievi ed indagini , la identificazione delle formazioni presenti nel sito, lo studio dei tipi litologici, della struttura del sottosuolo e dei caratteri fisici degli ammassi, definisce il modello geologico del sottosuolo, illustra e caratterizza gli aspetti stratigrafici, strutturali, idrogeologici, geomorfologici, nonché i conseguenti livelli delle pericolosità geologiche.

6.2.2. INDAGINI, CARATTERIZZAZIONE E MODELLAZIONE GEOTECNICA

Le indagini geotecniche devono essere programmate in funzione del tipo di opera e/o di intervento, devono riguardare il volume significativo e, in presenza di azioni sismiche, devono essere conformi a quanto prescritto ai §§ 3.2.2 e 7.11.2. Per volume significativo di terreno si intende la parte di sottosuolo influenzata, direttamente o indirettamente, dalla costruzione del manufatto e che influenza il manufatto stesso. Le indagini devono permettere la definizione dei modelli geotecnici di sottosuolo necessari alla progettazione. Della definizione del piano delle indagini, della caratterizzazione e della modellazione geotecnica è responsabile il progettista.

Ai fini dell'analisi quantitativa di uno specifico problema, per modello geotecnico di sottosuolo si intende uno schema rappresentativo del volume significativo di terreno, suddiviso in unità omogenee sotto il profilo fisico-meccanico, che devono essere caratterizzate con riferimento allo specifico problema geotecnico. Nel modello geotecnico di sottosuolo devono essere definiti il regime delle pressioni interstiziali e i valori caratteristici dei parametri geotecnici.

Per valore caratteristico di un parametro geotecnico deve intendersi una stima ragionata e cautelativa del valore del parametro per ogni stato limite considerato. I valori caratteristici delle proprietà fisiche e meccaniche da attribuire ai terreni devono essere dedotti dall'interpretazione dei risultati di specifiche prove di laboratorio su campioni rappresentativi di terreno e di prove e misure in sito.

Per gli ammassi rocciosi e per i terreni a struttura complessa, nella valutazione della resistenza caratteristica occorre tener conto della natura e delle caratteristiche geometriche e di resistenza delle discontinuità. Deve inoltre essere specificato se la resistenza caratteristica si riferisce alle discontinuità o all'ammasso roccioso.

Per la verifica delle condizioni di sicurezza e delle prestazioni di cui al successivo § 6.2.4, la scelta dei valori caratteristici delle quote piezometriche e delle pressioni interstiziali deve tenere conto della loro variabilità spaziale e temporale.

Le prove di laboratorio, sulle terre e sulle rocce, devono essere eseguite e certificate dai laboratori di prova di cui all'art. 59 del DPR 6 giugno 2001, n. 380. I laboratori su indicati fanno parte dell'elenco depositato presso il Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

Nel caso di costruzioni o di interventi di modesta rilevanza, che ricadano in zone ben conosciute dal punto di vista geotecnico, la progettazione può essere basata su preesistenti indagini e prove documentate, ferma restando la piena responsabilità del progettista su ipotesi e scelte progettuali.

6.2.3. FASI E MODALITA' COSTRUTTIVE

Nel progetto devono essere individuate le diverse fasi esecutive per definire eventuali specifiche condizioni geotecniche anche a carattere temporaneo che possono verificarsi nel corso dei lavori. Queste fasi dovranno essere oggetto di specifiche analisi da condurre con i criteri e le procedure riportati nelle presenti norme.

6.2.4. VERIFICHE DELLA SICUREZZA E DELLE PRESTAZIONI

Le verifiche di sicurezza relative agli stati limite ultimi (SLU) e le analisi relative alle condizioni di esercizio (SLE) devono essere effettuate nel rispetto dei principi e delle procedure indicate al § 2.6.

6.2.4.1 VERIFICHE NEI CONFRONTI DEGLI STATI LIMITE ULTIMI (SLU)

Per ogni stato limite per perdita di equilibrio (EQU), come definito al §2.6.1, deve essere rispettata la condizione:

$$E_{inst.d} \le E_{stb.d}$$

dove $E_{inst.d}$ è il valore di progetto dell'azione instabilizzante, $E_{stb.d}$ è il valore di progetto dell'azione stabilizzante.

La verifica della suddetta condizione deve essere eseguita impiegando come fattori parziali per le azioni i valori γ riportati nella colonna EQU della tabella 6.2.I.

Per ogni stato limite ultimo che preveda il raggiungimento della resistenza di un elemento strutturale (STR) o del terreno (GEO), come definiti al § 2.6.1, deve essere rispettata la condizione:

$$E_d \le R_d \tag{6.2.1}$$

essendo E_d il valore di progetto dell'azione o dell'effetto dell'azione, definito dalle relazioni [6.2.2a] o [6.2.2b]

$$E_{d} = E \left[\gamma_{F} F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right]$$
 [6.2.2a]

$$E_{d} = \gamma_{E} \cdot E \left[F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right]$$
 [6.2.2b]

e R_d è il valore di progetto della resistenza del sistema geotecnico definito dalla relazione [6.2.3].

$$R_{d} = \frac{1}{\gamma_{R}} R \left[\gamma_{F} \Gamma_{k}, \frac{X_{k}}{\gamma_{M}}; a_{d} \right]$$
 [6.2.3]

Effetto delle azioni e resistenza di progetto sono espresse nelle [6.2.2a] e [6.2.3] rispettivamente in funzione delle azioni di progetto $\gamma_F F_k$, dei parametri geotecnici di progetto X_k/γ_M e dei parametri geometrici di progetto a_d . Il coefficiente parziale di sicurezza γ_R opera direttamente sulla resistenza del sistema. L'effetto delle azioni di progetto può anche essere valutato direttamente con i valori caratteristici delle azioni come indicato dalla [6.2.2b] con $\gamma_E = \gamma_F$.

In accordo a quanto stabilito al §2.6.1, la verifica della condizione [6.2.1] deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3).

I diversi gruppi di coefficienti di sicurezza parziali sono scelti nell'ambito di due approcci progettuali distinti e alternativi.

Nel primo approccio progettuale (Approccio 1) le verifiche si eseguono con due diverse combinazioni di gruppi di coefficienti ognuna delle quali può essere critica per differenti aspetti dello stesso progetto.

Nel secondo approccio progettuale (Approccio 2) le verifiche si eseguono con un'unica combinazione di gruppi di coefficienti.

Per le verifiche nei confronti di stati limite ultimi non espressamente trattati nei successivi paragrafi, da 6.3 a 6.11, si utilizza l'Approccio 1 con le due combinazioni (A1+M1+R1) e (A2+M2+R2). I fattori parziali per il gruppo R1 sono sempre unitari; quelli del gruppo R2 possono essere maggiori o uguali all'unità e, in assenza di indicazioni specifiche per lo stato limite ultimo considerato, devono essere scelti dal progettista in relazione alle incertezze connesse con i procedimenti adottati.

6.2.4.1.1 Azioni

I coefficienti parziali γ_F relativi alle azioni sono indicati nella Tab. 6.2.I. Ad essi deve essere fatto riferimento con le precisazioni riportate nel § 2.6.1. Si deve comunque intendere che il terreno e l'acqua costituiscono carichi permanenti (strutturali) quando, nella modellazione utilizzata, contribuiscono al comportamento dell'opera con le loro caratteristiche di peso, resistenza e rigidezza.

Nella valutazione della combinazione delle azioni i coefficienti di combinazione ψ_{ij} devono essere assunti come specificato nel Capitolo 2.

Si fa salvo, comunque, quanto previsto nel Decreto del Ministro delle Infrastrutture e dei Trasporti del 26 giugno 2014 recante "Norme tecniche per la progettazione e la costruzione degli sbarramenti di ritenuta (dighe e traverse)", ove applicabile

Tab. 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale $\gamma_{\scriptscriptstyle F}$ (o $\gamma_{\scriptscriptstyle E}$)	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	γ_{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ_{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ_{Qi}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

 $^{^{(1)}}$ Per i carichi permanenti G_2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γ_{G1}

6.2.4.1.2 Resistenze

Il valore di progetto della resistenza $R_{\rm d}$ può essere determinato:

- a) in modo analitico, con riferimento al valore caratteristico dei parametri geotecnici del terreno, diviso per il valore del coefficiente parziale γ_M specificato nella successiva Tab. 6.2.II e tenendo conto, ove necessario, dei coefficienti parziali γ_R specificati nei paragrafi relativi a ciascun tipo di opera;
- *b*) in modo analitico, con riferimento a correlazioni con i risultati di prove in sito, tenendo conto dei coefficienti parziali γ_R riportati nelle tabelle contenute nei paragrafi relativi a ciascun tipo di opera;
- c) sulla base di misure dirette su prototipi, tenendo conto dei coefficienti parziali γ_R riportati nelle tabelle contenute nei paragrafi relativi a ciascun tipo di opera.

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	$\begin{array}{c} \text{Coefficiente} \\ \text{parziale} \ \gamma_M \end{array}$	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	$\gamma_{c'}$	1,0	1,25
Resistenza non drenata	c_{uk}	γ_{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

dove

Per gli ammassi rocciosi e per i terreni a struttura complessa, nella valutazione della resistenza caratteristica occorre tener conto della natura e delle caratteristiche geometriche e di resistenza delle discontinuità strutturali. Il valore di progetto della resistenza si ottiene, per il caso (a), applicando al valore caratteristico della resistenza unitaria al taglio τ_R un coefficiente parziale $\gamma_{\tau R}$ =1,0 (M1) e $\gamma_{\tau R}$ =1,25 (M2) oppure procedendo come previsto ai punti b) e c) di cui sopra.

6.2.4.1.3. Verifiche strutturali con l'analisi di interazione terreno-struttura

Le analisi finalizzate al dimensionamento strutturale nelle quali si consideri l'interazione terreno-struttura si eseguono con i valori caratteristici dei parametri geotecnici, amplificando l'effetto delle azioni con i coefficienti parziali del gruppo A1.

6.2.4.2 Verifiche nei confronti degli stati limite ultimi idraulici

Le opere geotecniche devono essere verificate nei confronti dei possibili stati limite di sollevamento o di sifonamento.

A tal fine, nella valutazione delle pressioni interstiziali e delle quote piezometriche caratteristiche, si devono assumere le condizioni più sfavorevoli, considerando i possibili effetti delle condizioni stratigrafiche.

Per la stabilità al sollevamento deve risultare che il valore di progetto dell'azione instabilizzante $V_{inst,d}$, ovverosia della risultante delle pressioni idrauliche ottenuta considerando separatamente la parte permanente ($G_{inst,d}$) e quella variabile ($Q_{inst,d}$), sia non maggiore della combinazione dei valori di progetto delle azioni stabilizzanti ($G_{stb,d}$) e delle resistenze (R_d):

$$\begin{split} V_{inst,d} &\leq G_{stb,d} + R_d \\ V_{inst,d} &= G_{inst,d} + Q_{inst,d} \end{split} \tag{6.2.4}$$

Per le verifiche di stabilità al sollevamento, i relativi coefficienti parziali sulle azioni sono indicati nella Tab. 6.2.III. Al fine del calcolo della resistenza di progetto R_d , tali coefficienti devono essere combinati in modo opportuno con quelli relativi ai parametri geotecnici (M2). Ove necessario, il calcolo della resistenza va eseguito in accordo a quanto indicato nei successivi paragrafi per le fondazioni su pali e per gli ancoraggi.

Tab. 6.2.III – Coefficienti parziali sulle azioni per le verifiche nei confronti di stati limite di sollevamento

	Effetto	Coefficiente Parziale γ_F (o γ_E)	Sollevamento (UPL)
Caniahi mammamanti C	Favorevole	24	0,9
Carichi permanenti G1	Sfavorevole	γ _{G1}	1,1
Carichi permanenti	Favorevole	2/	0,8
$G_{2^{(1)}}$	Sfavorevole	γ _{G2}	1,5
A minumi susumi albili. O	Favorevole	2/	0,0
Azioni variabili Q	Sfavorevole	γ_{Qi}	1,5

 $^{^{(1)}}$ Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γ G1

In condizioni di flusso prevalentemente verticale:

- a) nel caso di frontiera di efflusso libera, la verifica a sifonamento si esegue controllando che il gradiente idraulico i risulti non superiore al gradiente idraulico critico ic diviso per un coefficiente parziale $\gamma_R = 3$, se si assume come effetto delle azioni il gradiente idraulico medio, e per un coefficiente parziale $\gamma_R = 2$ nel caso in cui si consideri il gradiente idraulico di efflusso;
- b) in presenza di un carico imposto sulla frontiera di efflusso, la verifica si esegue controllando che la pressione interstiziale in eccesso rispetto alla condizione idrostatica risulti non superiore alla tensione verticale efficace calcolata in assenza di filtrazione, divisa per un coefficiente parziale $\gamma_R = 2$.

In tutti gli altri casi il progettista deve valutare gli effetti delle forze di filtrazione e garantire adeguati livelli di sicurezza, da prefissare e giustificare esplicitamente.

Si fa salvo, comunque, quanto previsto nel Decreto del Ministro delle Infrastrutture e dei Trasporti del 26 giugno 2014 recante "Norme tecniche per la progettazione e la costruzione degli sbarramenti di ritenuta (dighe e traverse)", ove applicabile

6.2.4.3 VERIFICHE NEI CONFRONTI DEGLI STATI LIMITE DI ESERCIZIO (SLE)

Le opere e i sistemi geotecnici di cui al § 6.1.1 devono essere verificati nei confronti degli stati limite di esercizio. A tale scopo, il progetto deve esplicitare le prescrizioni relative agli spostamenti compatibili e le prestazioni attese.

La verifica agli stati limite di esercizio implica l'analisi del problema di interazione terreno-struttura, al termine della costruzione e nel tempo, secondo quanto disposto al paragrafo § 2.2.2. Il grado di approfondimento dell'analisi di interazione terreno-struttura è funzione dell'importanza dell'opera.

Per ciascun stato limite di esercizio deve essere rispettata la condizione:

$$E_d \le C_d \tag{6.2.7}$$

dove E_d è il valore di progetto dell'effetto delle azioni nelle combinazioni di carico per gli SLE specificate al §2.5.3 e C_d è il prescritto valore limite dell'effetto delle azioni. Quest'ultimo deve essere stabilito in funzione del comportamento della struttura in elevazione e di tutte le costruzioni che interagiscono con le opere geotecniche in progetto, tenendo conto della durata dei carichi applicati.

6.2.5. IMPIEGO DEL METODO OSSERVAZIONALE

La progettazione può fare ricorso anche al metodo osservazionale, nei casi in cui a causa della particolare complessità della situazione geologica e geotecnica e dell'importanza e impegno dell'opera, dopo estese ed approfondite indagini permangano documentate ragioni di incertezza risolvibili solo in fase di esecuzione dell'opera.

Nell'applicazione di tale metodo si deve utilizzare il seguente procedimento:

- devono essere stabiliti i limiti di accettabilità dei valori di alcune grandezze rappresentative del comportamento del complesso manufatto-terreno;
- si deve dimostrare che la soluzione prescelta è accettabile in rapporto a tali limiti;
- devono essere previste soluzioni alternative, congruenti con il progetto, e definiti i relativi oneri economici;
- deve essere istituito un adeguato sistema di monitoraggio in corso d'opera, con i relativi piani di controllo, tale da consentire tempestivamente l'adozione di una delle soluzioni alternative previste, qualora i limiti indicati siano raggiunti.

6.2.6. MONITORAGGIO DEL COMPLESSO OPERA-TERRENO

Il monitoraggio del complesso opera-terreno e degli interventi consiste nella installazione di un'appropriata strumentazione e nella misura di grandezze fisiche significative - quali spostamenti, tensioni, forze e pressioni interstiziali - prima, durante e/o dopo la costruzione del manufatto.

Il monitoraggio ha lo scopo di verificare la corrispondenza tra le ipotesi progettuali e i comportamenti osservati e di controllare la funzionalità dei manufatti nel tempo. Nell'ambito del metodo osservazionale, il monitoraggio ha lo scopo di confermare la validità della soluzione progettuale adottata o, in caso contrario, di individuare la più idonea tra le altre soluzioni previste in progetto. Se previsto, il programma di monitoraggio deve essere definito e illustrato nella relazione geotecnica.

6.3. STABILITÀ DEI PENDII NATURALI

Le presenti norme si applicano allo studio delle condizioni di stabilità dei pendii naturali, anche in presenza di azioni sismiche (§ 7.11.3.5) e al progetto, alla esecuzione e al controllo degli interventi di stabilizzazione.

6.3.1. PRESCRIZIONI GENERALI

Lo studio della stabilità dei pendii naturali richiede osservazioni e rilievi di superficie, raccolta di notizie storiche sull'evoluzione dello stato del pendio e su eventuali danni subiti dalle strutture o infrastrutture esistenti, la constatazione di movimenti eventualmente in atto e dei loro caratteri geometrici e cinematici, la raccolta dei dati sulle precipitazioni meteoriche, sui caratteri idrogeologici della zona e sui precedenti interventi di consolidamento. Le verifiche di sicurezza, anche in relazione alle opere da eseguire, devono essere basate su dati acquisiti con specifiche indagini geotecniche.

6.3.2. MODELLAZIONE GEOLOGICA DEL PENDIO

Il modello geologico di riferimento deve rappresentare le caratteristiche geologiche, geomorfologiche, geologico strutturali e idrogeologiche, con particolare riguardo alla genesi delle forme e dei processi, dei diversi litotipi, dell'ambiente deposizionale, del metamorfismo delle rocce, degli stili tettonici e geologico-strutturali dell'area; deve, inoltre, riconoscere e descrivere le criticità di natura geologica in relazione ai possibili processi di instabilità.

Le tecniche di studio, i rilievi e le indagini sono commisurati all'estensione dell'area, alle finalità progettuali e alle peculiarità dello scenario territoriale ed ambientale in cui si opera.

6.3.3. MODELLAZIONE GEOTECNICA DEL PENDIO

Tenendo conto del modello geologico ed evolutivo del versante, devono essere programmate specifiche indagini per la caratterizzazione geotecnica dei terreni e dell'ammasso roccioso, finalizzate alla definizione del modello geotecnico sulla base del quale effettuare lo studio delle condizioni di stabilità nonché al progetto di eventuali interventi di stabilizzazione.

Le indagini devono effettuarsi secondo i seguenti criteri:

- la superficie del pendio deve essere definita attraverso un rilievo plano-altimetrico in scala adeguata ed esteso ad una zona sufficientemente ampia a monte e valle del pendio stesso;
- lo studio geotecnico deve definire la successione stratigrafica e le caratteristiche fisico-meccaniche dei terreni e degli ammassi
 rocciosi, l'entità e la distribuzione delle pressioni interstiziali nel terreno e nelle discontinuità, degli eventuali spostamenti plano-altimetrici di punti in superficie e in profondità.

La scelta delle tipologie di indagine e misura, dell'ubicazione del numero di verticali da esplorare, della posizione e del numero dei campioni di terreno da prelevare e sottoporre a prove di laboratorio dipende dall'estensione dell'area, dalla disponibilità di informazioni provenienti da precedenti indagini e dalla complessità delle condizioni idrogeologiche e stratigrafiche del sito in esame.

Il numero minimo di verticali di indagine e misura deve essere tale da permettere una descrizione accurata della successione stratigrafica dei terreni interessati da cinematismi di collasso effettivi e potenziali e, in caso di pendii in frana, deve consentire di accertare forma e posizione della superficie o delle superfici di scorrimento esistenti e definire i caratteri cinematici della frana.

La profondità e l'estensione delle indagini devono essere fissate in relazione alle caratteristiche geometriche del pendio, ai risultati dei rilievi di superficie nonché alla più probabile posizione della eventuale superficie di scorrimento.

Tutti gli elementi raccolti devono permettere la definizione di un modello geotecnico di sottosuolo (vedi § 6.2.2) che tenga conto della complessità della situazione stratigrafica e geotecnica, della presenza di discontinuità e dell'evidenza di movimenti pregressi e al quale fare riferimento per le verifiche di stabilità e per il progetto degli eventuali interventi di stabilizzazione.

6.3.4. VERIFICHE DI SICUREZZA

Le verifiche di sicurezza devono essere effettuate con metodi che tengano conto del tipo di frana e dei possibili cinematismi, considerando forma e posizione della eventuale superficie di scorrimento, le proprietà meccaniche dei terreni e degli ammassi rocciosi e il regime delle pressioni interstiziali.

Nel caso di pendii in frana le verifiche di sicurezza devono essere eseguite lungo le superfici di scorrimento che meglio approssimano quella/e riconosciuta/e con le indagini.

Negli altri casi, la verifica di sicurezza deve essere eseguita lungo superfici di scorrimento cinematicamente possibili, in numero sufficiente per ricercare la superficie critica alla quale corrisponde il grado di sicurezza più basso.

Quando sussistano condizioni tali da non consentire una agevole valutazione delle pressioni interstiziali, le verifiche di sicurezza devono essere eseguite assumendo le condizioni più sfavorevoli che ragionevolmente si possono prevedere.

La valutazione del coefficiente di sicurezza dei pendii naturali, espresso dal rapporto tra la resistenza al taglio disponibile (τ_i) e la tensione di taglio agente (τ) lungo la superficie di scorrimento, deve essere eseguita impiegando sia i parametri geotecnici, congruenti con i caratteri del cinematismo atteso o accertato, sia le azioni presi con il loro valore caratteristico.

L'adeguatezza del margine di sicurezza ritenuto accettabile dal progettista deve comunque essere giustificata sulla base del livello di conoscenze raggiunto, dell'affidabilità dei dati disponibili e del modello di calcolo adottato in relazione alla complessità geologica e geotecnica, nonché sulla base delle conseguenze di un'eventuale frana.

6.3.5. INTERVENTI DI STABILIZZAZIONE

Il progetto degli interventi di stabilizzazione deve comprendere la descrizione completa dell'intervento, l'influenza delle modalità costruttive sulle condizioni di stabilità, il piano di monitoraggio e un significativo piano di gestione e controllo nel tempo della funzionalità e dell'efficacia dei provvedimenti adottati. In ogni caso devono essere definiti l'entità del miglioramento delle condizioni di sicurezza del pendio e i criteri per verificarne il raggiungimento.

La scelta delle più idonee tipologie degli interventi di stabilizzazione deve tener conto delle cause promotrici della frana, del meccanismo di collasso ipotizzato o in atto, dei suoi caratteri cinematici e del regime delle pressioni interstiziali nel sottosuolo. Il progetto degli interventi deve essere basato su specifici modelli geotecnici di sottosuolo.

L'adeguatezza del margine di sicurezza raggiunto per effetto degli interventi di stabilizzazione deve essere giustificato dal progettista.

Oltre alla valutazione dell'incremento di sicurezza indotto dagli interventi di stabilizzazione nei confronti del meccanismo di collasso più critico, è necessario verificare le condizioni di sicurezza connesse con altri, diversi, meccanismi di collasso, compatibili con gli interventi ipotizzati

6.3.6. CONTROLLI E MONITORAGGIO

Il monitoraggio di un pendio o di una frana interessa le diverse fasi che vanno dallo studio al progetto, alla realizzazione e gestione delle opere di stabilizzazione e al controllo della loro funzionalità e durabilità. Esso è riferito principalmente agli spostamenti di punti significativi del pendio, in superficie e/o in profondità, al controllo di eventuali manufatti presenti e alla misura delle pressioni interstiziali, da effettuare con periodicità e durata tali da consentire di definirne le variazioni periodiche e stagionali.

Il controllo dell'efficacia degli interventi di stabilizzazione deve comprendere la definizione delle soglie di attenzione e di allarme e dei provvedimenti da assumere in caso del relativo superamento.

6.4. OPERE DI FONDAZIONE

6.4.1. CRITERI GENERALI DI PROGETTO

Le scelte progettuali per le opere di fondazione devono essere effettuate contestualmente e congruentemente con quelle delle strutture in elevazione.

Nel caso di opere situate su pendii o in prossimità di pendii naturali o artificiali deve essere verificata anche la stabilità globale del pendio in assenza e in presenza dell'opera e di eventuali scavi, riporti o interventi di altra natura, necessari alla sua realizzazione.

Devono essere valutati gli effetti della costruzione dell'opera su manufatti attigui e sull'ambiente circostante.

Nel caso di fondazioni su pali, le indagini devono essere dirette anche ad accertare la fattibilità e l'idoneità del tipo di palo in relazione alle caratteristiche dei terreni e al regime delle pressioni interstiziali.

6.4.2. FONDAZIONI SUPERFICIALI

La profondità del piano di posa della fondazione deve essere scelta e giustificata in relazione alle caratteristiche e alle prestazioni della struttura in elevazione, alle caratteristiche del sottosuolo e alle condizioni ambientali.

Il piano di fondazione deve essere situato sotto la coltre di terreno vegetale nonché sotto lo strato interessato dal gelo e da significative variazioni stagionali del contenuto d'acqua.

In situazioni nelle quali sono possibili fenomeni di erosione o di scalzamento da parte di acque di scorrimento superficiale, le fondazioni devono essere poste a profondità tale da non risentire di questi fenomeni o devono essere adeguatamente difese.

In presenza di azioni sismiche, oltre a quanto previsto nel presente paragrafo, le fondazioni superficiali devono rispettare i criteri di verifica di cui al successivo \S 7.11.5.3.1

6.4.2.1. VERIFICHE AGLI STATI LIMITE ULTIMI (SLU)

Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine

Gli stati limite ultimi delle fondazioni superficiali si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione stessa

Nel caso di fondazioni posizionate su o in prossimità di pendii naturali o artificiali deve essere effettuata la verifica anche con riferimento alle condizioni di stabilità globale del pendio includendo nelle verifiche le azioni trasmesse dalle fondazioni.

Le verifiche devono essere effettuate almeno nei confronti dei seguenti stati limite, accertando che la condizione [6.2.1] sia soddisfatta per ogni stato limite considerato:

- SLU di tipo geotecnico (GEO)
 - collasso per carico limite dell'insieme fondazione-terreno;
 - collasso per scorrimento sul piano di posa;
 - stabilità globale.
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza negli elementi strutturali.

La verifica di stabilità globale deve essere effettuata, analogamente a quanto previsto nel § 6.8, secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici e nella Tab. 6.8.I per le resistenze globali.

Le rimanenti verifiche devono essere effettuate applicando la combinazione (A1+M1+R3) di coefficienti parziali prevista dall'Approccio 2, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.4.I.

Nelle verifiche nei confronti di SLU di tipo strutturale (STR), il coefficiente γ_R non deve essere portato in conto.

 $\textbf{Tab. 6.4.I} - \textit{Coefficienti parziali } \gamma_{R} \ \textit{per le verifiche agli stati limite ultimi di fondazioni superficiali}$

Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1.1$

6.4.2.2 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO (SLE)

Al fine di assicurare che le fondazioni risultino compatibili con i requisiti prestazionali della struttura in elevazione (§§ 2.2.2 e 2.6.2), si deve verificare il rispetto della condizione [6.2.7], calcolando i valori degli spostamenti e delle distorsioni nelle combinazioni di carico per gli SLE specificate al §2.5.3, tenendo conto anche dell'effetto della durata delle azioni.

Forma, dimensioni e rigidezza della struttura di fondazione devono essere stabilite nel rispetto dei summenzionati requisiti prestazionali, tenendo presente che le verifiche agli stati limite di esercizio possono risultare più restrittive di quelle agli stati limite ultimi.

6.4.3. FONDAZIONI SU PALI

Il progetto di una fondazione su pali deve comprendere la scelta del tipo di palo e delle relative tecnologie e modalità di esecuzione, il dimensionamento dei pali e delle relative strutture di collegamento, tenendo conto degli effetti di gruppo tanto nelle verifiche SLU quanto nelle verifiche SLE.

Le indagini geotecniche, oltre a soddisfare i requisiti riportati al § 6.2.2, devono essere dirette anche ad accertare l'effettiva realizzabilità e l'idoneità del tipo di palo in relazione alle caratteristiche dei terreni e del regime delle pressioni interstiziali.

In generale, le verifiche dovrebbero essere condotte a partire dai risultati di analisi di interazione tra il terreno e la fondazione costituita dai pali e dalla struttura di collegamento (fondazione mista a platea su pali) che portino alla determinazione dell'aliquota dell'azione di progetto trasferita al terreno direttamente dalla struttura di collegamento e di quella trasmessa dai pali.

Nei casi in cui l'interazione sia considerata non significativa o, comunque, si ometta la relativa analisi, le verifiche SLU e SLE, condotte con riferimento ai soli pali, dovranno soddisfare quanto riportato ai §§ 6.4.3.1 e 6.4.3.2.

Nei casi in cui si consideri significativa tale interazione e si svolga la relativa analisi, le verifiche SLU e SLE, condotte con riferimento alla fondazione mista, dovranno soddisfare quanto riportato ai §§ 6.4.3.3 e 6.4.3.4.

In ogni caso, in aggiunta a quanto riportato ai §§ 6.2.4.1.1 e 6.2.4.1.2, fra le azioni permanenti deve essere incluso il peso proprio del palo e l'effetto dell'attrito negativo, quest'ultimo valutato con i coefficienti γ_M del caso M1 della Tab. 6.2.II.

In presenza di azioni sismiche, oltre a quanto previsto nel presente paragrafo , le fondazioni su pali devono rispettare i criteri di verifica di cui al successivo \S 7.11.5.3.2

6.4.3.1 VERIFICHE AGLI STATI LIMITE ULTIMI (SLU)

Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine.

Gli stati limite ultimi delle fondazioni su pali si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione stessa.

Nel caso di fondazioni posizionate su o in prossimità di pendii naturali o artificiali deve essere effettuata la verifica con riferimento alle condizioni di stabilità globale del pendio includendo nelle verifiche le azioni trasmesse dalle fondazioni.

Le verifiche delle fondazioni su pali devono essere effettuate con riferimento almeno ai seguenti stati limite, accertando che la condizione [6.2.1] sia soddisfatta per ogni stato limite considerato:

- SLU di tipo geotecnico (GEO)
 - collasso per carico limite della palificata nei riguardi dei carichi assiali;
 - collasso per carico limite della palificata nei riguardi dei carichi trasversali;
 - collasso per carico limite di sfilamento nei riguardi dei carichi assiali di trazione;
 - stabilità globale;
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza dei pali;
- raggiungimento della resistenza della struttura di collegamento dei pali.

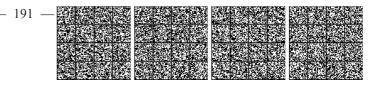
La verifica di stabilità globale deve essere effettuata secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1 tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici, e nella Tab. 6.8.I per le resistenze globali.

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 2, con la combinazione (A1+M1+R3), tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II, 6.4.II e 6.4.VI.

Nelle verifiche nei confronti di SLU di tipo strutturale, il coefficiente γ_R non deve essere portato in conto.

6.4.3.1.1 Resistenze di pali soggetti a carichi assiali

Il valore di progetto R_d della resistenza si ottiene a partire dal valore caratteristico R_k applicando i coefficienti parziali γ_R della Tab. 6.4.II.


Tab. 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali	Pali	Pali ad elica
		infissi	trivellati	continua
	γ_{R}	(R3)	(R3)	(R3)
Base	Υb	1,15	1,35	1,3
Laterale in compressione	$\gamma_{\rm s}$	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	$\gamma_{\rm st}$	1,25	1,25	1,25

^(°) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto

La resistenza caratteristica R_k del palo singolo può essere dedotta da:

- a) risultati di prove di carico statico di progetto su pali pilota (§ 6.4.3.7.1);
- b) metodi di calcolo analitici, dove R_k è calcolata a partire dai valori caratteristici dei parametri geotecnici, oppure con l'impiego di relazioni empiriche che utilizzino direttamente i risultati di prove in sito (prove penetrometriche, pressiometriche, ecc.);

- c) risultati di prove dinamiche di progetto, ad alto livello di deformazione, eseguite su pali pilota (§ 6.4.3.7.1). In dettaglio:
- (a) Se il valore caratteristico della resistenza a compressione del palo, $R_{c,k'}$ o a trazione, $R_{t,k'}$ è dedotto dai corrispondenti valori $R_{c,m}$ o $R_{t,m'}$ ottenuti elaborando i risultati di una o più prove di carico di progetto, il valore caratteristico della resistenza a compressione e a trazione è pari al minore dei valori ottenuti applicando al valore medio e al valore minimo delle resistenze misurate i fattori di correlazione ξ riportati nella Tab. 6.4.III, in funzione del numero n di prove di carico su pali pilota:

$$R_{c,k} = Min \left\{ \frac{\left(R_{c,m}\right)_{media}}{\xi_{l}}; \frac{\left(R_{c,m}\right)_{min}}{\xi_{2}} \right\}$$
 [6.4.1]

$$R_{t,k} = Min \left\{ \frac{\left(R_{t,m}\right)_{media}}{\xi_{l}}; \frac{\left(R_{t,m}\right)_{min}}{\xi_{2}} \right\}$$
 [6.4.2]

Tab. 6.4.III - Fattori di correlazione ξ per la determinazione della resistenza caratteristica a partire dai risultati di prove di carico statico su pali pilota

Numero di prove di carico	1	2	3	4	≥5
ξ_1	1,40	1,30	1,20	1,10	1,0
ξ ₂	1,40	1,20	1,05	1,00	1,0

(b) Con riferimento alle procedure analitiche che prevedano l'utilizzo dei parametri geotecnici o dei risultati di prove in sito, il valore caratteristico della resistenza $R_{c,k}$ (o $R_{t,k}$) è dato dal minore dei valori ottenuti applicando al valore medio e al valore minimo delle resistenze calcolate $R_{c,cal}$ ($R_{t,cal}$) i fattori di correlazione ξ riportati nella Tab. 6.4.IV, in funzione del numero n di verticali di indagine:

$$R_{c,k} = Min \left\{ \frac{\left(R_{c,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{c,cal}\right)_{min}}{\xi_4} \right\}$$
 [6.4.3]

$$R_{t,k} = Min \left\{ \frac{\left(R_{t,cal}\right)_{media}}{\xi_{3}}; \frac{\left(R_{t,cal}\right)_{min}}{\xi_{4}} \right\}$$
 [6.4.4]

Tab. 6.4.IV - Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Fatta salva la necessità di almeno una verticale di indagine per ciascun sistema di fondazione, nell'ambito dello stesso sistema di fondazione, ai fini del conteggio delle verticali di indagine per la scelta dei coefficienti ξ in Tab. 6.4.IV si devono prendere solo le verticali lungo le quali la singola indagine (sondaggio con prelievo di campioni indisturbati, prove penetrometriche, ecc.) sia stata spinta ad una profondità superiore alla lunghezza dei pali, in grado di consentire una completa identificazione del modello geotecnico di sottosuolo.

(c) Se il valore caratteristico della resistenza R_{c,k} è dedotto dal valore R_{c,m} ottenuto elaborando i risultati di una o più prove dinamiche di progetto ad alto livello di deformazione, il valore caratteristico della resistenza a compressione è pari al minore dei valori ottenuti applicando al valore medio e al valore minimo delle resistenze misurate i fattori di correlazione ξ riportati nella Tab. 6.4.V, in funzione del numero n di prove dinamiche eseguite su pali pilota:

$$R_{c,k} = Min \left\{ \frac{\left(R_{c,m}\right)_{media}}{\xi_{5}}; \frac{\left(R_{c,m}\right)_{min}}{\xi_{6}} \right\}$$
 [6.4.5]

Tab. 6.4.V - Fattori di correlazione ξ per la determinazione della resistenza caratteristica a partire dai risultati di prove dinamiche su pali pilota

Numero di prove di carico	≥ 2	≥ 5	≥ 10	≥ 15	≥ 20
ξ ₅	1,60	1,50	1,45	1,42	1,40
ξ ₆	1,50	1,35	1,30	1,25	1,25

6.4.3.1.1.1 Resistenza a carico assiale di una palificata

Per una palificata, la verifica della condizione [6.2.1] dovrà essere fatta in base alla resistenza caratteristica che risulta dalla somma delle resistenze caratteristiche dei pali che la costituiscono. Sarà comunque necessario valutare possibili riduzioni della resistenza disponibile per effetto di gruppo, tenendo conto della tipologia dei pali, della natura dei terreni interessati e della configurazione geometrica della palificata.

6.4.3.1.2 Resistenze di pali soggetti a carichi trasversali

Per la determinazione del valore di progetto $R_{tr,d}$ della resistenza di pali soggetti a carichi trasversali valgono le indicazioni del § 6.4.3.1.1, applicando il coefficiente parziale γ_T della Tab. 6.4.VI.

 $\textbf{Tab. 6.4.VI -} \textit{Coefficiente parziale } \gamma_T \textit{per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali }$

Coefficiente parziale (R3)	
$\gamma_T = 1.3$	

Nel caso in cui la resistenza caratteristica $R_{tr,k}$ sia valutata a partire dalla resistenza $R_{tr,m}$ misurata nel corso di una o più prove di carico statico su pali pilota, è necessario che la prova sia eseguita riproducendo la retta di azione delle azioni di progetto.

Nel caso in cui la resistenza caratteristica sia valutata con metodi di calcolo analitici, i coefficienti riportati nella Tab. 6.4.IV devono essere scelti assumendo come verticali indagate solo quelle che consentano una completa identificazione del modello geotecnico di sottosuolo nell'ambito delle profondità interessate dal meccanismo di rottura.

La resistenza sotto carichi trasversali dell'intera fondazione su pali deve essere valutata tenendo conto delle condizioni di vincolo alla testa dei pali determinate dalla struttura di collegamento e di possibili riduzioni per effetto di gruppo.

6.4.3.2 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO (SLE)

Devono essere presi in considerazione almeno i seguenti stati limite di esercizio, quando pertinenti:

- eccessivi cedimenti o sollevamenti;
- eccessivi spostamenti trasversali.

Specificamente, si devono calcolare i valori degli spostamenti e delle distorsioni nelle combinazioni caratteristiche previste per gli stati limite di esercizio al § 2.5.3, per verificarne la compatibilità con i requisiti prestazionali della struttura in elevazione, come prescritto dalla condizione [6.2.7]. La geometria della fondazione (numero, lunghezza, diametro e interasse dei pali) deve essere stabilita nel rispetto dei summenzionati requisiti prestazionali, tenendo opportunamente conto degli effetti di interazione tra i pali e considerando i diversi meccanismi di mobilitazione della resistenza laterale rispetto alla resistenza alla base, soprattutto in presenza di pali di grande diametro.

6.4.3.3 VERIFICHE AGLI STATI LIMITE ULTIMI (SLU) DELLE FONDAZIONI MISTE

Gli stati limite ultimi delle fondazioni miste si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione stessa.

Nel caso di fondazioni posizionate su o in prossimità di pendii naturali o artificiali deve essere effettuata la verifica con riferimento alle condizioni di stabilità globale del pendio includendo nelle verifiche le azioni trasmesse dalle fondazioni.

Le verifiche delle fondazioni miste devono essere effettuate con riferimento almeno ai seguenti stati limite, accertando che la condizione [6.2.1] sia soddisfatta per ogni stato limite considerato:

- SLU di tipo geotecnico (GEO)
 - collasso per carico limite della fondazione mista nei riguardi dei carichi assiali;
 - collasso per carico limite della fondazione mista nei riguardi dei carichi trasversali;
 - stabilità globale;
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza dei pali;
 - raggiungimento della resistenza della struttura di collegamento dei pali.

La verifica di stabilità globale deve essere effettuata, analogamente a quanto previsto al § 6.8, secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1 tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici, e nella Tab. 6.8.I per le resistenze globali.

Nel caso in cui il soddisfacimento della condizione [6.2.1] sia garantito dalla sola struttura di collegamento posta a contatto con il terreno secondo quanto indicato al § 6.4.2.1, ai pali può essere assegnata la sola funzione di riduzione e regolazione degli spostamenti. In questo caso il dimensionamento dei pali deve garantire il soddisfacimento delle verifiche nei confronti degli stati limite ultimi (SLU) di tipo strutturale per tutti gli elementi della fondazione (struttura di collegamento e pali) e delle verifiche SLE secondo quanto riportato al paragrafo successivo.

Limitatamente alle azioni verticali, il soddisfacimento della condizione [6.2.1] può essere garantito portando in conto anche il contributo dei pali. In questo caso, la verifica deve essere svolta anche per stati limite ultimi di tipo GEO della fondazione mista, sia a breve sia a lungo termine, ottenendo la resistenza di progetto R_d dalla somma delle resistenze caratteristiche dei pali, deter-

minate come al § 6.4.3.1, e della struttura di collegamento, dividendo la resistenza totale per il coefficiente parziale di capacità portante (R3) riportato nella Tab. 6.4.I (§ 6.4.2.1).

6.4.3.4 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO (SLE) DELLE FONDAZIONI MISTE

L'analisi di interazione tra il terreno e la fondazione mista deve garantire che i valori degli spostamenti e delle distorsioni siano compatibili con i requisiti prestazionali della struttura in elevazione (§§ 2.2.2 e 2.6.2), nel rispetto della condizione [6.2.7].

La geometria della fondazione (numero, lunghezza, diametro e interasse dei pali) deve essere stabilita nel rispetto dei summenzionati requisiti prestazionali, tenendo opportunamente conto dei diversi meccanismi di mobilitazione della resistenza laterale rispetto alla resistenza alla base, soprattutto in presenza di pali di grande diametro.

6.4.3.5 ASPETTI COSTRUTTIVI

Nel progetto si deve tenere conto dei vari aspetti che possono influire sull'integrità strutturale, sulla durabilità e sul comportamento dei pali, quali la distanza relativa, la sequenza di installazione, i problemi di refluimento e sifonamento nel caso di pali trivellati, l'addensamento del terreno nel caso di pali infissi, gli effetti della falda o di sostanze chimiche presenti nell'acqua o nel terreno sul conglomerato dei pali gettati in opera, la connessione dei pali alla struttura di collegamento. La durabilità dei pali di fondazione deve essere valutata in relazione ai materiali posti in opera ed alle specifiche condizioni ambientali del sito di progetto.

6.4.3.6 CONTROLLI D'INTEGRITÀ DEI PALI

In tutti i casi in cui la qualità dei pali dipenda in misura significativa dai procedimenti esecutivi e dalle caratteristiche geotecniche dei terreni di fondazione, devono essere effettuati controlli di integrità.

Il controllo dell'integrità, da effettuarsi con prove dirette o indirette di comprovata validità, deve interessare almeno il 5% dei pali della fondazione con un minimo di 2 pali.

Nel caso di gruppi di pali di grande diametro (d≥80 cm), il controllo dell'integrità deve essere effettuato su tutti i pali di ciascun gruppo se i pali del gruppo sono in numero inferiore o uguale a 4.

6.4.3.7 PROVE DI CARICO

6.4.3.7.1 Prove di progetto su pali pilota

Le prove per la determinazione della resistenza del singolo palo (prove di progetto) devono essere eseguite su pali appositamente realizzati (pali pilota) identici, per geometria e tecnologia esecutiva, a quelli da realizzare e ad essi sufficientemente vicini.

L'intervallo di tempo intercorrente tra la costruzione del palo pilota e l'inizio della prova di carico deve essere sufficiente a garantire che il materiale di cui è costituito il palo sviluppi la resistenza richiesta e che le pressioni interstiziali nel terreno si riportino ai valori iniziali

Se si esegue una sola prova di carico statica di progetto, questa deve essere ubicata dove le condizioni del terreno sono più sfavorevoli

Le prove di progetto devono essere spinte fino a valori del carico assiale tali da portare a rottura il complesso palo-terreno o comunque tali da consentire di ricavare diagrammi dei cedimenti della testa del palo in funzione dei carichi e dei tempi, significativi ai fini della valutazione della resistenza.

Il sistema di vincolo deve essere dimensionato per consentire un valore del carico di prova non inferiore a 2,5 volte l'azione di progetto utilizzata per le verifiche agli SLE.

La resistenza del complesso palo-terreno è assunta pari al valore del carico applicato corrispondente ad un cedimento della testa pari al 10% del diametro nel caso di pali di piccolo e medio diametro (d < 80 cm), non inferiori al 5% del diametro nel caso di pali di grande diametro (d ≥ 80 cm).

Se tali valori di cedimento non sono raggiunti nel corso della prova, è possibile procedere all'estrapolazione della curva sperimentale a patto che essa evidenzi un comportamento del complesso palo-terreno marcatamente non lineare.

Per i pali di grande diametro si può ricorrere a prove statiche eseguite su pali aventi la stessa lunghezza dei pali da realizzare, ma diametro inferiore, purché tali prove siano adeguatamente motivate ed interpretate al fine di fornire indicazioni utili per i pali da realizzare. In ogni caso, la riduzione del diametro non può essere superiore al 50% e tale da restituire un palo ancora di grande diametro ($d \ge 80$ cm); il palo di prova deve essere opportunamente strumentato per consentire il rilievo separato delle curve di mobilitazione della resistenza laterale e della resistenza alla base.

Come prove di progetto possono essere eseguite prove dinamiche ad alto livello di deformazione, purché adeguatamente interpretate al fine di fornire indicazioni comparabili con quelle derivanti da una corrispondente prova di carico statica di progetto.

6.4.3.7.2 Prove in corso d'opera

Sui pali di fondazione, ad esclusione di quelli sollecitati prevalentemente da azioni orizzontali, devono essere eseguite prove di carico statiche per controllarne il comportamento sotto le azioni di progetto. Tali prove devono essere spinte ad un carico assiale pari a 1,5 volte l'azione di progetto utilizzata per le verifiche SLE.

In presenza di pali strumentati per il rilievo separato delle curve di mobilitazione delle resistenze lungo la superficie e alla base, il massimo carico assiale di prova può essere posto pari a 1,2 volte l'azione di progetto utilizzata per le verifiche SLE.

Il numero e l'ubicazione delle prove di carico devono essere stabiliti in base all'importanza dell'opera e al grado di omogeneità del terreno di fondazione. In ogni caso, per ciascun sistema di fondazione il numero complessivo di prove non deve essere inferiore a:

- 1 se il numero di pali è inferiore o uguale a 20,
- 2 se il numero di pali è compreso tra 21 e 50,
- 3 se il numero di pali è compreso tra 51 e 100,
- 4 se il numero di pali è compreso tra 101 e 200,
- 5 se il numero di pali è compreso tra 201 e 500,
- il numero intero più prossimo al valore 5 + n/500, se il numero n di pali è superiore a 500.

Fermo restando il numero complessivo delle prove di carico minimo sopra indicato, il numero di prove di carico statiche può essere ridotto se sono eseguite prove di carico dinamiche sostitutive, da tarare con quelle statiche di progetto su pali pilota, e siano effettuati controlli non distruttivi su almeno il 50% dei pali, per verificarne lunghezza e integrità strutturale. In ogni caso, deve essere eseguita almeno una prova di carico statica.

Per fondazioni su pali di opere che ricadono in condizioni ambientali particolarmente severe, quali ad esempio le strutture offshore con elevato battente d'acqua, si può fare riferimento a specifiche normative di comprovata validità.

6.5. OPERE DI SOSTEGNO

Le norme si applicano a tutte le costruzioni e agli interventi atti a sostenere in sicurezza un corpo di terreno o di materiale con comportamento simile. In particolare :

- muri, per i quali la funzione di sostegno è affidata al peso proprio del muro e a quello del terreno direttamente agente su di
 esso (ad esempio muri a gravità, muri a mensola, muri a contrafforti);
- paratie, per le quali la funzione di sostegno è assicurata principalmente dalla resistenza del volume di terreno posto innanzi
 l'opera e da eventuali ancoraggi e puntoni;
- strutture miste, che esplicano la funzione di sostegno anche per effetto di trattamenti di miglioramento e per la presenza di particolari elementi di rinforzo e collegamento.

In presenza di azioni sismiche, oltre a quanto previsto nel presente paragrafo, le opere di sostegno devono rispettare i criteri di verifica di cui al successivo § 7.11.6.

6.5.1 CRITERI GENERALI DI PROGETTO

La scelta del tipo di opera di sostegno deve essere effettuata in base alle dimensioni e alle esigenze di funzionamento dell'opera, alle caratteristiche meccaniche dei terreni in sede e di riporto, al regime delle pressioni interstiziali, all'interazione con i manufatti circostanti, alle condizioni generali di stabilità del sito. Deve inoltre tener conto dell'incidenza sulla sicurezza di dispositivi complementari (quali rinforzi, drenaggi, tiranti e ancoraggi) e delle fasi costruttive.

Nei muri di sostegno, il terreno di riempimento a tergo del muro deve essere posto in opera con opportuna tecnica di costipamento ed avere granulometria tale da consentire un drenaggio efficace nel tempo. Si può ricorrere all'uso di geotessili, con funzione di separazione e filtrazione, da interporre fra il terreno in sede e quello di riempimento. Il drenaggio deve essere progettato in modo da risultare efficace in tutto il volume significativo a tergo del muro.

Devono essere valutati gli effetti derivanti da parziale perdita di efficacia di dispositivi particolari quali sistemi di drenaggio superficiali e profondi, tiranti ed ancoraggi. Per tutti questi interventi deve essere predisposto un dettagliato piano di controllo e monitoraggio nei casi in cui la loro perdita di efficacia configuri scenari di rischio.

In presenza di costruzioni preesistenti, il comportamento dell'opera di sostegno deve garantirne i previsti livelli di funzionalità e stabilità. In particolare, devono essere valutati gli spostamenti del terreno a tergo dell'opera e verificata la loro compatibilità con le condizioni di sicurezza e funzionalità delle costruzioni preesistenti. Inoltre, nel caso in cui in fase costruttiva o a seguito della adozione di sistemi di drenaggio si determini una modifica delle pressioni interstiziali nel sottosuolo se ne devono valutare gli effetti, anche in termini di stabilità e funzionalità delle costruzioni preesistenti.

Le indagini geotecniche devono avere estensione tale da consentire la verifica delle condizioni di stabilità locale e globale del complesso opera-terreno, tenuto conto anche di eventuali moti di filtrazione.

Devono essere prescritte le caratteristiche fisiche e meccaniche dei materiali di riempimento.

6.5.2 AZIONI

Si considerano azioni sull'opera di sostegno quelle dovute al peso proprio del terreno e del materiale di riempimento, ai sovraccarichi, all'acqua, ad eventuali ancoraggi presollecitati, al moto ondoso, ad urti e collisioni, alle variazioni di temperatura e al ghiaccio.

6.5.2.1 SOVRACCARICHI

Nel valutare il sovraccarico a tergo di un'opera di sostegno si deve tener conto della eventuale presenza di costruzioni, di depositi di materiale, di veicoli in transito, di apparecchi di sollevamento.

6.5.2.2 MODELLO GEOMETRICO DI RIFERIMENTO

Il modello geometrico deve tenere conto delle possibili variazioni del profilo del terreno a monte e a valle del paramento rispetto ai valori nominali.

Nel caso in cui la funzione di sostegno è affidata alla resistenza del volume di terreno a valle dell'opera, la quota di valle dove essere diminuita di una quantità pari al minore dei seguenti valori:

- 10% dell'altezza di terreno da sostenere nel caso di opere a sbalzo:
- 10 % della differenza di quota fra il livello inferiore di vincolo e il fondo scavo nel caso di opere vincolate;
- 0,5 m.

Il livello della superficie libera dell'acqua deve essere scelto sulla base di misure e sulla possibile evoluzione del regime delle pressioni interstiziali anche legati a eventi di carattere eccezionale e a possibili malfunzionamenti dei sistemi di drenaggio. In assenza di particolari sistemi di drenaggio, nelle verifiche allo stato limite ultimo, si deve sempre ipotizzare che la superficie libera della falda non sia inferiore a quella del livello di sommità dei terreni con bassa permeabilità $(k < 10^{\circ} m/s)$.

6.5.3 VERIFICHE AGLI STATI LIMITE

Le verifiche eseguite mediante analisi di interazione terreno-struttura o con metodi semplificati devono sempre rispettare le condizioni di equilibrio e congruenza e la compatibilità con i criteri di resistenza del terreno. È necessario inoltre portare in conto la dipendenza della spinta dei terreni dallo spostamento dell'opera.

6.5.3.1 VERIFICHE DI SICUREZZA (SLU)

Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine. Gli stati limite ultimi delle opere di sostegno si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno, e al raggiungimento della resistenza degli elementi strutturali che compongono le opere stesse.

6.5.3.1.1 Muri di sostegno

Per i muri di sostegno o per altre strutture miste ad essi assimilabili devono essere effettuate le verifiche con riferimento almeno ai seguenti stati limite, accertando che la condizione [6.2.1] sia soddisfatta per ogni stato limite considerato:

- SLU di tipo geotecnico (GEO)
 - scorrimento sul piano di posa;
 - collasso per carico limite del complesso fondazione-terreno;
 - ribaltamento;
 - stabilità globale del complesso opera di sostegno-terreno;
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza negli elementi strutturali.

La verifica di stabilità globale del complesso opera di sostegno-terreno deve essere effettuata, analogamente a quanto previsto al § 6.8, secondo l'Approccio 1, con la Combinazione 2 (A2+M2+R2), tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici e nella Tab. 6.8.I per le verifiche di sicurezza di opere di materiali sciolti e fronti di scavo.

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 2, con la combinazione (A1+M1+R3), tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.5.I.

Nella verifica a ribaltamento i coefficienti R3 della Tab. 6.5.I si applicano agli effetti delle azioni stabilizzanti.

Tab. 6.5.I - Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di muri di sostegno

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Ribaltamento	$\gamma_R = 1.15$
Resistenza del terreno a valle	γ_R = 1,4

In generale, le ipotesi di calcolo delle spinte devono essere giustificate sulla base dei prevedibili spostamenti relativi manufattoterreno, oppure determinate con un'analisi dell'interazione terreno-struttura. Le spinte devono tenere conto del sovraccarico e dell'inclinazione del piano campagna, dell'inclinazione del paramento rispetto alla verticale, delle pressioni interstiziali e degli effetti della filtrazione nel terreno. Nel calcolo della spinta si può tenere conto dell'attrito che si sviluppa fra parete e terreno. I valori assunti per il relativo coefficiente di attrito devono essere giustificati in base alla natura dei materiali a contatto e all'effettivo grado di mobilitazione.

Ai fini della verifica alla traslazione sul piano di posa di muri di sostegno con fondazioni superficiali, non si deve in generale considerare il contributo della resistenza passiva del terreno antistante il muro. In casi particolari, da giustificare con considerazioni relative alle caratteristiche meccaniche dei terreni e alle modalità costruttive, la presa in conto di un'aliquota (comunque non superiore al 50%) di tale resistenza è subordinata all'assunzione di effettiva permanenza di tale contributo, nonché alla verifica che gli spostamenti necessari alla mobilitazione di tale aliquota siano compatibili con le prestazioni attese dell'opera.

Nel caso di strutture miste o composite, le verifiche di stabilità globale devono essere accompagnate da verifiche di stabilità locale e di funzionalità e durabilità degli elementi singoli.

6.5.3.1.2 Paratie

Per le paratie si devono considerare almeno i seguenti stati limite ultimi, accertando che la condizione [6.2.1] sia soddisfatta per ogni stato limite considerato:

- SLU di tipo geotecnico (GEO) e di tipo idraulico (UPL e HYD)
 - collasso per rotazione intorno a un punto dell'opera (atto di moto rigido);
 - collasso per carico limite verticale;
 - sfilamento di uno o più ancoraggi;
 - instabilità del fondo scavo in terreni a grana fine in condizioni non drenate;
 - instabilità del fondo scavo per sollevamento;
 - sifonamento del fondo scavo;
 - instabilità globale del complesso opera di sostegno-terreno;
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza in uno o più ancoraggi;
 - raggiungimento della resistenza in uno o più puntoni o di sistemi di contrasto;
 - raggiungimento della resistenza strutturale della paratia.

La verifica di stabilità globale del complesso opera di sostegno-terreno deve essere effettuata secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I.

Le verifiche nei riguardi degli stati limite idraulici (UPL e HYD) devono essere eseguite come descritto nel § 6.2.4.2.

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 1 considerando le due combinazioni di coefficienti:

- Combinazione 1: (A1+M1+R1)
- Combinazione 2: (A2+M2+R1)

tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II, con i coefficienti γ R del gruppo R1 pari all'unità.

Per le paratie, i calcoli di progetto devono comprendere la verifica degli eventuali ancoraggi, puntoni o strutture di controventamento

Fermo restando quanto specificato nel § 6.5.3.1.1 per il calcolo delle spinte, per valori dell'angolo d'attrito tra terreno e parete $\delta > \phi'/2$, ai fini della valutazione della resistenza passiva è necessario tener conto della non planarità delle superfici di scorrimento.

6.5.3.2 VERIFICHE DI ESERCIZIO (SLE)

In tutti i casi, nelle condizioni di esercizio, gli spostamenti dell'opera di sostegno e del terreno circostante devono essere valutati per verificarne la compatibilità con la funzionalità dell'opera e con la sicurezza e funzionalità di manufatti adiacenti, anche a seguito di modifiche indotte sul regime delle pressioni interstiziali.

In presenza di manufatti particolarmente sensibili agli spostamenti dell'opera di sostegno, deve essere sviluppata una specifica analisi dell'interazione tra opere e terreno, tenendo conto della sequenza delle fasi costruttive.

6.6. TIRANTI DI ANCORAGGIO

I tiranti di ancoraggio sono elementi strutturali opportunamente collegati al terreno, in grado di sostenere forze di trazione.

6.6.1. CRITERI DI PROGETTO

Ai fini del progetto, gli ancoraggi si distinguono in provvisori e permanenti.

Gli ancoraggi possono essere ulteriormente suddivisi in attivi o presollecitati, quando nell'armatura viene indotta una forza di tesatura iniziale, e passivi o non presollecitati.

Nella scelta del tipo di ancoraggio si deve tenere conto delle sollecitazioni prevedibili, delle caratteristiche del sottosuolo, dell'aggressività ambientale.

Nel progetto devono indicarsi l'orientazione, la lunghezza e il numero degli ancoraggi; la tecnica e le tolleranze di esecuzione; la resistenza di progetto R_{ad} e l'eventuale programma di tesatura.

Nel caso di ancoraggi attivi impiegati per una funzione permanente, devono essere adottati tutti gli accorgimenti costruttivi necessari a garantire la durabilità e l'efficienza del sistema di testata dei tiranti, soprattutto per quelli a trefoli, in particolare nei riguardi della corrosione, per tutta la vita nominale della struttura. Inoltre si devono prevedere efficaci dispositivi di contenimento locale dell'armatura nei confronti del possibile tranciamento in corso di esercizio.

Nel progetto deve essere definito un programma di manutenzione ordinaria che può comprendere anche successivi interventi di regolazione e/o sostituzione dei dispositivi di ancoraggio. Deve inoltre essere predisposto un piano di monitoraggio per verificare il comportamento dell'ancoraggio nel tempo.

Se la funzione di ancoraggio è esercitata da piastre, da pali accostati o simili, è necessario evitare ogni sovrapposizione tra la zona passiva di pertinenza dell'ancoraggio e quella attiva a tergo dell'opera di sostegno.

Per la valutazione della resistenza a sfilamento di un ancoraggio si può procedere in prima approssimazione con formule teoriche o con correlazioni empiriche. La conferma sperimentale con prove di trazione in sito nelle fasi di progetto e in corso d'opera è sempre necessaria.

6.6.2. VERIFICHE DI SICUREZZA (SLU)

Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine.

Gli stati limite ultimi dei tiranti di ancoraggio si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che li compongono.

Per il dimensionamento geotecnico, deve risultare rispettata la condizione [6.2.1] con specifico riferimento ad uno stato limite di sfilamento della fondazione dell'ancoraggio. La verifica di tale condizione può essere effettuata con riferimento alla combinazione A1+M1+R3, tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.6.I.

La verifica a sfilamento della fondazione dell'ancoraggio si esegue confrontando la massima azione di progetto E_d con la resistenza di progetto R_{ad} , determinata applicando alla resistenza caratteristica R_{ak} i coefficienti parziali γ_R riportati nella Tab. 6.6.I.

Tab. 6.6.I - Coefficienti parziali per la resistenza degli ancoraggi

	Simbolo	Coefficiente parziale
Temporanei	γ_R	1,1
Permanenti	γ_R	1,2

Il valore caratteristico della resistenza allo sfilamento dell'ancoraggio R_{ak} si può determinare:

- a) dai risultati di prove di progetto su ancoraggi di prova;
- b) con metodi di calcolo analitici, dai valori caratteristici dei parametri geotecnici dedotti dai risultati di prove in sito e/o di laboratorio.

Nel caso (a), il valore della resistenza caratteristica R_{ak} è il minore dei valori derivanti dall'applicazione dei fattori di correlazione ξ_{a1} e ξ_{a2} riportati nella Tabella 6.6.II rispettivamente al valor medio e al valor minimo delle resistenze $R_{a,m}$ misurate nel corso delle prove:

$$R_{ak} = Min \left\{ \frac{\left(R_{a,m}\right)_{medio}}{\xi_{a1}}; \frac{\left(R_{a,m}\right)_{min}}{\xi_{a2}} \right\}$$
 [6.6.1]

Nel caso (b), il valore della resistenza caratteristica R_{ak} è il minore dei valori derivanti dall'applicazione dei fattori di correlazione ξ_{a3} e ξ_{a4} riportati nella Tabella 6.6.III rispettivamente al valor medio e al valor minimo delle resistenze $R_{a,c}$ ottenute dal calcolo. Per la valutazione dei fattori ξ_{a3} e ξ_{a4} , si deve tenere conto che i profili di indagine sono solo quelli che consentono la completa identificazione del modello geotecnico di sottosuolo per il terreno di fondazione dell'ancoraggio.

$$R_{ak} = Min \left\{ \frac{(R_{a,c})_{medio}}{\xi_{a3}}; \frac{(R_{a,c})_{min}}{\xi_{a4}} \right\}$$
 [6.6.2]

Nella valutazione analitica della resistenza allo sfilamento degli ancoraggi non si applicano coefficienti parziali di sicurezza sui valori caratteristici della resistenza del terreno; si fa quindi riferimento ai coefficienti parziali di sicurezza M1.

Tab. 6.6.II - Fattori di correlazione per derivare la resistenza caratteristica da prove di progetto, in funzione del numero degli ancoraggi di prova

Numero degli ancoraggi di prova	1	2	> 2
ξ_{a1}	1,5	1,4	1,3
ξ_{a2}	1,5	1,3	1,2

Tab. 6.6.III - Fattori di correlazione per derivare la resistenza caratteristica dalle prove geotecniche, in funzione del numero n di profili di indagine

Numero di profili di indagine	1	2	3	4	≥5
ξ_{a3}	1,80	1,75	1,70	1,65	1,60
ξ_{a4}	1,80	1,70	1,65	1,60	1,55

Nei tiranti di prova, l'armatura a trefoli dell'acciaio armonico del tratto libero deve essere dimensionata in modo che la resistenza caratteristica al limite di snervamento del tratto libero sia sempre maggiore del tiro massimo di prova.

6.6.3. ASPETTI COSTRUTTIVI

Per la realizzazione di ancoraggi di tipo attivo si devono impiegare sistemi qualificati, come previsto al § 11.5.2. La durabilità e la compatibilità con i terreni dei materiali impiegati per la costruzione dei tiranti, nonché i sistemi di protezione dalla corrosione, devono essere documentati.

Il diametro dei fori non deve essere inferiore ai diametri nominali previsti in progetto.

La tesatura dei tiranti deve essere effettuata in conformità al programma di progetto. In ogni caso, la tesatura può avere inizio non prima che siano praticamente esauriti i fenomeni di presa ed indurimento del materiale costituente la fondazione dell'ancoraggio.

6.6.4. PROVE DI CARICO

6.6.4.1. PROVE DI PROGETTO SU ANCORAGGI PRELIMINARI

Gli ancoraggi preliminari di prova (ancoraggi di progetto) - sottoposti a sollecitazioni più severe di quelle di verifica e non utilizzabili per l'impiego successivo - devono essere realizzati con lo stesso sistema costruttivo di quelli definitivi, nello stesso sito e nelle stesse condizioni ambientali.

Gli ancoraggi preliminari di prova devono essere realizzati dopo l'esecuzione di quelle operazioni, quali scavi e riporti, che possano influire sulla capacità portante della fondazione.

Nelle valutazioni si terrà conto della variazione della resistenza allo sfilamento nel tempo, per effetto del comportamento viscoso del terreno e dei materiali che costituiscono l'ancoraggio.

Il numero di prove di progetto non deve essere inferiore a:

- 1 se il numero degli ancoraggi è inferiore a 30,
- 2 se il numero degli ancoraggi è compreso tra 31 e 50,
- 3 se il numero degli ancoraggi è compreso tra 51 e 100,
- 7 se il numero degli ancoraggi è compreso tra 101 e 200,
- 8 se il numero degli ancoraggi è compreso tra 201 e 500,
- 10 se il numero degli ancoraggi è superiore a 500.

6.6.4.2. PROVE DI CARICO IN CORSO D'OPERA SUGLI ANCORAGGI

Le prove di carico in corso d'opera devono essere effettuate su tutti gli ancoraggi per controllarne il comportamento sotto le azioni di progetto. La prova consiste nell'applicazione di un ciclo semplice di carico e scarico; in questo ciclo il tirante viene sottoposto ad una forza pari a 1,2 l'azione di progetto Pd utilizzata per le verifiche SLE, verificando che gli allungamenti misurati siano nei limiti previsti e/o compatibili con le misure sugli ancoraggi preliminari di prova.

6.7. OPERE IN SOTTERRANEO

Le presenti norme definiscono le procedure tecniche per il progetto e la costruzione delle opere in sotterraneo quali le gallerie, le caverne ed i pozzi, che sono costruiti totalmente nel sottosuolo mediante operazioni coordinate di asportazione del terreno e/o della roccia in posto e l'esecuzione di eventuali interventi necessari alla stabilizzazione della cavità a breve e a lungo termine, nonché del rivestimento finale.

6.7.1. PRESCRIZIONI GENERALI

Il progetto delle opere in sotterraneo, per la loro peculiarità, deve svilupparsi ponendo particolare cura nella definizione del modello geologico e del modello geotecnico di riferimento.

L'approccio progettuale adottato deve prevedere l'impiego di metodi atti a prevenire o controllare, nelle fasi esecutive, gli effetti legati alla variazione dello stato tensionale preesistente nel terreno e/o nell'ammasso roccioso e alla variazione del regime idraulico del sottosuolo nell'intorno della cavità, conseguenti alle operazioni di scavo. Deve in particolare essere dimostrato il raggiungimento di condizioni di stabilità della stessa cavità ad opera ultimata, in relazione alle condizioni e alle caratteristiche del sito, nonché alle conseguenze che si possono comunque produrre nell'ambiente circostante. A tale scopo, in stretta dipendenza dai risultati delle indagini geologiche e geotecniche, nel progetto devono essere specificati e adeguatamente giustificati:

- geometria, ubicazione (per le opere puntuali quali le caverne ed i pozzi) e tracciato dell'opera (per le opere a sviluppo lineare quali le gallerie);
- metodi e tecniche di scavo, di tipo tradizionale o meccanizzato;
- eventuali interventi di stabilizzazione (quali il miglioramento e il rinforzo dei terreni e dell'ammasso roccioso) da adottare sul
 fronte e sulle pareti di scavo, le strutture di rivestimento, di prima fase o definitivi, ed eventuali opere di protezione degli imbocchi;
- modalità e metodi per l'intercettazione delle acque sotterranee ed il controllo del regime delle pressioni interstiziali
- provvedimenti per prevenire l'innesco e/o la riattivazione di eventuali fenomeni franosi, soprattutto per le gallerie parietali e nelle zone di imbocco;
- elementi utili a definire accorgimenti nei metodi e nelle tecniche di scavo, interventi, piani e norme di sicurezza, anche con riferimento a particolari situazioni di pericolo per presenza di gas tossici o esplosivi, di cavità (naturali e antropiche) o di venute improvvise di acqua;
- problemi relativi alla messa a dimora dei materiali di risulta dagli scavi, compresa la individuazione degli eventuali interventi di inertizzazione che si rendessero necessari, in relazione alla natura degli stessi materiali.

6.7.2. CARATTERIZZAZIONE GEOLOGICA

L'ampiezza e l'approfondimento degli studi e delle indagini di carattere geologico devono essere commisurati alla complessità geologica, alla vulnerabilità ambientale del sito, alla posizione e alle dimensioni dell'opera.

Il modello geologico di riferimento deve descrivere le caratteristiche geologiche generali dei terreni e dell'ammasso roccioso interessato dagli scavi indicando natura e distribuzione geometrica dei litotipi e caratteri strutturali, ponendo particolare attenzione al riconoscimento del contatto fra formazione di base e copertura, dei contatti stratigrafici, delle faglie in corrispondenza o in prossimità dell'opera e delle altre discontinuità Devono essere accertate le caratteristiche sismotettoniche e la franosità della zona interessata dal progetto, particolarmente rilevante per gallerie parietali e per le zone di imbocco, e deve essere segnalata l'eventuale presenza di cavità carsiche.

Gli accertamenti devono riguardare inoltre le condizioni idrogeologiche, i caratteri degli acquiferi presenti nell'area, nonché i rischi di natura ambientale dovuti alla presenza di gas tossici ed esplosivi e di minerali nocivi.

6.7.3. CARATTERIZZAZIONE E MODELLAZIONE GEOTECNICA

Specifiche indagini, in sito e in laboratorio, devono permettere la caratterizzazione fisico-meccanica dei terreni e delle rocce sia alla scala dell'elemento di volume sia alla scala dell'ammasso. Ove necessario la caratterizzazione deve essere rivolta a valutare potenzialità spingenti e/o rigonfianti e le caratteristiche meccaniche lungo le discontinuità. Deve inoltre essere accertato il regime delle pressioni interstiziali e l'eventuale presenza di moti di filtrazione.

Il modello geotecnico di sottosuolo deve permettere di eseguire le analisi di progetto e le verifiche di sicurezza di cui al successivo § 6.7.5 . A tal fine, deve evidenziare le zone omogenee dal punto di vista fisico-meccanico e rappresentare il regime delle pressioni interstiziali nel sottosuolo interessato dallo scavo. Inoltre, la caratterizzazione fisico-meccanica dei materiali deve essere adeguata ai procedimenti analitici e/o numerici previsti.

Nel caso in cui la progettazione faccia riferimento al "metodo osservazionale", indagini e prove integrative possono essere svolte in corso d'opera purché previste per la valutazione dei parametri significativi per la scelta fra le soluzioni alternative già individuate in progetto.

6.7.4. CRITERI DI PROGETTO

Sulla base del modello geotecnico del sottosuolo, il progetto deve comprendere la previsione quantitativa degli effetti direttamente indotti dagli scavi al contorno della cavità e in superficie, con riferimento in particolare a scavi e gallerie poco profonde in ambienti urbanizzati, da cui deve derivare la scelta del metodo e delle tecniche di scavo e degli eventuali interventi di miglioramento e rinforzo in fase di avanzamento. Devono essere dimensionati i rivestimenti, di prima fase e definitivi, e quando appropriato, le opere di protezione agli imbocchi. Infine, nel caso di opere che ricadono in zona di versante, devono essere valutate le condizioni di stabilità globale dei pendii con cui l'opera interagisce, sia in corso di realizzazione sia in esercizio.

L'adozione di interventi di miglioramento e rinforzo dei terreni e dell'ammasso roccioso per garantire o migliorare la stabilità globale e locale dell'opera deve essere adeguatamente motivata, così come deve essere giustificato e illustrato il dimensionamento di tali interventi.

6.7.5. ANALISI PROGETTUALI E VERIFICHE DI SICUREZZA

Le analisi devono essere riferite alle diverse fasi di scavo e costruzione, nonché alle condizioni di esercizio.

Le verifiche devono essere svolte con riferimento agli stati limite ultimi (SLU) e agli stati limite di esercizio (SLE).

Si devono considerare gli stati limite ultimi per raggiungimento della resistenza del terreno o dell'ammasso roccioso interessato dallo scavo (GEO) e gli stati limite ultimi per raggiungimento della resistenza degli elementi strutturali che costituiscono gli interventi di stabilizzazione e di rivestimento, sia di prima fase sia definitivi (STR). Devono essere inoltre valutati quantitativamente gli effetti indotti dall'opera in sotterraneo sui manufatti e sulle costruzioni esistenti. Devono essere considerati i possibili stati limite ultimi di tipo idraulico prodotti sia dalle spinte idrauliche al fronte e al contorno dello scavo in fase di avanzamento (UPL) sia da elevati gradienti idraulici nel caso di attraversamento di terreni suscettibili al sifonamento (HYD).

Le verifiche di stabilità globale dei versanti con cui l'opera interagisce e dei fronti di scavo agli imbocchi devono essere eseguite con i criteri indicati ai §§ 6.3 e 6.8 rispettivamente per i pendii naturali e per i fronti di scavo.

Le verifiche agli stati limite ultimi devono essere eseguite con l'Approccio 1, considerando le due combinazioni di coefficienti

- Combinazione 1: (A1+M1+R1)
- Combinazione 2: (A2+M2+R2)

con i valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e con i coefficienti ya dei gruppi R1 e R2 pari all'unità.

Le verifiche strutturali degli elementi di rinforzo, in avanzamento dal fronte e sulle pareti di scavo, e delle strutture di rivestimento, di prima fase e definitive, devono essere eseguite come specificato al § 6.2.4.1.3, utilizzando i valori caratteristici dei parametri geotecnici.

Le verifiche nei confronti degli stati limite ultimi idraulici devono essere eseguite con i criteri indicati al § 6.2.4.2.

Nel caso di progettazione basata sul metodo osservazionale, di cui al § 6.2.5, le analisi devono permettere la valutazione quantitativa del comportamento dell'opera nelle diverse fasi di scavo e costruzione, in modo da poter formulare previsioni sui valori delle grandezze rappresentative del comportamento della cavità, con particolare riguardo ai valori di convergenza radiale, della deformazione longitudinale del fronte e, se pertinenti, degli spostamenti di superficie, per consentire il confronto delle previsioni con i valori misurati delle medesime grandezze.

6.7.6. CONTROLLO E MONITORAGGIO

Il monitoraggio deve permettere di verificare la validità delle previsioni progettuali in relazione al comportamento dell'opera in fase di costruzione e in esercizio, per il periodo di tempo indicato in progetto. Esso deve essere predisposto in modo da permettere la valutazione del comportamento del terreno o dell'ammasso roccioso interessato, delle strutture di rivestimento per ogni fase di scavo e costruzione e a opera ultimata, nonché del comportamento dei manufatti esistenti. In presenza di fenomeni franosi, potenziali o in atto, il monitoraggio deve riguardare le grandezze significative (tensioni, spostamenti e pressioni interstiziali) e gli effetti sulle opere per il controllo del fenomeno.

Nel caso di applicazione del metodo osservazionale, il monitoraggio deve essere specificamente progettato per consentire il controllo delle grandezze rappresentative del comportamento del complesso opera-terreno ai fini della scelta fra le soluzioni alternative previste.

6.8. OPERE DI MATERIALI SCIOLTI E FRONTI DI SCAVO

Le presenti norme si applicano ai manufatti di materiali sciolti, quali rilevati, argini di difesa per fiumi, canali e litorali, rinfianchi, rinterri, terrapieni e colmate, scavi per la formazione di piazzali e/o trincee. Le norme si applicano, inoltre, alle opere e alle parti di opere di materiali sciolti con specifiche funzioni di drenaggio, filtro, transizione, fondazione, tenuta, protezione ed altre. Gli sbarramenti di ritenuta idraulica di materiali sciolti sono oggetto di normativa specifica.

6.8.1. CRITERI GENERALI DI PROGETTO

Il progetto di un manufatto di materiali sciolti deve tenere conto dei requisiti prestazionali richiesti e delle caratteristiche dei terreni di fondazione. Esso deve comprendere la scelta dei materiali da costruzione, sia naturali che di provenienza diversa, e la loro modalità di posa in opera.

I criteri per la scelta dei materiali naturali devono essere definiti in relazione alle funzioni dell'opera, tenendo presenti i problemi di selezione, coltivazione delle cave, trasporto, trattamento e posa in opera.

Per i materiali di provenienza diversa, i criteri di selezione e impiego dovranno essere definiti di volta in volta, compatibilmente con i vincoli di natura ambientale.

Nel progetto devono essere indicate le prescrizioni relative alla qualificazione dei materiali e alla posa in opera precisando tempi e modalità di costruzione, in particolare lo spessore massimo degli strati in funzione dei materiali. Sono altresì da precisare i controlli da eseguire durante la costruzione e i limiti di accettabilità dei materiali, del grado di compattazione da raggiungere e della deformabilità degli strati.

6.8.2. VERIFICHE DI SICUREZZA (SLU)

Deve risultare rispettata la condizione [6.2.1], verificando che non si raggiunga una condizione di stato limite ultimo con i valori di progetto delle azioni e dei parametri geotecnici.

Le verifiche devono essere effettuate secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I.

Tab. 6.8.I - Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo

COEFFICIENTE	R2		
γ_R	1,1		

La stabilità globale dell'insieme manufatto-terreno di fondazione deve essere studiata nelle condizioni corrispondenti alle diverse fasi costruttive, al termine della costruzione e in esercizio.

Le verifiche locali devono essere estese agli elementi artificiali di rinforzo eventualmente presenti all'interno ed alla base del manufatto, con riferimento anche ai problemi di durabilità. Nel caso di manufatti su pendii si deve esaminare l'influenza dell'opera in terra sulle condizioni generali di sicurezza del pendio, anche in relazione alle variazioni indotte nel regime delle pressioni interstiziali nel sottosuolo.

Se l'opera ha funzioni di ritenuta idraulica, lo stato limite ultimo è da verificarsi con riferimento alla stabilità dei paramenti, in tutte le possibili condizioni di esercizio. Si deve porre particolare attenzione alle problematiche relative al sifonamento ed all'erosione, in relazione alle caratteristiche dei terreni di fondazione dei materiali con i quali è realizzata l'opera, tenendo conto di quanto indicato al § 6.2.4.2.

6.8.3. VERIFICHE DI ESERCIZIO (SLE)

Nelle condizioni di esercizio, devono essere valutati gli spostamenti del manufatto e del terreno circostante, dovuti alla deformazione dei terreni di fondazione e dell'opera, per verificarne la compatibilità con la funzionalità dell'opera e con la sicurezza e funzionalità dei manufatti adiacenti.

6.8.4. ASPETTI COSTRUTTIVI

I materiali costituenti il manufatto devono essere posti in opera in strati con metodologie idonee a garantire il raggiungimento delle proprietà fisiche e meccaniche richieste in progetto.

Le caratteristiche dei componenti artificiali, quali i materiali geosintetici, devono essere specificate e certificate in conformità alle relative norme europee armonizzate e verificate sulla base di risultati di prove sperimentali da eseguire nelle fasi di accettazione e di verifica delle prestazioni attese.

6.8.5. CONTROLLI E MONITORAGGIO

Durante la costruzione devono essere eseguite prove di controllo secondo un programma di prove commisurato alla tipologia ed importanza del manufatto, in modo da assicurare un congruo numero di misure significative. Con il monitoraggio si deve accertare che i valori delle grandezze misurate, quali ad esempio spostamenti e pressioni interstiziali, siano compatibili con i requisiti di sicurezza e funzionalità del manufatto e di quelli delle costruzioni contigue.

6.8.6. FRONTI DI SCAVO

6.8.6.1 INDAGINI GEOTECNICHE E CARATTERIZZAZIONE GEOTECNICA

Ferme restando le prescrizioni di carattere generale di cui al § 6.2.2, le indagini geotecniche devono inoltre tener conto della profondità, dell'ampiezza, della destinazione e del carattere permanente o provvisorio dello scavo.

6.8.6.2 CRITERI GENERALI DI PROGETTO E VERIFICHE DI SICUREZZA

Il progetto deve definire un profilo di scavo tale che risultino rispettate le prescrizioni di cui al § 6.2.4 e la verifica di sicurezza deve essere condotta con modalità analoga a quella indicata per i manufatti di materiali sciolti.

Nel caso di scavi realizzati su pendio, deve essere verificata l'influenza dello scavo sulle condizioni di stabilità generale del pendio stesso.

Il progetto deve tener conto dell'esistenza di opere e sovraccarichi in prossimità dello scavo, deve esaminare l'influenza dello scavo sul regime delle pressioni interstiziali e deve garantire la stabilità e la funzionalità delle costruzioni preesistenti nell'area interessata dallo scavo.

Per scavi in trincea a fronte verticale di altezza superiore ai 2 m, nei quali sia prevista la permanenza di personale, e per scavi che ricadano in prossimità di manufatti esistenti, deve essere prevista una struttura di sostegno delle pareti di scavo. Le verifiche devono essere svolte nei confronti degli stati limite ultimi (SLU) e nei confronti degli stati limite di servizio (SLE), quando pertinenti

Le azioni dovute al terreno, all'acqua e ai sovraccarichi anche transitori devono essere calcolate in modo da pervenire, di volta in volta, alle condizioni più sfavorevoli.

Le ipotesi per il calcolo delle azioni del terreno e delle sollecitazioni della struttura di sostegno devono essere giustificate portando in conto la deformabilità relativa del terreno-struttura di sostegno, le modalità esecutive dello scavo, le caratteristiche meccaniche del terreno e il tempo di permanenza dello scavo.

6.9. MIGLIORAMENTO E RINFORZO DEI TERRENI E DEGLI AMMASSI ROCCIOSI

Le presenti norme riguardano la progettazione, la costruzione e il controllo degli interventi di miglioramento e rinforzo dei terreni e degli ammassi rocciosi, realizzati per diverse finalità applicative.

6.9.1. SCELTA DEL TIPO DI INTERVENTO E CRITERI GENERALI DI PROGETTO

La scelta del tipo di intervento deve derivare da una caratterizzazione geotecnica dei terreni e degli ammassi rocciosi da trattare e da un'analisi dei fattori tecnici, organizzativi e ambientali.

Gli interventi devono essere giustificati, indicando i fattori geotecnici che ci si propone di modificare e fornendo valutazioni quantitative degli effetti meccanici attesi.

Le indagini geotecniche devono riguardare anche l'accertamento dei risultati conseguiti, avvalendosi di misure e di appositi campi prova.

Nel progetto devono essere definiti il dimensionamento degli interventi, le caratteristiche degli eventuali elementi strutturali e dei materiali di apporto, le tecniche necessarie e le sequenze operative.

Il progetto deve indicare le modalità di accertamento dei risultati, specificando le misure e le indagini sperimentali più opportune in relazione alla tipologia ed agli obiettivi dell'intervento di miglioramento e/o rinforzo. Negli interventi di particolare importanza il progetto deve prevedere una fase preliminare di verifica sperimentale e messa a punto delle modalità esecutive dell'intervento (campi prova).

6.9.2. MONITORAGGIO

Il monitoraggio ha lo scopo di valutare l'efficacia degli interventi e di verificare la rispondenza dei risultati ottenuti con le ipotesi progettuali. Ha inoltre lo scopo di controllare il comportamento nel tempo del complesso opera-terreno trattato.

Il monitoraggio deve essere previsto nei casi in cui gli interventi di miglioramento e di rinforzo possano condizionare la sicurezza e la funzionalità dell'opera in progetto o di opere circostanti.

6.10. CONSOLIDAMENTO GEOTECNICO DI OPERE ESISTENTI

Le norme riguardano l'insieme dei provvedimenti tecnici con i quali si interviene sul sistema manufatto-terreno per eliminare o mitigare difetti di comportamento di un'opera esistente.

6.10.1. CRITERI GENERALI DI PROGETTO

Il progetto degli interventi di consolidamento deve derivare dalla individuazione delle cause che hanno prodotto il comportamento anomalo dell'opera. Tali cause possono riguardare singolarmente o congiuntamente la sovrastruttura, le strutture di fondazione, il terreno di fondazione.

In particolare, devono essere ricercate le cause di anomali spostamenti del terreno conseguenti al mutato stato tensionale indotto da modifiche del manufatto, da variazioni del regime delle pressioni interstiziali, dalla costruzione di altri manufatti in adiacenza, da modifiche del profilo topografico del terreno per cause antropiche o per movimenti di massa, oppure le cause alle quali è riconducibile il deterioramento dei materiali costituenti le strutture in elevazione e le strutture di fondazione.

Il progetto del consolidamento geotecnico deve essere sviluppato unitariamente con quello strutturale e gli interventi che si reputano necessari per migliorare il terreno o per rinforzare le fondazioni devono essere concepiti congiuntamente al risanamento della struttura in elevazione.

La descrizione delle modalità esecutive dell'intervento e delle opere provvisionali sono parte integrante del progetto. Per situazioni geotecniche, nelle quali sia documentata la complessità del sottosuolo e comprovata l'impossibilità di svolgere indagini esaustive, è possibile il ricorso al metodo osservazionale.

6.10.2. INDAGINI GEOTECNICHE E CARATTERIZZAZIONE GEOTECNICA

Il progetto degli interventi di consolidamento deve essere basato su risultati di indagini sul terreno e sulle fondazioni esistenti, programmate dopo aver consultato tutta la documentazione eventualmente disponibile, relativa al manufatto da consolidare e al terreno.

In presenza di manufatti particolarmente sensibili agli spostamenti del terreno di fondazione, nell'ubicazione e nella scelta delle attrezzature e delle tecniche esecutive delle indagini si devono valutare le conseguenze di ogni disturbo che potrebbe indursi nel manufatto.

Le indagini devono anche comprendere la misura di grandezze significative per individuare i caratteri cinematici dei movimenti in atto e devono riguardare la variazione nel tempo di grandezze quali le pressioni interstiziali e gli spostamenti del terreno all'interno del volume significativo. Se è presumibile il carattere periodico dei fenomeni osservati, legato ad eventi stagionali, le misure devono essere adeguatamente protratte nel tempo .

6.10.3. TIPI DI CONSOLIDAMENTO GEOTECNICO

I principali metodi per il consolidamento geotecnico di una struttura esistente comprendono in genere:

- il miglioramento e il rinforzo dei terreni di fondazione;
- il miglioramento e il rinforzo dei materiali costituenti la fondazione;
- l'ampliamento della base della fondazione, se superficiale;
- il trasferimento del carico a strati più profondi;
- l'introduzione di sostegni laterali;
- la rettifica degli spostamenti del piano di posa.

Nella scelta del metodo di consolidamento si deve tener conto della circostanza che i terreni di fondazione del manufatto siano stati da tempo sottoposti all'azione di carichi permanenti e ad altre azioni eccezionali. Si devono valutare gli effetti di un'eventuale ridistribuzione delle sollecitazioni nel terreno per effetto dell'intervento sulla risposta meccanica dell'intero manufatto, sia a breve che a lungo termine.

Interventi a carattere provvisorio o definitivo che comportino variazioni di volume, quali il congelamento, le iniezioni, la gettiniezione, e modifiche del regime delle pressioni interstiziali, richiedono particolari cautele e possono essere adottati solo dopo averne valutato gli effetti sul comportamento del manufatto stesso e di quelli adiacenti.

Le funzioni dell'intervento di consolidamento devono essere chiaramente identificate e definite in progetto.

6.10.4. CONTROLLI E MONITORAGGIO

Il controllo dell'efficacia del consolidamento geotecnico è obbligatorio quando agli interventi consegue una ridistribuzione delle sollecitazioni al contatto terreno-manufatto. I controlli assumono diversa ampiezza e si eseguono con strumentazioni e modalità diverse in relazione all'importanza dell'opera, al tipo di difetto del manufatto e ai possibili danni per le persone e le cose.

Il monitoraggio degli interventi di consolidamento deve essere previsto in progetto e descritto in dettaglio – indicando le grandezze da misurare, gli strumenti impiegati e la cadenza temporale delle misure – nel caso di ricorso al metodo osservazionale. Gli esiti delle misure e dei controlli possono costituire elemento di collaudo dei singoli interventi.

6.11. DISCARICHE CONTROLLATE DI RIFIUTI E DEPOSITI DI INERTI

6.11.1. DISCARICHE CONTROLLATE

6.11.1.1 CRITERI DI PROGETTO

Oltre a quanto stabilito nelle specifiche norme vigenti, il progetto delle discariche deve essere basato sulla caratterizzazione del sito, con una chiara definizione delle modalità costruttive e di controllo dei diversi dispositivi di barriera, tenendo conto della natura dei rifiuti, della vulnerabilità ambientale del territorio e dei rischi connessi con eventuali malfunzionamenti.

6.11.1.2 CARATTERIZZAZIONE DEL SITO

La caratterizzazione geologica e geotecnica deve essere finalizzata alla identificazione della natura dei terreni e degli ammassi rocciosi presenti nell'area e dello schema di circolazione idrica del sottosuolo, nonché alla valutazione di tutte le grandezze fisicomeccaniche che contribuiscono alla scelta della localizzazione dell'opera (comprensiva delle aree di deposito, di servizio e di quelle di rispetto), alla sua progettazione e al suo esercizio. È in particolare necessario il preventivo accertamento della presenza di falde acquifere, di zone di protezione naturale, del rischio sismico e di inondazione, del rischio di frane o di valanghe e di fenomeni di subsidenza.

6.11.1.3 MODALITÀ COSTRUTTIVE E DI CONTROLLO DEI DISPOSITIVI DI BARRIERA

Il progetto dovrà definire in dettaglio le modalità costruttive e di controllo delle barriere previste dalla specifica normativa di settore. In particolare, devono essere definite le prove di qualificazione del materiale impiegato e le modalità costruttive in termini di spessore degli strati da porre in opera e metodi di compattazione. Il progetto deve inoltre definire il numero e la frequenza delle prove di controllo da eseguire in sito e in laboratorio durante la costruzione delle barriere. In ogni caso, sulla barriera finita dovranno essere previste specifiche prove di controllo della permeabilità, in numero adeguato da consentire la valutazione del raggiungimento o meno dei requisiti richiesti dalla specifica normativa di settore.

6.11.1.4 VERIFICHE DI SICUREZZA

La stabilità del manufatto e dei terreni di fondazione deve essere valutata mediante specifiche analisi geotecniche, riferite alle diverse fasi della vita dell'opera. In particolare deve essere verificata la stabilità e la deformabilità del fondo, per garantire nel tempo l'efficacia e la funzionalità del sistema di raccolta del percolato, la stabilità globale e la stabilità delle pareti laterali.

In particolare, nel caso di barriere composite, devono essere valutate le condizioni di stabilità lungo superfici di scorrimento che comprendano anche le interfacce tra i diversi materiali utilizzati.

- 204

Nelle verifiche che interessano il corpo della discarica, si devono attribuire ai materiali di rifiuto parametri che tengano conto della composizione del rifiuto medesimo e dei metodi di pretrattamento e costipamento adottati nonché dei risultati di specifiche prove in sito o di laboratorio.

6.11.1.5 MONITORAGGIO

Il monitoraggio geotecnico del complesso discarica-terreno deve in generale comprendere la misura di grandezze significative – quali, ad esempio, spostamenti, pressioni interstiziali, caratteristiche del percolato e di eventuale biogas .

6.11.2. DEPOSITI DI INERTI

6.11.2.1 CRITERI DI PROGETTO

Il progetto deve definire modalità e caratteristiche del deposito in modo che risultino rispettate le prescrizioni di cui al § 6.2.4 e la verifica di sicurezza deve essere condotta con modalità analoga a quella indicata al § 6.8 per i manufatti di materiali sciolti. Nelle verifiche che interessano il corpo del deposito, si devono attribuire parametri che tengano conto della natura e delle modalità di compattazione del materiale nonché dei risultati di specifiche prove in sito o di laboratorio.

Per i bacini di decantazione a servizio di attività estrattive consistenti in invasi delimitati almeno da un lato da argini di terra in cui i solidi sono separati dai liquidi, devono essere determinate le caratteristiche del materiale di decantazione per diverse possibili condizioni di consolidazione.

Al fine di garantire condizioni adeguate di stabilità, devono essere previsti dispositivi per la raccolta e l'allontanamento dal deposito delle acque di ruscellamento superficiale e dispositivi per la riduzione e il controllo delle pressioni interstiziali all'interno del materiale del deposito. È da prevedersi un dispositivo per evitare comunque la tracimazione.

Nel progetto devono essere definite le modalità di posa in opera dei materiali e i provvedimenti per evitare dissesti del materiale del deposito.

6.11.2.2 MONITORAGGIO

Il monitoraggio geotecnico del complesso deposito-terreno consiste nella installazione di appropriata strumentazione e nella misura di grandezze significative – quali, ad esempio, spostamenti e pressioni interstiziali.

Deve essere altresì effettuato un controllo delle acque di ruscellamento superficiale al fine di limitarne la penetrazione nel corpo del deposito.

6.12. FATTIBILITÀ DI OPERE SU GRANDI AREE

Le presenti norme definiscono i criteri di carattere geologico e geotecnico da adottare nell'elaborazione di piani urbanistici e nel progetto di insiemi di manufatti e interventi che interessano ampie superfici, quali:

- a) nuovi insediamenti urbani civili o industriali;
- b) ristrutturazione di insediamenti esistenti, reti idriche e fognarie urbane e reti di sottoservizi di qualsiasi tipo;
- c) strade, ferrovie ed idrovie:
- d) opere marittime e difese costiere;
- e) aeroporti;
- f) bacini idrici artificiali e sistemi di derivazione da corsi d'acqua;
- g) sistemi di impianti per l'estrazione di liquidi o gas dal sottosuolo;
- h) bonifiche e sistemazione del territorio;
- i) attività estrattive di materiali da costruzione.

6.12.1. INDAGINI SPECIFICHE

Gli studi geologici e la caratterizzazione geotecnica devono essere estesi a tutta la zona di possibile influenza degli interventi previsti, al fine di accertare che la destinazione d'uso sia compatibile con il territorio in esame.

In particolare, le indagini e gli studi devono caratterizzare la zona di interesse in termini vulnerabilità ambientale, per processi geodinamici interni (sismicità, vulcanismo,...) ed esterni (stabilità dei pendii, erosione, subsidenza,...) e devono consentire di individuare gli eventuali limiti imposti al progetto di insiemi di manufatti e interventi (ad esempio: modifiche del regime delle acque superficiali e sotterranee, subsidenza per emungimento di fluido dal sottosuolo).