

Available online at ScienceDirect

Resuscitation

Practice Guideline

European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2025 Post-Resuscitation Care **

Jerry P. Nolan^{a,b,#,*}, Claudio Sandroni^{c,d,#}, Alain Cariou^e, Tobias Cronberg^f, Sonia D'Arrigo^{b,c}, Kirstie Haywood^g, Astrid Hoedemaekers^h, Gisela Lilja^{i,j}, Nikolaos Nikolaou^k, Theresa Mariero Olasveengen^f, Chiara Robba^m, Markus B. Skrifvarsⁿ, Paul Swindell^o, Jasmeet Soar^p

Abstract

The European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) have collaborated to produce these post-resuscitation care guidelines for adults, which are based on the International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations (CoSTR) published by the International Liaison Committee on Resuscitation (ILCOR). The topics covered include the post-cardiac arrest syndrome, diagnosis of cause of cardiac arrest, control of oxygenation and ventilation, coronary reperfusion, haemodynamic monitoring and management, control of seizures, temperature control, general intensive care management, prognostication, long-term outcome, rehabilitation, and organ donation. The post-resuscitation care of children is described in the ERC Guidelines 2025 Paediatric Life Support.

Keywords: Post-cardiac arrest syndrome, Cardiac arrest, Acute coronary syndrome, Coma, Temperature, Prognosis, Rehabilitation, Tissue and organ procurement

Abbreviations: ACNS, American Clinical Neurophysiology Society, ACS, Acute coronary syndrome, ADC, Apparent diffusion coefficient, AF, Atrial fibrillation, AHA, American Heart Association, AKI, Acute kidney injury, ALS, Advanced Life Support, AMI, Acute myocardial infarction, ARDS, Acute respiratory distress syndrome, ATP, Adenosine triphosphate, BIS, Bi-spectral index, BOX, Blood Pressure and Oxygenation Targets after OHCA, BS, Burst suppression, CAC, Cardiac arrest centre, CAD, obstructive coronary artery disease, CAG, Coronary angiography, CBF, Cerebral blood flow, COSCA, Core Outcome Set for Cardiac Arrest, CoSTR, Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations, CPC, Cerebral Performance Category, CPR, Cardiopulmonary resuscitation, CR, Corneal reflex, CT, Computed tomography, DBD, Organ donation after brain death, DCD, Donation after Circulatory Determination of Death, DVT, Deep venous thrombosis, DWI, Diffusionweighted imaging, ECG, Electrocardiogram, ECPR, Extracorporeal cardiopulmonary resuscitation, EEG, Electroencephalogram, FPR, False positive rate, FSS, Fatigue Severity Scale, GFAP, Glial fibrillary acidic protein, GRADE, Grading of Recommendations Assessment, Development, and Evaluation, GWR, Grey white matter ratio, HADS, Hospital Anxiety and Depression Scale, HIBI, Hypoxic ischaemic brain injury, ICD, Implantable cardioverter defibrillator, ICP, Intracranial pressure, ICU, Intensive care unit, ILCOR, International Liaison Committee on Resuscitation, LBBB, Left bundle branch block, LMWH, Low molecular weight heparin, MAP, Mean arterial pressure, MCS, Mechanical circulatory support, MRI, Magnetic resonance imaging, NSE, Neuron specific enolase, OHCA, Out-of-hospital cardiac arrest, PCAS, Post-cardiac arrest syndrome, PCI, Percutaneous coronary intervention, PLR, Pupillary light reflex, PPCI, Primary percutaneous coronary intervention, RASS, Richmond Agitation Sedation Scale, ROC, Receiver operating characteristic, ROSC, Return of spontaneous circulation, SBP, Systolic blood pressure, SCA, Sudden cardiac arrest, SCD, Sudden cardiac death, SGA, Supraglottic airway, SSEP, Somatosensory evoked potential, STEMI, ST elevation myocardial infarction, TBI, Traumatic brain injury, TCD, Transcranial Doppler, VF, Ventricular fibrillation, VT, Ventricular tachycardia, WLST, Withdrawal of lifesustaining treatment

- ☆ This paper has been copublished in Intensive Care Medicine.
- * Corresponding author.
 - E-mail address: jerry.nolan@nhs.net (J.P. Nolan).
- # Joint first authors.

Introduction and scope

In 2015, the European Resuscitation Council (ERC) and the European Society of Intensive Care Medicine (ESICM) collaborated to produce their first combined post-resuscitation care guidelines, which were co-published in *Resuscitation* and *Intensive Care Medicine*. These 2025 guidelines represent the third collaboration between the ERC and ESICM and reflect the science published since the previous guidelines were issued in 2021. The topics covered include the post-cardiac arrest syndrome, control of oxygenation and ventilation, haemodynamic targets, coronary reperfusion, temperature control, control of seizures, prognostication, long-term outcome and rehabilitation. Key messages from these guidelines are summarised in Fig. 1. A summary of the main changes from the 2021 ERC-ESICM Postresuscitation care guidelines is set out in Table 1.

Methods

The international consensus on cardiopulmonary resuscitation science evidence review process

The International Liaison Committee on Resuscitation (ILCOR, https://www.ilcor.org) includes representatives from the American Heart Association (AHA), the European Resuscitation Council

(ERC), the Heart and Stroke Foundation of Canada (HSFC), the Australian and New Zealand Committee on Resuscitation (ANZCOR), the Resuscitation Council of Southern Africa (RCSA), the Inter-American Heart Foundation (IAHF), the Resuscitation Council of Asia (RCA), and the Indian Resuscitation Council Federation (IRCF). From 2000 to 2015, researchers from the ILCOR member councils evaluated resuscitation science in 5-yearly cycles. After the publication of the 2015 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations (CoSTR),⁵ ILCOR committed to a continuous evidence-evaluation process, with topics prioritised for review by the task forces and with the CoSTR updates published annually. For the 2025 CoSTR, the six ILCOR task forces performed three types of evidence evaluation: the systematic review, the scoping review, and the evidence update.^{6,7} Only systematic reviews (these used the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology) could result in new or modified treatment recommendations.8 The data analysis from each systematic review was presented to the task force, and the task force drafted the summary CoSTR. Each treatment recommendation indicated the strength of the recommendation and the certainty of the evidence. Draft 2025 CoSTRs were posted on the ILCOR website (ilcor.org) for a 2-week comment period, after which final wording of science statements and treatment recommendations were completed by the task forces and published in Resuscitation and Circulation as the 2025 CoSTR. 6,7

POST RESUSCITATION CAREKEY MESSAGES

GUIDELINES 2 © 25 EUROPEAN RESUSCITATION COUNCIL®

After ROSC use ABCDE approach

- Insert an advanced airway (tracheal intubation when skills available)
- As soon as SpO₂ can be measured reliably or arterial blood gas values are obtained, titrate the inspired oxygen to achieve an arterial oxygen saturation of 94-98%, and ventilate lungs to achieve normocapnia
- Aim for a systolic blood pressure > 100 mmHg or a mean arterial pressure > 60–65 mmHg

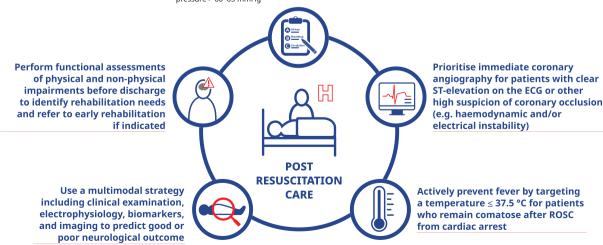


Fig. 1 - Key messages from post-resuscitation care guidelines.

The European Resuscitation Council (ERC) and European Society for Intensive Care Medicine (ESICM) process for developing post-resuscitation care guidelines

Fourteen individuals were selected for the ERC-ESICM Post-Resuscitation Care Writing Group based on their expertise, ERC and ESICM representation, and diversity (gender, physician, non-physi-

cian, survivor, seniority (senior and mid-career), and geography (Northern and Southern Europe)).

These ERC-ESICM guidelines on post-resuscitation care for adults are based mainly on the advanced life support section of the 2025 CoSTR document and represent consensus among the writing group, which included representatives from the ERC and

Table 1 - Comparison of ERC-ESICM Post-Resuscitation Care Guidelines (2021 vs 2025).

Topic	2021 Guidelines	2025 Guidelines
Diagnosis of Cause and Complications of Cardiac Arrest	Suggested coronary angiography first in patients with myocardial ischemia. CT brain and chest scan were considered if coronary angiography did not find causative lesions.	Coronary angiography remains first if ST-elevation is present; otherwise, whole-body CT scan (including head, neck, chest, abdomen, pelvis, and CT pulmonary angiography) takes priority.
Airway and Oxygenation Management	Recommendation to start with 100 % oxygen immediately after ROSC, then titrate to 94–98 % $\rm SpO_2$ or $\rm PaO_2$ 10–13 kPa (75–100 mmHg).	Maintains recommendation and adds explicit guidance highlighting inaccuracies in pulse oximetry in patients with darker skin tones.
Ventilation Management	Recommended normocapnia (PaCO $_{\!2}$ 4.7–6.0 kPa (35–45 mmHg)).	Maintains recommendation with additional caution in patients with hypothermia, noting risk of hypocapnia.
Coronary Reperfusion Strategy	Immediate coronary angiography strongly considered in OHCA without ST-elevation if high likelihood of coronary occlusion.	Suggests delaying cardiac catheterisation if clinical context does not clearly indicate a high likelihood of acute coronary occlusion in OHCA patients without ST-elevation.
Hemodynamic Management	Emphasised targeting MAP >65 mmHg guided by adequate urine output and lactate normalization.	Specifies MAP target of >60–65 mmHg.
Post-ROSC arrhythmias	Not included in any detail	Section added on recurrent and refractory arrhythmias post-ROSC
Seizure Management	Recommended EEG monitoring.	Explicitly states patients with myoclonus but benign EEG backgrounds should undergo wake-up trials days after arrest.
Temperature Management	Recommended targeted temperature management at 32–36 $^{\circ}\text{C}$ for at least 24 h and fever avoidance (>37.7 $^{\circ}$ C) for at least 72 h post-ROSC.	Preferred terminology is temperature control. Recommends actively preventing fever $\leq\!37.5~^\circ\text{C}$ for at least 72 h post-ROSC.
General Intensive Care Management	Recommended prophylactic stress ulcer prophylaxis and thromboembolism prophylaxis.	Maintains previous recommendations. Emphasises using short-acting sedatives to facilitate neurological assessment, discourages routine neuromuscular blocking drugs unless severe acute respiratory distress syndrome.
Neurological Prognostication	Emphasised multimodal neurological assessment at $\geq\!72~\text{h}.$	Maintains recommendation with specified indicators of favourable neurological outcome and suggested timing for brain CT and SSEP recording added to the algorithm.
Rehabilitation and Follow-up	Recommended functional assessment before discharge and follow-up within 3 months post discharge including screening of cognitive, emotional problems and fatigue. Brain injury and cardiac rehabilitation when indicated.	Maintains recommendations and adds structured guidance on rehabilitation in the ICU including early mobilisation, delirium management, ICU diaries, and to address physical limitations during follow-up. Stronger focus on the involvement of co-survivors.
Organ Donation	Recommended considering organ donation post-resuscitation.	Maintains recommendation and adds recommendations for cardiac arrest registries to report organ donation activities.
Investigating Unexplained Cardiac Arrest	Not included.	New recommendations for comprehensive diagnostic work-up (including genetic testing, cardiac MRI, sodium channel blocker tests, exercise testing) and emphasises long-term follow-up.

the ESICM. Where treatment recommendations are provided by ILCOR, these have been adopted by the ERC and ESICM. In the absence of an ILCOR recommendation or good practice statement, ERC-ESICM guidance was based on review and discussion of the evidence by the working group until consensus was achieved, and more direct language is used. The writing group chairs ensured that everyone on the working group had the opportunity to present and debate their views and ensured that discussions were open and constructive. All discussions took place during 14 videoconferences that were held between April 2024 and March 2025. Consensus was achieved by all 14 writing group members on all the treatment recommendations using an open process.

These guidelines were drafted and agreed upon by the Post-Resuscitation Care Writing Group members and the Guidelines Steering Committee before being posted on the ERC website for public comment from May 5th to May 30th, 2025. The opportunity to comment on the guidelines was advertised through social media (Facebook and X, formerly known as Twitter) and the ERC network, comprising 33 national resuscitation councils. A total of 61 individuals submitted 69 comments, resulting in 10 changes to the final version. The guidelines were presented to and approved by the ERC General Assembly on 12th June 2025.

Concise guidelines for clinical practice

This section includes only a summary of the main recommendations. The evidence underpinning each recommendation is detailed in the section on 'evidence informing the guidelines'.

Immediate post-resuscitation care

 Post-resuscitation care is started immediately after sustained return of spontaneous circulation (ROSC), regardless of location (Fig. 2).

Diagnosis of cause and complications of cardiac arrest

- Prioritise immediate coronary angiography for patients with clear ST-elevation on the ECG or other high suspicion of coronary occlusion (e.g. haemodynamic and/or electrical instability). Perform a head-to-pelvis CT scan (including CT pulmonary angiography) if coronary angiography fails to identify causative lesions.
- If there are signs or symptoms pre-arrest suggesting a non-coronary cause (e.g. headache, seizures or neurological deficits, shortness of breath or documented hypoxaemia in patients with known respiratory disease, abdominal pain), perform a dual phase whole body tomography (CT) scan (including head, neck, chest, abdomen, pelvis, and CT pulmonary angiography) before or after coronary angiography if indicated.

Airway and breathing

Airway management after return of spontaneous circulation

- Airway and ventilation support should continue after ROSC is achieved.
- Patients who have had a brief period of cardiac arrest and an immediate return of normal cerebral function and are breathing normally, may not require airway or ventilatory support but should be given supplemental oxygen via a facemask if their arterial blood oxygen saturation is less than 94 %.

- Patients who remain comatose following ROSC, or who have another clinical indication for sedation and mechanical ventilation, should have their trachea intubated if this has not been done already during CPR.
- Tracheal intubation (with or without drugs) should be performed only by experienced operators who have a high success rate.
- Correct placement of the tracheal tube must be confirmed with waveform capnography.
- In the absence of personnel experienced in tracheal intubation, it is reasonable to retain or insert a supraglottic airway (SGA) or maintain the airway with basic techniques until personnel skilled in drug-assisted tracheal intubation are available.
- Post ROSC patients may require drug assisted tracheal intubation – the same level of care should be provided as for any other critically ill patient with a physiologically or anatomically challenging airway in terms of skills of the provider, monitoring, and choice of drugs for induction, and maintenance of sedation

Control of oxygenation

- Immediately after ROSC, use 100 % (or the maximum available) inspired oxygen until the arterial oxygen saturation (SpO₂) can be measured and titrated reliably with pulse oximetry or the partial pressure of arterial oxygen (PaO₂) can be measured.
- As soon as SpO₂ can be measured reliably or arterial blood gas values are obtained, titrate the inspired oxygen to achieve an arterial oxygen saturation of 94–98 % or arterial partial pressure of oxygen (PaO₂) of 10–13 kPa (75–100 mmHg). Be aware that pulse oximetry can overestimate the true oxygen saturation in people with darker skin tones, and low-flow states will cause low signal quality.
- Avoid hypoxaemia (PaO₂ < 8 kPa or 60 mmHg) following ROSC.
- Avoid hyperoxaemia following ROSC.

Control of ventilation

- Obtain arterial blood gases and monitor end tidal CO₂ in mechanically ventilated patients.
- Target normocapnia a partial pressure of carbon dioxide of 4.7– 6.0 kPa (or approximately 35–45 mmHg) in adults with ROSC after cardiac arrest.
- In patients with accidental hypothermia or treated with hypothermia monitor PaCO₂ frequently as hypocapnia may occur.
- In hypothermic patients use consistently either temperature or non-temperature corrected blood gas values.
- Use a lung protective ventilation strategy aiming for a tidal volume of 6–8 mL kg⁻¹ ideal body weight.

Circulation

Coronary reperfusion

- Emergent cardiac catheterisation laboratory evaluation (and primary percutaneous coronary intervention (PPCI) if required) should be performed in adult patients with ROSC after cardiac arrest of suspected cardiac origin with persistent ST-elevation on the electrocardiogram (ECG).
- In patients with ROSC after out-of-hospital cardiac arrest (OHCA) without ST-elevation on the ECG, cardiac catheterisation laboratory evaluation should be delayed unless the clinical context suggests a high likelihood of acute coronary occlusion.

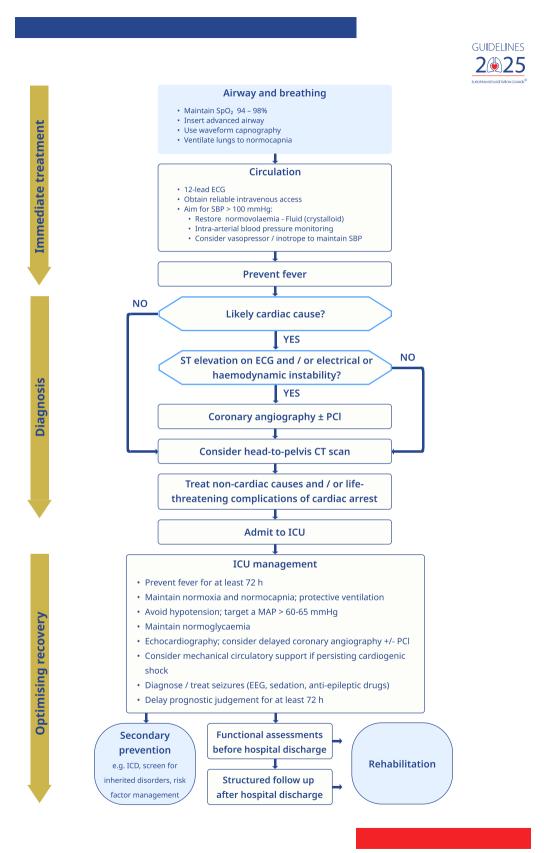


Fig. 2 - Post-resuscitation care for unconscious patients.

Abbreviations: PCI percutaneous coronary intervention; ICU intensive care unit; EEG electroencephalogram; ICD implantable cardioverter defibrillator.

Haemodynamic monitoring and management

- All patients should be monitored with an arterial line for continuous blood pressure measurements, and it is reasonable to monitor cardiac output in haemodynamically unstable patients.
- Perform echocardiograpy as soon as possible in all patients to detect any underlying cardiac pathology and quantify the degree of myocardial dysfunction.
- Avoid hypotension and target a mean arterial pressure (MAP)
 >60–65 mmHg after cardiac arrest (Fig. 3).
- Maintain perfusion with fluids, noradrenaline and/or dobutamine, depending on individual patient need for intravascular volume, vasoconstriction or inotropy.
- Do not give steroids routinely after cardiac arrest.
- Avoid hypokalaemia and hyperkalaemia, which are associated with ventricular arrhythmias.
- In select patient populations (e.g. Glasgow Coma Scale score ≥8
 on hospital arrival, with ST-elevation myocardial infarction
 (STEMI) and <10 min cardiac arrest) consider mechanical circulatory support (such as intra-aortic balloon pump, left-ventricular assist device or veno-arterial extracorporeal membrane oxygenation) for persisting cardiogenic shock from left ventricular failure if

treatment with fluid resuscitation, inotropes, and vasoactive drugs is insufficient. Left-ventricular assist devices or veno-arterial extracorporeal membrane oxygenation should also be considered in haemodynamically unstable patients with acute coronary syndromes (ACS) and recurrent ventricular tachycardia (VT) or ventricular fibrillation (VF) despite optimal therapy.

Post-ROSC arrhythmias

- In patients with arrhythmia immediately after ROSC, follow the ERC Guidelines 2025 Adult Advanced Life Support for peri-arrest arrhythmia.
- In patients with arrhythmia after ROSC, treat any potential underlying causes, such as coronary occlusion or electrolyte disorders.
- In patients with no arrhythmia after ROSC, do not routinely give anti-arrhythmic drug prophylaxis.

Disability (optimising neurological recovery)

Control of seizures

 Use electroencephalography (EEG) to diagnose electrographic seizures in patients with clinical convulsions and to monitor treatment effects.

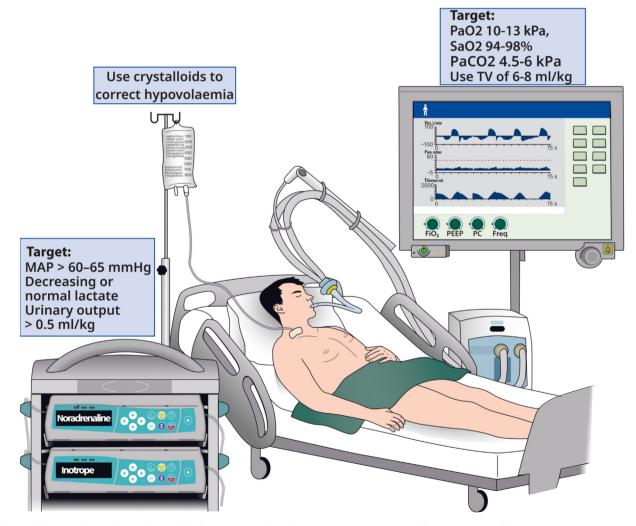


Fig. 3 – Haemodynamic and ventilation targets for the comatose post-cardiac arrest patient. Abbreviations MAP mean arterial pressure; TV tidal volume.

- Use levetiracetam or sodium valproate as first-line antiepileptic drugs in addition to sedative drugs to treat seizures after cardiac arrest.
- Do not use seizure prophylaxis in post-cardiac arrest patients.
- Attempt a wake-up trial in patients with myoclonus and benign EEG background (days after arrest).

Temperature control

- Actively prevent fever by targeting a temperature ≤37.5 °C for patients who remain comatose after ROSC from cardiac arrest.
- Comatose patients with mild hypothermia (32–36 °C) after ROSC should not be actively warmed to achieve normothermia.
- We recommend against the routine use of prehospital cooling with rapid infusion of large volumes of cold intravenous fluid immediately after ROSC.
- Use surface or endovascular temperature control techniques when temperature control is used in comatose patients after ROSC.
- When a cooling device is used, we suggest using a temperature control device that includes a feedback system based on continuous temperature monitoring to maintain the target temperature.
- Prevent active fever for 36 to 72 h in post-cardiac arrest patients who remain comatose.

Other therapies to improve neurological outcome

 There is insufficient evidence to recommend the use of any specific neuroprotective drug for comatose survivors of cardiac arrest.

General intensive care management

- Do not use prophylactic antibiotics routinely in patients following ROSC. However, it is reasonable to have a low threshold for giving antibiotics when there is any clinical suspicion of pneumonia.
- Use short-acting sedative agents and daily sedation holds when treating post-cardiac arrest patients receiving mechanical ventilation – this may enable earlier clinical examination that is less confounded by sedation when assessing neurological recovery.
- We do not recommend systematic use of neuromuscular blocking drugs in comatose post-cardiac arrest patients.
- In patients with critical hypoxaemia and ARDS following cardiac arrest, the use of a neuromuscular blocker may be considered.
- Patients should be nursed 30° head-up.
- It is reasonable to start gastric feeding at low rates (trophic feeding) and increase as tolerated.
- Given the high incidence of upper gastrointestinal ulceration in post-cardiac arrest patients and the use of anticoagulant and antiplatelet drugs both pre and post arrest, use stress ulcer prophylaxis in post-cardiac arrest patients, especially in those with coagulopathy.
- Anticoagulation of post-cardiac arrest patients should be individualised and be based on general ICU recommendations.
- Use standard glucose management protocols for adults with ROSC after cardiac arrest.

Predicting neurological outcome

General guidelines

 In patients who are comatose after resuscitation from cardiac arrest, neurological prognostication should be performed using

- clinical examination, electrophysiology, biomarkers, and imaging, to both inform the patient's relatives and to help clinicians target treatments based on the patient's chances of achieving a neurologically meaningful recovery (Fig. 4).
- No single predictor is 100 % accurate. Use multimodal neuroprognostication strategies.
- When predicting poor neurological outcome, a high specificity and precision are desirable, to avoid falsely pessimistic predictions. When predicting good outcome, the aim is to identify those patients with a better potential for recovery. Since the consequence of a false prediction in this setting is less severe, the predictive performance of the test is not as critical. Both predicting good and poor outcome are essential to reduce prognostic uncertainty.
- The clinical neurological examination is central to prognostication.
 To avoid falsely pessimistic predictions, clinicians should exclude potential residual effects of sedatives and other drugs that may confound the test results.
- Index tests for neurological prognostication are aimed at assessing the severity of hypoxic-ischaemic brain injury. Neurological prognosis is one of several aspects to consider in discussions about an individual's potential for recovery.

Clinical examination

- Perform a daily neurological examination in patients who are unconscious after cardiac arrest.
- Clinical examination is prone to interference from sedatives, opioids or muscle relaxants. Potential confounding from residual sedation should always be considered and excluded.
- Consider neurological prognostication in patients who are not awake and obeying commands (Glasgow coma scale motor score <6) at 72 h or later after ROSC
- In unconscious patients at 72 h or later after ROSC, the following tests may predict a poor neurological outcome:
 - o The bilateral absence of the pupillary light reflex.
 - o The bilateral absence of corneal reflex
 - The presence of myoclonus within 96 h and, in particular, status myoclonus within 72 h.
- We also suggest recording the EEG in the presence of myoclonic jerks to detect any associated epileptiform activity or to identify EEG signs, such as background reactivity or continuity, suggesting a potential for neurological recovery.

Neurophysiology

- Perform EEG from day 1 after ROSC to predict outcome and detect seizure activity in comatose patients. Routine EEG or continuous EEG monitoring may be used.
- Suppressed background with or without periodic discharges and burst suppression on EEG ('highly malignant' patterns) are accurate indicators of a poor prognosis. We suggest using these EEG patterns after 24 h from ROSC.
- The bilateral absence of somatosensory evoked cortical N20 potentials indicates poor prognosis after cardiac arrest.
- Always consider the EEG and somatosensory evoked potentials (SSEPs) results in the context of clinical examination findings and other tests. Always consider using a neuromuscular blocking drug when performing SSEPs.

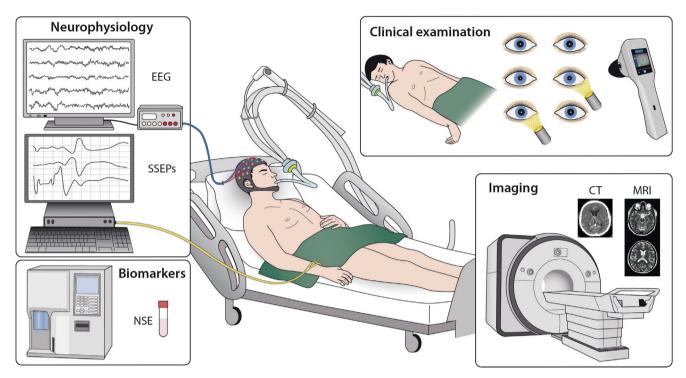


Fig. 4 – Multiple modalities used for the prediction of neurological outcome in the comatose post-cardiac arrest patient.

Abbreviations: EEG electroencephalogram; SSEPs somatosensory evoked potentials; NSE neuron specific enolase; CT computed tomography; MRI magnetic resonance imaging.

Biomarkers

- Use serial measurements of neuron-specific enolase (NSE) to predict outcome after cardiac arrest. Increasing values between 24 and 48 h or 72 h in combination with high values at 48 and 72 h indicate a poor prognosis.
- We do not recommend using neurofilament light chain for predicting outcome after cardiac arrest, because of the absence of consistent thresholds for predicting poor outcome with high specificity, and because the evidence to date is mostly based on assays for research use only.

Imaging

- Use brain imaging studies to predict poor neurological outcome after cardiac arrest. Ensure that the images are evaluated by someone with specific experience in these studies.
- Where specialist neuroradiology expertise is unavailable, consider telemedicine consultation for brain imaging interpretation.
- Use presence of generalised brain oedema, manifested by a marked reduction of the grey matter/white matter ratio on brain CT, or extensive diffusion restriction on brain MRI to predict poor neurological outcome after cardiac arrest.
- Repeat the brain CT if the patient is unconscious at the time of prognostication (72 h–96 h after ROSC) and the first brain CT does not show signs of HIBI.

Multimodal prognostication

- Once major confounders have been excluded, start the prognostication assessment with an accurate clinical examination (Fig. 5).
- In an unconscious patient at ≥72 h from ROSC, in the absence of confounders, poor outcome is likely when two or more of the following predictors are present: no pupillary and corneal reflexes at

 $\geq\!\!72$ h, bilaterally absent N20 somatosensory evoked potential (SSEP) wave at $\geq\!\!24$ h, highly malignant EEG at >24 h, neuron specific enolase (NSE) >60 μg L $^{-1}$ at 48 h and/or 72 h, status myoclonus $\leq\!72$ h, or a diffuse and extensive anoxic injury on brain CT/MRI. Most of these signs can be recorded before 72 h from ROSC; however, conclusions on prognosis will be made only at the time of clinical prognostic assessment at $\geq\!\!72$ h.

Withdrawal of life-sustaining treatment

- Separate discussions around withdrawal of life-sustaining treatment and the assessment of prognosis for neurological recovery; withdrawal of life-sustaining treatment decisions should consider aspects other than brain injury such as age, co-morbidity, general organ function and the patients' preferences.
- Allocate sufficient time for communication around the level-oftreatment decision within the team and with the relatives.
- After a decision on withdrawal of life-sustaining treatment, use a structured approach to shift from curative to end-of-life palliative care and consider organ donation.

Rehabilitation and follow-up after cardiac arrest

- Implement early mobilisation, delirium management and ICU diaries during hospitalisation
- Provide information for patients and co-survivors
- Perform functional assessments of physical and non-physical impairments before discharge to identify rehabilitation needs and refer to early rehabilitation if indicated.
- Provide cardiac rehabilitation as indicated by the cause of the cardiac arrest.

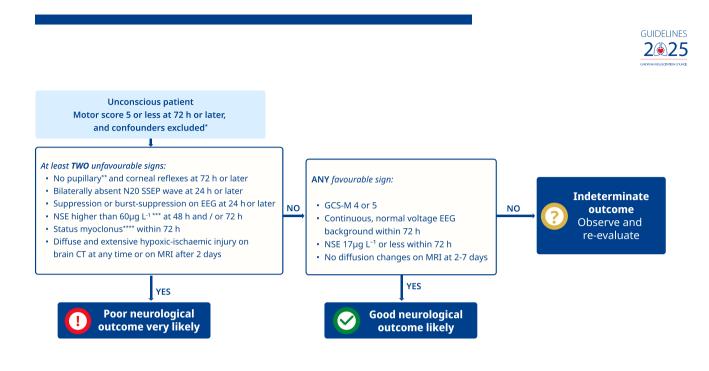


Fig. 5 – Algorithm for neurological prognostication in patients who are comatose after cardiac arrest. This algorithm is designed specifically for predicting neurological prognosis and does not account for extracerebral factors that may influence patient outcomes.

Abbreviations — CT: computed tomography; EEG: electroencephalography; GCS-M: Glasgow Coma Scale Motor score; MRI: magnetic resonance imaging; NSE: neuron-specific enolase; SSEP: short-latency somatosensory evoked potentials. NOTES. * Major confounders may include analgo-sedation, neuromuscular blockade, hypothermia, severe hypotension, hypoglycemia, sepsis, and metabolic and respiratory derangements. "Use a pupillometer, when available, to determine if the pupillary light reflex is absent. "Perform serial NSE samples at 24, 48, and 72 h after ROSC to detect NSE trends and minimise confounding from occasional haemolysis. Increasing NSE values between 24–48 h or 24/48 h and 72 h further support a likely poor outcome. ""Defined as continuous and generalised myoclonus persisting for 30 min or more.

- Organise a follow-up of cardiac arrest survivors within three months after hospital discharge; screening for cognitive, physical, emotional problems, fatigue, and impact on life roles.
- Invite co-survivors to the follow-up; ask about emotional problems and impact on life roles.
- Undertake specialist referral and further rehabilitation as indicated.

Organ donation

- We recommend that all patients who have restoration of circulation after CPR and who subsequently progress to death be evaluated for organ donation.
- In comatose ventilated patients who do not fulfil neurological criteria for death, if a decision to start end-of-life care and withdrawal of life support is made, organ donation should be considered for when circulatory arrest occurs.
- All decisions concerning organ donation must follow local legal and ethical requirements.
- Cardiac arrest registries should report if organ donation after initial resuscitation from cardiac arrest occurred.

Investigating unexplained cardiac arrest

- Diagnostic testing of patients with unexplained cardiac arrest includes blood sample collection for toxicology and genetic testing, data retrieval from cardiac implantable electronic devices and wearable monitors, repeated 12-lead ECG and continuous cardiac monitoring, cardiac MRI, sodium channel blocker tests, and exercise testing.
- A confirmed diagnosis of a heritable condition should prompt targeted genetic testing.
- Long-term follow-up of unexplained cardiac arrest patients is recommended because of the high risk of recurrence of arrhythmia.

Cardiac arrest centres

- Adult patients with non-traumatic OHCA should be considered for transport to a cardiac arrest centre for post-resuscitation care, whenever possible, according to local protocols.
- Health care networks should establish local protocols to develop and maintain a cardiac arrest network.

Evidence informing the guidelines

Post-cardiac arrest syndrome

In the post-resuscitation phase, several pathophysiological mechanisms contribute to primary ischaemic and secondary reperfusion injury. 10 The cessation of cerebral blood flow (CBF) in the no-flow phase prevents aerobic metabolism, resulting in the rapid depletion of adenosine triphosphate (ATP), failure of energy-dependent Na $^{+}$ / K $^{+}$ ion exchange pumps, accumulation of intracellular calcium, and cessation of neuronal activity. 11

Following the return of spontaneous circulation (ROSC) and restoration of CBF, reperfusion of the ischemic cerebrovascular bed causes further accumulation of intracellular calcium as a result of glutamate release, and activation of proteases and phospholipases. This causes cellular energy failure and further neuronal damage. The inflammatory and coagulative cascades are activated in the post cardiac arrest syndrome, resulting in the release of cytokines which further amplify the inflammatory response and contribute to multiorgan failure. In the post cardiac arrest phase, secondary brain injury may be caused by haemodynamic instability (in particular hypotension from vasodilation), derangements in arterial blood gases (hypo/hyperoxaemia, hypo/hypercapnia), hypo/hyper glycaemia, fever, with consequent altered CBF autoregulation, seizures, cerebral oedema.

The severity of the post-cardiac arrest syndrome is associated with the duration of no flow and low flow. 14 Any primary hypoxic-ischemic brain injury (HIBI) can be exacerbated directly by secondary ischaemia—reperfusion of the brain and indirectly by the extracerebral complications of generalised ischaemia—reperfusion such as respiratory failure, haemodynamic instability and multiorgan failure. 15,16

A scientific statement by the ILCOR categorised HIBI into four distinct but overlapping phases: ischemic depolarization, reperfusion repolarization, dysregulation, and recovery and repair. This document aimed also to explore the reasons of failure in translating preclinical data to clinical practice suggesting the presence of important limitations of the experimental models, but also the heterogeneity of the patients included and their post resuscitation care, suggesting a more tailored approach and the selection of specific patients which could benefit of specific treatments.

Post-resuscitation care management aims to mitigate the severity of HIBI ¹⁸ which is the most common cause of in hospital death. ¹⁷ A wide variety of drugs have been studied for their ability to improve the functional outcome of comatose cardiac arrest survivors, but to date, none has convincingly shown therapeutic benefit. ¹⁹ Withdrawal of life-sustaining treatment (WLST) following multimodal neurological prognostication of a poor outcome accounts for most of the later deaths. ²⁰

Diagnosis of cause and complications of cardiac arrest

Cardiac causes, particularly ischaemic heart disease, are the most common cause of OHCA in the general adult population.²¹ However, about one third of these events are due to extracardiac causes that can be identified by transthoracic echocardiography and early CT imaging, sometimes making specific therapeutic intervention possible.^{22,23} Extra-cardiac causes are diverse and include acute respiratory disease, massive pulmonary embolism, intracranial haemorrhage, thromboembolic stroke and aortic dissection. Neurological causes of OHCA are relatively rare, but they are strongly associated with an unfavourable neurological out-

come, making early brain imaging valuable for the management of these patients. ^{24,25}

An early dual-phase contrast-enhanced CT—with a pulmonaryarterial and venous protocol – also helps to identify traumatic complications related to CPR (such as liver and spleen lacerations or perforation of digestive tract). Many cardiac arrest patients present with resuscitation-related injuries, most commonly thoracic complications such as rib fractures, pulmonary contusion or pneumothorax, but sometimes also pelvic or abdominal complications.^{26,27}

The ERC and ESICM guidelines 2021 suggested that CT brain and CT pulmonary angiogram should be considered in post-cardiac arrest patients when there is no evidence of cardiac causes. Recently, several observational studies have shown that this strategy enables diagnosis or identification of a complication in 5 to 22 % of cases. $^{28-31}$ In a prospective pre-/post-analysis, a standard-of-care strategy (i.e., CT scan at the discretion of the treating physician) was compared with a strategy of a systematic whole-body CT scan within 6 h of hospital arrival. 28 The systematic strategy identified the cause of CA more frequently than the standard of care strategy (92 vs 75 %, p < 0.001), with a significantly shorter time to diagnosis (3 h vs 14 h, p < 0.0001) and without an increase in the rate of complications attributable to the systematic CT-scan, such as contrast-associated renal dysfunction or transport complications (e.g. accidental extubation or line dislodgement).

In comatose post-cardiac arrest patients without ST-elevation on the ECG, and no overt signs of cardiac cause, perform an immediate whole-body CT scan to identify treatable causes (like pulmonary embolism or haemorrhage) before deciding on coronary angiography. Prioritise immediate coronary angiography for patients with clear ST-elevation MI on the ECG or other high suspicion of coronary occlusion (e.g. haemodynamic and/or electrical instability).³²

Airway and breathing

Airway management after return of spontaneous circulation
Patients can have their trachea intubated before, during or following
cardiac arrest depending on the setting or particular circumstances.³³ Following most cardiac arrests tracheal intubation will
occur during resuscitation or if the patient remains comatose after
ROSC.³⁴

Tracheal intubation following ROSC in comatose patients will facilitate post-resuscitation care that includes controlled oxygenation and ventilation, protection of the lungs from aspiration of stomach contents, and interventions to control of seizures, temperature, and brain injury – see below for further details.

Post ROSC patients are haemodynamically unstable and, depending on their level of consciousness, may require drug assisted tracheal intubation. The same level of care should be provided as for any other critically ill patient with a physiologically or anatomically challenging airway in terms of skills of the provider, monitoring, and choice of drugs for induction, and maintenance of sedation. 35–38 There are no recommendations for a specific drug combination, ³⁹ but use of a low dose of a sedative with the aim of avoiding profound hypotension, an analgesic and a rapid onset neuromuscular blocking drug is probably optimal. Successful tracheal intubation and ventilation must be confirmed by the presence of a sustained end-tidal carbon dioxide waveform on waveform capnography. ⁴⁰

Control of oxygenation

These guidelines are informed by the ILCOR systematic review on oxygenation and ventilation targets after cardiac arrest which identi-

fied 15 studies from 12 RCTs.^{9,41} The ILCOR treatment recommendations in relation to oxygenation have been adopted by ERC/ESICM:

- We recommend the use of 100 % inspired oxygen until the arterial oxygen saturation or the partial pressure of arterial oxygen can be measured reliably in adults with ROSC after cardiac arrest in the pre-hospital setting (strong recommendation, moderate certainty evidence) and in-hospital setting (strong recommendation, low certainty evidence).
- We recommend avoiding hypoxemia in adults with ROSC after cardiac arrest in any setting (strong recommendation, very low certainty evidence).
- We suggest avoiding hyperoxemia in adults with ROSC after cardiac arrest in any setting (weak recommendation, low certainty evidence).
- Following reliable measurement of arterial oxygen values, we suggest targeting an oxygen saturation of 94–98 % or a partial pressure of arterial oxygen of 75–100 mm Hg (approximately 10–13 kPa) in adults with ROSC after cardiac arrest in any setting (good practice statement).
- When relying on pulse oximetry, health care professionals should be aware of the increased risk of inaccuracy that may conceal hypoxemia in patients with darker skin pigmentation (good practice statement).

This guidance is based on aiming for 'normal' values of oxygenation (normoxia) given that there is evidence of harm from hypoxaemia and potential for harm from hyperoxaemia.42 Randomised trials in the prehospital 43 and hospital settings, 44 which compared an oxygen saturation of 90-94 % with 98-100 % and a PaO2 of 68-75 mmHg (9-10 kPa) with 98-113 mmHg (13-15 kPa) did not identify an optimal arterial oxygen saturation or partial pressure of oxygen but support normoxaemia being safe and hence the recommendations for an oxygen saturation of 94-98 % or a PaO₂ target of 75-100 mm Hg (10-13 kPa). The results of the largest RCT in the prehospital setting found there were more desaturation events in the lower target group (90-94 %) compared with 98-100 % and suggest that early titration to a lower oxygen target is harmful.⁴³ There is also general consensus that hypoxaemia is harmful and interventions to mitigate this risk such as the use of a high inspired oxygen until blood oxygen values can be reliably measured with a pulse oximeter or blood gases are therefore recommended. A large RCT compared a peripheral oxygen saturation target of 90 % with usual care among 16,500 mechanically ventilated patients. 45 In a prespecified subgroup of 1502 patients with hypoxic-ischaemic brain injury there was no difference in 90-day mortality (odds ratio 0.94; 95 % CI 0.76 to 1.17). Another large RCT of oxygen targets in criticallyill patients also includes a predefined subgroup of patients admitted to intensive care after cardiac arrest. 46 There is also a large study looking specifically at early restricted oxygen therapy after cardiac arrest.47 A recent secondary analysis of the Targeted Temperature Management-2 (TTM2) trial showed an association between early severe hyperoxaemia (PaO₂ > 245 mmHg [~33 kPa]) following intensive care admission and a poor functional outcome in patients with OHCA.48,49

Avoiding hyperoxemia is based on very low-to-moderate certainty evidence that shows either harm or no benefit (in RCTs) from hyperoxaemia. The relationship between arterial oxygen values and mortality in critically ill patients is depicted by a U-shaped curve⁵⁰ but most RCTs evaluating the impact of hyperoxaemia have studied oxygen values on the flat central part of the curve thus missing the more

extreme values that have been associated with increased mortality. $^{\rm 51}$

Recent evidence shows that pulse oximeters may overestimate true oxygen saturation in people with darker skin tones. 52 In most post-cardiac arrest patients, controlled oxygenation will require tracheal intubation and mechanical ventilation for at least 24–72 h. The exception being the completely conscious patient with a patent airway who should be treated with an oxygen mask or non-invasive ventilation targeting a peripheral oxygen saturation (SpO $_2$) of 94–98 %.

Control of ventilation

These guidelines are informed by the same ILCOR systematic reviews noted in the section on oxygenation. Three RCTs addressed control of ventilation. P.41 After ROSC, blood carbon dioxide values (PaCO₂) are commonly increased because of intra-arrest hypoventilation and poor tissue perfusion, Sa causing a mixed respiratory acidosis and metabolic acidosis. Carbon dioxide is a well-known regulator of blood vessel tone and cerebral blood flow, Cerebral blood volume and intracerebral pressure. Hypocapnia causes vasoconstriction that may decrease blood flow and cause cerebral ischaemia. Se

The evidence for a specific PaCO₂ target after ROSC is inconsistent and RCTs have not shown any benefit for any specific target. The largest RCT found no differences in outcomes from targeting normocapnia (35 to 45 mmHg) or mild hypercapnia (50–55 mmHg).⁵⁷ Several studies show that end-tidal CO₂ values on waveform capnography do not closely match PaCO₂ values and this makes targeting specific PaCO₂ targets difficult when arterial blood gas measurement is not feasible. In hypothermic patients PaCO₂ management including measurement is particularly challenging and these patients are prone to hypocapnia.^{58,59} There is currently no evidence to support a particular strategy for measuring PaCO₂ during hypothermia, we have therefore recommended using a consistent approach with either temperature or non-temperature correction according to local protocols.⁶⁰

The main method for controlling $PaCO_2$ in a mechanically ventilated patient is by adjusting the minute volume by changing the ventilation frequency or tidal volume. In general, limiting the tidal volume and using a lung protective ventilation strategy is the standard of care, especially in patients with acute respiratory distress syndrome (ARDS). $^{61-63}$ Acute respiratory distress syndrome is not uncommon in cardiac arrest patients and is associated with worse outcomes. 62,64,65 Low lung compliance predicts poor functional outcome in OHCA patients. 66 Although ventilation with lower tidal volumes is not standard practice in neurointensive care, 67 an analysis of 1848 patients recruited to the TTM2 trial showed that they were ventilated with a median tidal volume of 7 mL kg $^{-1}$ predicted body weight. 68

The recommendation for tidal volume is based on current guidance for lung protective ventilation in the ICU⁶⁹ and limited observational data from post-cardiac arrest patients.⁷⁰ One observational study suggests that using a tidal volume of 6–8 mL kg⁻¹ to ventilate the lungs of out-of-hospital cardiac arrest patients in the ICU may be associated with improved outcome.⁷⁰ This study also showed that by using higher ventilation frequency normocapnia may be achieved.⁷⁰ In contrast, another observational study showed no association between tidal volume and neurological outcome after in-hospital cardiac arrest.⁷¹ In studies of patients with brain injury after trauma or

stroke, protective ventilation (tidal volume < 8 mL kg $^{-1}$ and PEEP \geq 5 cm H $_2$ O) is not associated with lower mortality or a lower incidence of ARDS, but is associated with improved oxygenation and is generally considered safe. ⁷² Patients should be nursed 30° headup to decrease the risk of aspiration pneumonia ⁷³ – this may also decrease intracranial pressure (ICP).

Circulation

Coronary reperfusion

Among the many causes of OHCA, acute coronary syndrome remains the most common cause in adults who survive to ICU admission with sustained ROSC. 21,74 Immediate coronary reperfusion using a strategy of primary PCI of the culprit coronary lesion has been used for more than 30 years. This invasive strategy is supported by many observational studies that reported a significant association between early PCI with survival and favourable neurological outcome after OHCA. While the benefit of early PCI for OHCA caused by a recent coronary occlusion is generally accepted, the main challenge is to identify the best candidates for coronary angiography among all resuscitated patients.

Percutaneous coronary intervention following ROSC with STelevation. In patients with ST segment elevation or left bundle branch block on the post-ROSC electrocardiogram (ECG), more than 80 % will have an acute coronary lesion. 75 A systematic review completed for the 2021 ILCOR CoSTR identified five observational studies.⁷⁶ An ILCOR evidence update in 2025 identified no additional studies involving participants with ST-elevation. Unadjusted data from the five observational studies indicated benefit at various time points for survival and survival with favourable neurological outcome; however, none of these studies confirmed such benefit when reporting adjusted data.⁷⁶ Nevertheless, given the strong evidence for benefit of early PCI for STEMI (without cardiac arrest), the ERC-ESICM treatment recommendation from 2021 was to recommend that emergent cardiac catheterisation laboratory evaluation (and immediate PCI if required) should be performed in adult patients with ROSC after cardiac arrest of suspected cardiac origin with ST-elevation on the ECG.3 ST segment elevation on a 12-lead ECG recorded immediately after ROSC is often transient; thus, a prehospital ECG showing post-ROSC ST segment elevation should be repeated on arrival in hospital. 77-79 The 2023 European Society of Cardiology (ESC) guidelines for the management of acute coronary syndromes also state that 'a primary PCI strategy is recommended in patients with resuscitated cardiac arrest and an ECG with persistent ST-segment elevation (or equivalents as defined in the ESC Guidelines).32

Percutaneous coronary intervention following ROSC without ST-elevation. In OHCA patients without ST-segment elevation, several large observational series have shown that the absence of ST-segment elevation does not completely exclude the presence of a recent coronary occlusion. BO,81 However, the proportion of patients with recent acute coronary occlusion is small and several studies have shown a lack of benefit with systematic early coronary angiography in this population. Large, randomised trials (COACT, TOMAHAWK) have shown that immediate routine early coronary angiography is not superior to a delayed invasive strategy in OHCA with an initial shockable rhythm and without ST-segment elevation or equivalent and without cardiogenic shock. B2-84 Smaller trials (EMERGE, PEARL, and COUPE) have also reached

the same conclusion, 85-87 and a meta-analysis of these five RCTs confirmed the absence of benefit in the general population and in the different subgroups (age, initial cardiac rhythm, history of coronary artery disease, presumed ischemic event as the cause of arrest, time to ROSC).88 The 2025 ILCOR treatment recommendation is unchanged from 2020 and states: 'when early coronary angiography is considered for comatose post-arrest patients without ST elevation, we suggest that either an early or delayed approach for angiography is reasonable (weak recommendation, low-certainty evidence)'.9 The 2023 ESC guidelines for the management of acute coronary syndromes in patients without persistent ST-segment elevation favour a delayed approach and state that 'routine immediate angiography after resuscitated cardiac arrest is not recommended in haemodynamically stable patients without persistent ST-segment elevation (or equivalents)'. 32 Delaying coronary angiography may buy time for initial management in ICU, enabling early initiation of post-resuscitation care and prognostication. This 'wait and see' management may also avoid performing coronary angiography in patients with the lowest probability of an acute coronary lesion.

When an ischaemic cause is considered likely, a similar approach as for patients with STEMI should be followed. The decision for early coronary angiography should be based on careful assessment of the patients for the presence of haemodynamic or electrical instability and ongoing myocardial ischaemia, taking into account multiple factors including previous medical history, prearrest warning symptoms, initial cardiac rhythm for cardiac arrest, ECG pattern post ROSC, and echocardiography, as well as preexisting comorbidities.

Brain injury caused by cardiac arrest should be considered in the decision. Ideally, coronary interventions would be undertaken only in those patients without permanent severe neurological injury. Patients with irreversible hypoxic–ischaemic brain injury are unlikely to benefit from PCI, even if a culprit coronary lesion is successfully treated. ⁸⁹ Risk scores have been proposed for the early prediction of neurological outcome after OHCA; ^{90,91} however, the absence of a universally acceptable prognostic tool in the first hours after ROSC makes it difficult to identify such patients with high sensitivity and specificity prehospital or at the time of hospital admission.

Haemodynamic monitoring and management

Haemodynamic monitoring. Post-resuscitation myocardial dysfunction and low cardiac index may occur in up to 60 % of post-cardiac arrest patients 92,93 and may be even more common in patients with an acute myocardial infarction (AMI) as the cause of the arrest.94 Early echocardiography can identify underlying cardiac pathology, quantify the degree of myocardial dysfunction and help guide haemodynamic management. Serial echocardiography or invasive monitoring with a pulmonary artery catheter quantifies myocardial dysfunction and indicates trends.95-97 Impaired cardiac function is most common during the first 24-48 h, after which it gradually resolves. 92,93 Whether low cardiac output (or index) is associated with poor outcome is currently unclear. A sub-study of the TTM2 trial showed that low cardiac index may not be associated with outcome if lactate clearance is maintained. 98 These findings were independent of target temperature. In a substudy of the Blood Pressure and Oxygenation Targets After OHCA (BOX) trial, in a multivariable analysis, a low cardiac index at admission was not associated with increased mortality. 99 Both non-invasive and invasive monitoring with echocardiography, arterial lines and measurement of cardiac

output are commonly used in intensive care and it is reasonable to use these to guide treatment in cardiac arrest patients.

Haemodynamic management. Mean arterial pressure and cerebral perfusion. Guidelines on post-cardiac arrest care published in 2021 recommended targeting a mean arterial pressure (MAP) higher than 65 mmHg during the first 72 h.3 This was based mainly on observational data and three pilot trials. 100-102 A systematic review completed in 2023 and adoloped by ILCOR in 2024 included four studies with more than 1000 patients and compared a standard MAP target of higher 60-65 mmHg with targets higher than 71 mmHg. 103 The studies did not mandate the use of any specific drug or protocol to achieve the set targets, but noradrenaline was the most commonly used vasopressor. A higher MAP target was not associated with higher survival, better functional outcome or lower rates of acute kidney injury, but was also not associated with significant risks such as recurrent cardiac arrest or cardiac arrhythmias. ILCOR made a treatment recommendation to target a MAP higher than 60-65 mmHg but noted that the evidence is weak and that no studies have compared a MAP of 60-65 mmHg with lower MAP targets. In making these recommendations, ILCOR also noted that many observational studies have documented higher mortality rates in patients with MAP values below 60-65 mmHg. Furthermore, a MAP target of higher than 65 mmHg is common in many other critically ill patients, such as those with septic shock.

A recent scientific statement from the American Heart Association and the Neurocritical Care Society recommends targeting a MAP higher than 80 mmHg in post-cardiac arrest patients. This was based mainly on the physiological rationale that cerebral blood flow is inadequate after cardiac arrest. If the ICP is elevated, cerebral perfusion pressure is likely to be compromised by a MAP of 60-65 mmHg, as MAP is one of the primary determinants of cerebral blood flow (CBF). 104 Although a high MAP is generally required in non-anoxic brain-injured patients because of cerebral swelling and increased intracranial pressure (ICP), 105 few data on ICP values are available in cardiac arrest survivors. In many post-cardiac arrest patients, CBF autoregulation is impaired or the lower limit is rightshifted. 106,107 This means that at lower MAP values, in some patients CBF may be MAP-dependent with an increased risk of cerebral hypoperfusion (i.e. hypotension) or hyperaemia and intracranial hypertension (i.e. hypertension).

The use of cerebral oxygen saturation or ICP monitoring to determine the presence of autoregulation and to determine an optimal MAP may enable a more individualised approach. 108 In a retrospective study, the estimated optimal MAP (i.e. MAP target at which the autoregulation is more effective) was 85 mmHg in post-cardiac arrest patients with preserved autoregulation and 100 mmHg when the autoregulation was impaired. 106 Another small observational study calculated a median optimal MAP of 89 mmHg in the same setting. 109 However, there are no prospective studies evaluating whether an autoregulation-driven MAP target may influence neurological injury and/or outcome. A more recent study has shown that after cardiac arrest, in particular in cases of non-cardiac origin, episodes of elevated ICP and/or brain hypoxia are frequent, and a higher MAP is necessary to improve brain oxygenation. 109 Preliminary evidence based on measurement of brain tissue oxygenation (PbtO₂) has shown that in resuscitated comatose patients, impairment of oxygen diffusion to the brain may cause persisting brain hypoxia despite optimisation of oxygen delivery to the brain. 110 The implementation and the safety of these invasive monitoring tools in cardiac arrest patients need to be further evaluated. While these are all observational findings, they indicate optimal MAP targets may need to be individualised and support further research into identification of optimal MAP targets for individual cardiac arrest survivors receiving intensive care.

In the post-cardiac arrest patient, transcranial Doppler (TCD) can give information about cerebral haemodynamics and, in the future, may have a role in optimising haemodynamics in these patients.111 Changes in cerebral blood flow can be seen using TCD and this may be a target for treatment. 112-114 However, the technique and interpretation of the images are operator-dependent and require an acoustic window in the patient's skull. Moreover, cerebral haemodynamics are continuously changing, and serial measurements are possible only intermittently; the monitoring is labour-intensive. To date, no study has utilised any of these approaches to modify MAP targets in individual patients. In general, based on the evidence summarised by ILCOR41 including the recent systematic review including more than 1000 patients, 103 the ERC/ESICM suggests avoiding hypotension and targeting a MAP > 60-65 mmHg after cardiac arrest. A higher MAP target might be appropriate in selected patients, particularly in patients with chronic hypertension and in those with persistent and documented peripheral hypoperfusion despite a MAP between 60 and 65 mmHg (e.g., oliguria, persistent high lactate value).

Heart rate. Tachycardia was associated with poor outcome in one retrospective study. 115 During hypothermic temperature control, the normal physiological response is bradycardia. In animal models, this has been shown to reduce the diastolic dysfunction that is usually present early after cardiac arrest. 116 Bradycardia was previously considered to be a side effect of hypothermia, especially below a rate of 40 min⁻¹; however, bradycardia is associated with a good outcome. 117,118 Similar association between bradycardia and improved long-term outcome has been shown in patients not treated with hypothermic temperature control. 119 However, there are few studies on the association between heart rate and outcome conducted in patients treated with normothermia or with avoidance of fever only. Although bradycardia generally reduces cardiac output, this is well tolerated in this post-arrest setting. ERC/ESICM recommends that bradycardia (heart rate < 30-40 min⁻¹) be left untreated provided there are no signs of hypoperfusion (i.e. increasing lactate, reduced urinary output, etc.).

Fluid resuscitation, vasoactive and inotropic drugs. There is little evidence suggesting that the strategy for fluid therapy in post-cardiac arrest patients should differ from that for any other intensive care unit patients. In the initial phases, many of the patients are in cardiogenic shock, but over the next hours to days, the inflammatory response that accompanies the post-cardiac arrest syndrome may result in a distributive shock with accompanying hypovolaemia. 120 In less controlled prehospital environments, the rapid infusion of large volumes of cold fluid immediately after the return of spontaneous circulation is harmful. 121 Patients who are hypovolaemic (based on clinical judgement and echocardiography) will benefit from judicious fluid administration using crystalloids (either balanced solutions or sodium chloride 0.9 %). A systematic review and meta-analysis suggested that the estimated effect of using balanced crystalloids compared with sodium chloride 0.9 % in critically ill adults

ranges from a 9 % relative reduction to a 1 % relative increase in the risk of death; thus, there is a high probability that using balanced crystalloids may reduce mortality. 122 However, for patients with traumatic brain injury, the effect estimate ranged from a 2 % relative reduction to a 60 % relative increase in risk of death. 122 Recent ESICM guidelines suggest using balanced crystalloids rather than sodium chloride 0.9 % for volume expansion in adult critically ill patients; 123 however, in keeping with the findings of the systematic review, 122 these ESICM guidelines also suggest using sodium chloride 0.9 % rather than balanced crystalloids for volume expansion in adult critically ill patients with traumatic brain injury. No studies compared outcomes for balanced crystalloid versus sodium chloride 0.9 % in post-cardiac arrest patients.

The adequacy of haemodynamic optimisation, which includes the use of intravenous fluids, may be judged by improvements in blood pressure, adequate urinary output (>0.5 ml/kg/h), and decreasing lactate values. Several studies have documented that acute kidney injury (AKI) is common in patients after cardiac arrest with an incidence ranging from 34 to 52 %. 124-128 Most cases of AKI are mild, but in a sub-study of the BOX trial, 77/759 (10.1 %) patients required continuous kidney replacement therapy. 125 A lower mean arterial pressure (<70 mmHg) after cardiac arrest is associated with a higher incidence of AKI¹²⁹, but there is no evidence suggesting that more liberal fluid management would decrease the prevalence of AKI. 130 Recent randomised controlled trials evaluating mean arterial blood pressure targets in post-cardiac arrest care have implemented fluid therapy with meticulous monitoring. The ERC/ESICM suggests the use of controlled and carefully supervised fluid administration, including measurement of filling pressures and cardiac output in selected patients (e.g., those with myocardial dysfunction), which may help optimise clinical outcomes. 131,132 Assessment of fluid responsiveness may help to guide fluid therapy and is well-established practice in the care of critically ill patients. 133,134

The ILCOR Advanced Life Support Task Force has concluded that 'there is insufficient evidence to recommend a specific vasopressor to treat low blood pressure in patients after cardiac arrest'.9 A recent ILCOR systematic review identified only one small randomised controlled trial that included 40 patients who experienced non-traumatic cardiac arrest and had a post-ROSC mean arterial pressure (MAP) below 65 mmHg. These patients were randomised to receive either noradrenaline or adrenaline. The study reported identical 30-day mortality rates of 90 % in both groups. 135 Observational studies comparing adrenaline and noradrenaline have yielded inconsistent results. 136-139 While some studies associate adrenaline use with higher hospital mortality, increased rates of cardiac rearrest, and worse neurological outcomes, 136-138 other research has not demonstrated significant differences in survival to hospital discharge, favourable neurological outcomes, or cardiac rearrest rates. 139 Observational data suggest that the combination of dopamine with either noradrenaline or adrenaline may be associated with higher mortality or an increased risk of poor neurological outcomes compared with dopamine monotherapy. 131,140 These findings should be interpreted with caution. Despite adjustments for confounding variables, residual confounding remains a significant limitation. The results are particularly prone to confounding by indication because adrenaline and vasopressor combinations are often reserved for the most critically ill and unstable patients. In the out-of-hospital settings, adrenaline tends to be more readily available than noradrenaline and is more likely to be used in the peri-arrest conditions.

Indirect evidence is available from studies conducted on patients with cardiogenic shock and acute myocardial infarction. In one study involving 57 patients randomised to receive either noradrenaline or adrenaline as the first-line vasopressor, the trial was prematurely discontinued because refractory shock was more common in the adrenaline-treated group. 141 Another study, which included 280 critically ill patients with hypotension, found no significant differences in clinical outcomes between the noradrenaline and adrenaline groups. However, there were more treatment withdrawals in the adrenaline group. 142 In an RCT comparing dopamine with noradrenaline in the treatment of shock, among those in cardiogenic shock, dopamine was associated with an increased rate of death at 28 days $(\mathsf{P}=0.03).^{143}$

Despite the scarcity of high-certainty evidence, noradrenaline is considered a reasonable first-line vasopressor for managing hypotension in patients following cardiac arrest. 144 It is the most commonly used first-line vasopressor in cases of distributive shock and is generally well-tolerated in post-ROSC cardiac arrest patients. Randomised trials evaluating the use of noradrenaline to achieve higher MAP targets in comatose post-ROSC patients reported no clinically significant arrhythmias requiring urgent intervention or repeated shocks, even when higher doses of noradrenaline were administered compared with lower MAP groups. 100,101,132 Noradrenaline is recommended as the first-line vasopressor for managing hypotensive complications in post-ROSC cardiac arrest patients, such as cardiogenic shock due to acute heart failure, acute coronary syndromes, and sepsis. 145-148 However, in settings where noradrenaline is not available (e.g., pre-hospital), the use of adrenaline as an infusion or as small boluses may be an accepted approach. If central venous access has not been established, a dilute solution of noradrenaline (e.g., 8-40 µg/mL) can be safely infused through a peripheral intravenous cannula. 149,150

Echocardiography is the primary bedside imaging modality for diagnosing and monitoring acute cardiovascular conditions. It is non-invasive, rapid, and provides accurate assessments of cardiac morphology and hemodynamics. Echocardiography is also valuable in guiding therapeutic procedures and can be repeated as needed, making it essential in emergency care. In shock patients, it aids in differential diagnosis by identifying both cardiac and non-cardiac causes, distinguishing various forms of cardiogenic shock, and guiding appropriate therapy.¹⁵¹

Post-resuscitation myocardial dysfunction (as confirmed by echocardiography and/or hemodynamic investigations) frequently requires inotropic support. Experimental evidence highlights dobutamine as the most established treatment in this context; 152 however, in the BOX trial, the higher doses of noradrenaline received by the high MAP target group were associated with a higher cardiac index than the lower MAP group. 153 In patients with cardiogenic shock, dobutamine is used to mitigate peripheral vasoconstriction and decrease afterload. However, its inotropic benefits are often limited in such scenarios. According to the ESC guidelines for managing cardiogenic shock, inotropic agents should be considered for patients with a systolic blood pressure below 90 mmHg and signs of hypoperfusion who do not respond to standard treatments, such as fluid resuscitation, to improve peripheral perfusion and preserve end-organ function. 147 In post-cardiac arrest patients, the systemic inflammatory response syndrome is a frequent complication, often resulting in vasoplegia and severe vasodilation. 93 In these situations, inotropic support should be initiated only after mean arterial pressure has been optimised using fluids and vasopressors. The NEURO-PROTECT trial investigated the use of dobutamine to enhance cardiac index in patients within the higher MAP target group. 100 While this approach did not decrease neurological injury, it also did not worsen myocardial injury. Similarly, the BOX trial used dopamine at a maximum dose of 10 $\mu g/kg/min$ alongside fluid resuscitation and noradrenaline infusion to achieve the desired MAP. 132

A recent ILCOR evidence update on the use of steroids in post-cardiac arrest patients included three RCTs that evaluated the role of steroids in comatose survivors of in-hospital cardiac arrest. 154-157 The first RCT demonstrated improved survival to hospital discharge when methylprednisolone, vasopressin, and adrenaline were administered during cardiac arrest, compared with adrenaline and placebo alone, followed by hydrocortisone post-ROSC for patients in shock (19 % vs. 4 %; RR 4.87; 95 % CI 1.17-13.79). 156 The second RCT showed improved survival to hospital discharge with favourable neurological outcomes when methylprednisolone, vasopressin, and adrenaline were administered during cardiac arrest, combined with hydrocortisone post-ROSC, compared with adrenaline and placebo alone (13.9 % vs. 5.1 %; RR 2.94; 95 % CI 1.16-6.50). 155 In contrast, the third RCT, which restricted the use of steroids to the post-resuscitation phase, found no benefit from steroid administration after ROSC. 157 A systematic review and individual patient data meta-analysis pooled data from these studies (n = 869 patients). 158 While the analysis showed higher rates of ROSC with steroid use, it found no significant difference in survival to discharge or survival to discharge with favourable neurological outcomes. Data from one RCT showed no differences in healthrelated quality of life at 90 days, as measured by the EQ-5D-5L visual analogue scale and health utility index. 157

Following the ILCOR meta-analysis, a new RCT—the CORTICA trial—compared low-dose steroids with placebo in patients with inhospital cardiac arrest. ¹⁵⁹ The trial included 184 patients and reported no significant differences in predefined outcomes, including haemodynamics, end-organ failure-free days, risk of poor in-hospital or functional outcomes, and adverse events.

Based on the combined evidence from the three RCTs in the meta-analysis, ILCOR made a weak recommendation against the routine use of vasopressin and corticosteroids in conjunction with standard care for adult in-hospital cardiac arrest. This recommendation reflects the low confidence in the effect estimates for critical outcomes (low to moderate certainty of evidence). The neutral findings of the CORTICA trial, the showed no significant benefit of low-dose steroids, further supports the ERC/ESICM recommendation against the the routine use of vasopressin and corticosteroids.

Three ongoing RCTs are anticipated to provide additional evidence for the use of vasopressin and steroids in patients experiencing in-hospital cardiac arrest (VAST-A, NCT05139849). For patients with out-of-hospital cardiac arrest, the ongoing HYVAPRESS (NCT04591990) trial is investigating the effect of steroids and vasopressin, and the DANOCHA (NCT05895838) trial is evaluating the effect of steroids.

Potassium. Hyperkalaemia occurs frequently immediately after cardiac arrest – data from 4 RCTs indicate that almost 20 % of patients admitted to ICU after cardiac arrest had hyperkalemia. However, the release of endogenous catecholamines, along with the correction of metabolic and respiratory acidosis, promotes the intracellular movement of potassium, which may lead to hypokalae-

mia. Post-cardiac arrest hyperkalaemia is associated with poorer clinical outcomes. $^{\rm 160,161}$

Based on observational data, ILCOR suggests that intravenous insulin combined with glucose can be used in cases where cardiac arrest is suspected to be caused by acute hyperkalaemia (weak recommendation, with very low certainty of evidence). 9,162 In such patients, ILCOR concluded that there is insufficient evidence to support or oppose the use of intravenous sodium bicarbonate or calcium (weak recommendation, very low certainty of evidence).

Hypokalaemia and hyperkalaemia may increase the risk of ventricular arrhythmias. ¹⁶³ Observational studies suggest maintaining serum potassium values between 4.0 and 4.5 mmol/L through potassium supplementation, which is recommended as a best practice. ¹⁶⁴

Mechanical circulatory support. Managing post-ROSC patients with refractory shock that persists despite fluid resuscitation and vasoactive drugs presents a significant clinical challenge. In such cases, mechanical circulatory support (MCS – such as intra-aortic balloon pump, left-ventricular assist device or arterio-venous extra corporal membrane oxygenation) might be considered the next therapeutic step. ¹⁴⁷

A pooled analysis of up to 14 randomised trials⁹ showed no significant difference in survival outcomes (ranging from 30 days to 1 year) between the early routine use of temporary MCS devices and standard care in patients with cardiogenic shock, regardless of whether a cardiac arrest had occurred. For patients who experienced cardiac arrest, the evidence was mostly indirect, being based on randomised trials involving cardiogenic shock patients, many of whom had experienced cardiac arrest.

While the overall findings do not support the routine use of MCS devices, certain subgroups may benefit. An individual data meta-analysis of nine RCTs evaluating temporary MCS in infarct-related cardiogenic shock showed that the use of MCS devices in these patients did not lower 6-month mortality, regardless of the device type, and was associated with increased major bleeding and vascular complications. ¹⁷⁹ However, in the subgroup of patients with cardiogenic shock and ST-elevation who were not at risk of hypoxic brain injury, MCS use led to a reduction in mortality. Therefore, MCS should be reserved for select patient populations, such as patients with a Glasgow Coma Scale score \geq 8 on hospital arrival, with ST-elevation myocardial infarction (STEMI) and a short duration of cardiac arrest (<10 min). For patients at high risk of brain injury, the potential benefits of these devices may be diminished.

Given the current evidence, making definitive recommendations for selecting post-ROSC cardiogenic shock patients for MCS is challenging. Based on the findings, ILCOR made a weak recommendation against the routine use of these devices in cardiogenic shock patients following cardiac arrest and ROSC, citing low certainty of evidence. However, MCS may be considered for carefully selected patients in appropriate settings where the devices can be effectively used (weak recommendation, low certainty of evidence). When these devices are used, it is advised to closely monitor for potential adverse events and complications to ensure timely identification and management (good practice statement). The ERC/ESICM has adopted these ILCOR recommendations.

Post-ROSC arrhythmias

Recurrent arrhythmias following ROSC pose significant clinical challenges, impacting both short-term management and long-term prognosis in cardiac arrest survivors. 180 Myocardial ischemia and post-

arrest myocardial dysfunction are the primary causes of electrical instability. However, other contributing factors in the acute phase include electrolyte imbalances, elevated catecholamine values, the use of vasopressors and inotropes, as well as pre-existing structural heart disease or channelopathies. Arrhythmias may range from isolated extrasystoles and short runs of supraventricular and ventricular tachycardia to life-threatening tachyarrhythmias and bradyarrhythmias.

Comprehensive information on the management of these arrhythmias, both immediately before and after cardiac arrest, in accordance with guidelines from relevant scientific associations, is provided in the ERC Guidelines 2025 Adult Advanced Life Support (ALS). 181 In a post hoc analysis of a prospective randomised trial, the cumulative incidence of atrial fibrillation was reported to be 15% on the first day and 11% on the second day following OHCA.182 Atrial fibrillation was independently associated with increased mortality, predominantly driven by cardiovascular complications and multiple organ failure, highlighting a vulnerable subset of patients requiring close monitoring. Data from a multicentre database encompassing 9295 patients revealed that a new diagnosis of atrial fibrillation within the first two weeks post-ROSC was strongly associated with elevated risks of stroke and mortality. 183 However, the optimal management strategy to improve outcomes in such cases remains unclear.

Recurrence of ventricular arrhythmias is common during the ICU stay of cardiac arrest survivors. In a retrospective study involving consecutive OHCA patients with VF or pulseless VT as initial rhythms, obstructive coronary artery disease, and successful primary PCI, early recurrence of ventricular arrhythmias was documented in more than 9.8 % of cases, primarily within the first 24 h. 184 Furthermore, in a post hoc analysis of a randomised trial of hypothermic temperature control, VF/VT occurred in 16.2 % of patients between days 1 and 3, with no significant differences observed between core temperatures of 33 °C and 36 °C. 185 The recurrence of life-threatening ventricular arrhythmias after ROSC may signal unrecognised underlying causes of cardiac arrest, such as hypoxaemia, hypovolemia, hypothermia, hypo/hyperkalaemia, acidaemia, toxins, cardiac tamponade, tension pneumothorax, coronary thrombosis, or pulmonary embolism. 186 Prompt recognition and treatment of these conditions are crucial to preventing recurrent cardiac arrest. 186

Refractory arrhythmias often result from a complex interplay between myocardial substrate abnormalities (e.g., arrhythmia syndromes or myocardial scarring from structural heart disease), arrhythmia triggers, and autonomic imbalance. This necessitates a stepwise approach to management, including assessing the arrhythmia's severity, identifying triggers, evaluating the cardiac substrate, determining the hemodynamic impact, and risk-stratifying the patient. 187

Medical management should proceed according to ALS guidelines for refractory arrhythmias. In some cases of electrical storm, measures such as sedation, stellate ganglion blockade, mechanical circulatory support, or urgent catheter ablation should be considered if initial interventions fail to resolve or prevent arrhythmias. During the first hours and days, the benefit of prophylactic antiarrhythmic treatment has not been established. Antiarrhythmic medications should be reserved for the control recurrent ventricular arrhythmias. Long-term management for many of these patients involves the implantation of an implantable cardioverter-defibrillator (ICD). 189

Implantable cardioverter defibrillators

An implantable cardioverter defibrillator (ICD) is a device designed to manage and treat certain life-threatening arrhythmias. The European Society of Cardiology has established guidelines specifying the indications for ICD therapy. ¹⁸⁹ Indications for ICD implantation can be classified into two categories: primary prevention and secondary prevention. Primary prevention applies to patients who have not yet experienced a life-threatening arrhythmia but are at high risk of developing one. This group includes individuals with cardiomy-opathies, inherited arrhythmic syndromes, congenital heart disease, or primary arrhythmias occurring in structurally normal hearts. ^{190,191} Secondary prevention is intended for patients who have already survived a serious arrhythmic event and remain at high risk of recurrence.

Careful patient selection is crucial to identify those most likely to benefit from ICD implantation, especially individuals whose survival may be prolonged by preventing sudden cardiac death caused by arrhythmias.

For post-resuscitation patients, ICDs are often necessary for secondary prevention. A meta-analysis 192 of three major early ICD trials comparing ICD therapy with medical treatment for secondary prevention of sudden cardiac death documented a 28 % reduction in mortality (HR 0.72; 95 % CI 0.6–0.87; P = 0.0006). $^{193-195}$ This benefit was primarily attributed to a significant decrease in arrhythmic deaths (HR 0.5; 95 % CI 0.37–0.67; P < 0.0001) among ICD-treated patients.

The ESC currently recommends ICD implantation in patients with documented ventricular fibrillation (VF) or hemodynamically unstable ventricular tachycardia (VT) where reversible causes have been excluded. 189 For adult patients with a secondary prevention ICD indication but who are temporarily not candidates for ICD implantation, the ESC recommends consideration of a wearable cardioverter defibrillator (an external defibrillator). 109,189,196

Disability (optimising neurological recovery)

Control of seizures

Some of the evidence informing these Guidelines is set out in a systematic review that informed the 2024 ILCOR CoSTR summary. ⁴¹ The 2024 ILCOR updated treatment recommendations have been adopted by ERC/ESICM:

- We suggest against the use of prophylactic antiseizure medication in post-cardiac arrest adults (weak recommendation, very low-certainty evidence).
- We suggest treatment of clinically apparent and EEG seizures in post-cardiac arrest adults (good practice statement).
- We suggest treatment of rhythmic and periodic EEG patterns that are on the ictal-interictal continuum in comatose post-cardiac arrest adults (weak recommendation, low-certainty evidence).

The EEG is an important tool to detect corresponding electrographic seizure activity in a patient with observed clinical convulsions and to monitor treatment effects. Shivering is a common seizure mimic during hypothermic temperature control. Active treatment of status epilepticus usually necessitates repeated routine EEGs or continuous EEG-monitoring. The relative benefit of continuous EEG compared with routine EEG has not been shown. Continuous EEG monitoring is labour intensive and likely to add significant cost to patient care. The net cost-effectiveness of this approach is controversial and may depend substantially on the setting. 197,198

Based on expert opinion, we suggest recording a routine EEG from day one after cardiac arrest. Further recordings or establishment of a continuous EEG can be performed based on clinical needs, such as prognostication or the treatment of seizures.

Seizures are reported in 20–30 % of cardiac arrest patients in the ICU and are usually a sign of a severe hypoxic-ischaemic brain injury. A seizure may be characterised by prominent motor activity (convulsions or myoclonus), or it may only be detected by an EEG recording (electrographic seizures). Focal or generalised tonic-clonic seizures also occur after cardiac arrest, and it is not uncommon that an individual patient has several seizure subtypes.¹⁹⁹. Standardised criteria for possible and definite electrographic seizure activity have been published.²⁰⁰

Myoclonus is sudden, brief, shock-like involuntary muscle contractions and is by far the most common type of clinical seizure in post-arrest patients. ^{199,201} It is often generalised but may be focal (periodic eye-opening, swallowing, diaphragmatic contractions, etc) or multi-focal. ²⁰² It typically develops during the first 1–2 days after the arrest and is often transient during the first days-week. It is associated with a poor prognosis ²⁰³ but some patients survive with a good outcome. ^{204,205} Most post-hypoxic myoclonus has a cortical origin ²⁰⁶ and the EEG shows time-locked discharges or burst-suppression in a substantial proportion of patients. ²⁰⁴

Lance-Adams syndrome is a less frequent form of myoclonus, usually developing in a patient who has regained consciousness. ^{207,208} It is more common after hypoxic cardiac arrest and mainly affects the limbs, where it is induced by purposeful actions or sensory stimulation. It may be disabling and often becomes chronic. ^{205,209} Generalised myoclonus in combination with epileptiform discharges may be early signs of Lance-Adams syndrome. In such cases, aggressive treatment with high doses of sedatives and anti-epileptic drugs may confound the clinical examination and lead to overly pessimistic prognostication.

Studies using continuous EEG monitoring reveal that electrographic epileptiform (rhythmic and periodic) activity and clinical convulsions are equally common and that there is a substantial overlap. ²¹⁰ In patients with seizures, clinical examination may be confounded by the concomitant effects of brain injury, metabolic factors and sedation, making possible clinical correlates and effects of seizure treatment harder to evaluate. Definitions of electrographic status epilepticus have been published by the American Clinical Neurophysiology Society (ACNS). ²⁰⁰ The timing of EEG or sedative drugs can affect the likelihood of detecting ictal-interictal patterns on the EEG..

Seizures may increase the cerebral metabolic rate and have the potential to exacerbate brain injury caused by cardiac arrest: treat seizures with levetiracetam and/or sodium valproate or a combination. Consider possible drug interactions. After the first event, start maintenance therapy. Consider increased dose of propofol or benzodiazepines to suppress myoclonus and electrographic seizures. Thiopental or phenobarbital may be considered in selected patients. Clonazepam may suppress myoclonus but may cause sedation.

Sedative drugs have potent seizure-suppressing effects and are recommended as third-line treatment of status epilepticus. Propofol and benzodiazepines are used routinely during the first days after cardiac arrest while the patient is mechanically ventilated. Depending on the dosing, these drugs will suppress clinical myoclonus and epileptiform activity in the EEG.^{211,212} The seizures may be unmasked during sedation holds.

Treatment of detected clinical seizures has not been studied in an RCT.⁴¹ However, in one multi-centre RCT, patients were treated with antiepileptic drugs and sedative agents in a stepwise goal-directed manner to suppress abundant rhythmic and periodic activity detected in the EEG.²¹³ The outcome was equally poor in most (90 %) patients in both intervention and control group.

In several case series, 4–44 % of patients with post-anoxic status epilepticus had a good outcome. These patients were usually treated with multiple anti-epileptic drugs and had a delayed awakening, often beyond 1–2 weeks. Whether antiseizure medications or prolongation of intensive care contributed to good outcome in these patients cannot be confirmed in these case series.

There is limited evidence that conventional antiseizure drugs (mainly valproate and levetiracetam) suppress epileptic activity in the EEG of post cardiac arrest patients.²¹⁸ These drugs are known to suppress myoclonus of other origins.²¹⁹ Phenytoin and the prodrug fosphenytoin are still used for the treatment of status epilepticus. In post-cardiac arrest patients, however, their negative inotropic and vasodilating effects make them less suitable.²²⁰

There is currently no evidence supporting prophylactic treatment with antiepileptic drugs in the post-arrest setting. Previous studies on the effects of bolus-doses of thiopental²²¹ and diazepam/magnesium²²² after resuscitation showed no benefit in terms of survival or neurological function but these studies were designed to investigate neuroprotection, not seizure suppression.

Since post-anoxic seizures and status epilepticus are manifestations of hypoxic-ischaemic brain injury, an assessment of the prognosis and potential for an eventual good outcome are central components of a treatment strategy. The EEG-background pattern is important but may sometimes be difficult to assess if there are concomitant abundant discharges. A continuous, normal voltage and reactive EEG background are benign features whereas a burst-suppression pattern or a suppressed background without reactivity are features related to worse prognosis. 204,217 Early onset (<24 h) of electrographic seizures, before the recovery of a continuous background is associated with worse prognosis. 223-225 In these patients, the EEG is often affected by the ongoing treatment. It is therefore suggested that additional information is obtained on the severity of brain injury from methods not significantly affected by sedative drugs, such as somatosensory evoked potentials, serum NSE and neuroradiological investigations (preferably MRI).

Treatment with sedatives and conventional antiepileptic drugs in high doses may delay awakening, prolong the need for mechanical ventilation, and increase critical care length of stay. ²²⁶ The preferable approach is to treat the patient holistically instead of focusing purely on the EEG.

Temperature control

A comprehensive systematic review of temperature control in comatose post–cardiac arrest patients was conducted by the ALS Task Force of ILCOR in 2021²²⁷ and updated in 2023. 41,228 The systematic review covered six aspects of temperature management: (1) use of hypothermic temperature control, (2) timing, (3) specific temperature, (4) duration of temperature control, (5) method of temperature control, and (6) rate of rewarming. Only controlled trials were included in these reviews. The 2021 and 2023 systematic reviews identified 38 trials.

The term targeted temperature management was updated by the ALS Task Force and the following definitions have been adopted:

- Hypothermic temperature control active temperature control with the target temperature below the normal range
- Normothermic temperature control active temperature control with the target temperature in the normal range
- Fever prevention temperature control monitoring temperature and actively preventing and treating temperature above the normal range
- No temperature control no protocolised active temperature control strategy

Comparisons in the systematic reviews included temperature control versus no temperature control, timing of temperature control, specific temperature targets, durations of temperature control, methods of temperature control, and rates of rewarming. Overall, there was no difference between hypothermic temperature control and normothermic temperature control or between other specific temperatures studied or different durations or methods of temperature control.

The ILCOR ALS Task Force made the following treatment recommendations and good practice statements, and these have been adopted unchanged for these 2025 ERC-ESICM Guidelines.

- We suggest actively preventing fever by targeting a temperature ≤37.5 °C for patients who remain comatose after ROSC from cardiac arrest (weak recommendation, low-certainty evidence).
- Whether subpopulations of cardiac arrest patients may benefit from targeting hypothermia at 32 °C to 34 °C remains uncertain.
- Comatose patients with mild hypothermia after ROSC should not be actively warmed to achieve normothermia (good practice statement).
- We recommend against the routine use of prehospital cooling with rapid infusion of large volumes of cold intravenous fluid immediately after ROSC (strong recommendation, moderate-certainty evidence).
- We suggest surface or endovascular temperature control techniques when temperature control is used in comatose patients after ROSC (weak recommendation, low-certainty evidence).
- When a cooling device is used, we suggest using a temperature control device that includes a feedback system based on continuous temperature monitoring to maintain the target temperature (good practice statement).
- We suggest active prevention of fever for 36 to 72 h in post-cardiac arrest patients who remain comatose (good practice statement).

Hypothermia compared with normothermia or prevention of fever. Although the ILCOR systematic reviews found no difference in overall outcomes between patients treated with hypothermia and normothermia or fever prevention the authors of a Cochrane systematic review concluded that hypothermic temperature control may improve neurological outcomes after cardiac arrest. The conflicting results of these systematic reviews have been reflected in differing opinions on whether there is a role for hypothermic temperature control in comatose post-cardiac arrest patients. Differences in opinion led the ILCOR ALS Task Force to suggest that there may be subpopulations that might benefit from hypothermic temperature control. A single trial suggested benefit in those with a nonshockable initial rhythm; however, a recent individual patient meta-analysis of this trial and the TTM-2 trial participants with an ini-

tial non-shockable rhythm concluded that hypothermic temperature control did not improve survival or functional outcome.²³³

Many animal models have suggested a benefit for hypothermic temperature control after resuscitation from cardiac arrest but in these cases target temperature has generally been achieved in less than 1 h.²³⁴ The failure to translate these findings into positive outcomes in clinical trials may reflect the 5–6 h generally taken to achieve target temperature in the clinical setting.¹⁷ Transnasal cooling can be started before ROSC and may enable target temperature to be achieved more rapidly. The impact of this intervention on neurological recovery after out-of-hospital cardiac arrest with a shockable rhythm is being studied in a randomised controlled trial in multiple European centres.²³⁵ Rapid cooling can also be achieved using total liquid ventilation – a pilot study is evaluating this intervention in resuscitated cardiac arrest patients.²³⁶

Extracorporeal cardiopulmonary resuscitation (ECPR) may enable more rapid cooling and achievement of target temperature. There are no randomised controlled trials evaluating hypothermic temperature control in patients receiving ECPR; despite this, many centres have adopted hypothermic temperature targets in these patients.

Prehospital cooling. There is no evidence that any method of prehospital cooling improves outcomes. One study indicates that rapid infusion of large amounts of cold fluid immediately after achieving ROSC in the prehospital setting is harmful.¹²¹

Temperature control devices. Fever control with or without a device is currently being evaluated in the STEPCARE Trial (https:// stepcare.org). Until the results of this trial are known, it is considered good practice to monitor temperature continually and use a feedback-controlled system whenever a temperature control device is used to maintain a stable temperature. Two systematic reviews conflict on whether surface or endovascular cooling is preferable. One showed that intravascular cooling is associated with improved neurological outcome, 237 while the other found no association with survival or neurological outcomes. 238 A systematic review and network metaanalysis focusing on temperature feedback during hypothermic temperature control included 14 studies (4062 patients) and concluded that intravascular temperature control had the highest probability of being beneficial.²³⁹ This has been confirmed in a recent post-hoc analysis of the TTM-2 trial. 240,241 In a randomised clinical trial of fever prevention in patients with acute vascular brain injury, use of an automated surface temperature management device did not improve functional outcome in comparison with standardised tiered fever treatment for a temperature ≥ 38 °C. 242

Duration of temperature control. Three trials have investigated the impact of duration of temperature control on outcome. One trial showed no difference between 24 and 48 h of hypothermia, ²⁴³ another found no difference between 12 to 24 and 36 h of hypothermia, ²⁴⁴ and a third compared temperature control for 36 h versus 72 h and also found no difference in outcomes. ²⁴⁵ Based on these data, the ILCOR ALS Task Force was unable to reach consensus on a treatment recommendation on duration of temperature control or fever prevention. The good practice statement includes a range of duration (36 to 72 h) that is supported by the few data and by expert opinion.

Other therapies to improve neurological outcome

Many therapies have shown encouraging neuroprotective effects in experimental models. However, there are many limitations to animal models and the positive results of these preclinical clinical studies have failed to translate into clinical practice. 17 The ILCOR ALS Task Force adoloped a published systematic review on drug therapy for comatose survivors of cardiac arrest. 9,19 The adoloped ILCOR systematic review included 44 RCTs (5640 patients), 135,155-157,159,213,221,222,246–280 which were grouped into 3 themes: supportive drug therapy (5 studies), neuroprotective agent (18 studies), and anti-inflammatory/antioxidant (16 studies). The supportive therapies included antiplatelet drugs, sedation, and neuromuscular blockade, and none of these resulted in a difference in mortality at 30 days or hospital discharge. 248,262,263,266,274 The neuroprotective therapies that were investigated included thiopental, 221 amantadine, 251 nimodipine, 258,273 lidoflazine, 249 inhaled xenon, 261 nitric oxide, 253 hydrogen,²⁷⁶ exenatide (glucagon-like peptide-1 agonist),²⁷⁹ epoetin alfa.²⁵⁰ sodium nitrite.²⁵³ magnesium.²⁷⁷ MLC901 (nine herbal components),²⁶⁹ and penehyclidine hydrochloride.²⁷⁸ None of these studies documented significant effects on functional outcome and there were increased rates of serious adverse events in the intervention arms of the studies of thiopental (hypotension), lidoflazine (hypotension), and epoetin alfa (thrombosis). 221,249,250 inflammatory and antioxidant therapies investigated included steroids, 157,159,268 vasopressin in conjunction with steroids, 155 thiamine. 247,254,270 coenzyme Q10,252,259,281 vitamin C,271 tocilizumab (interleukin-6 inhibitor), 265 iloprost, 264 urinastatin (neutrophil elastase inhibitor), 257 and the traditional Chinese medicine Shenfu. 280 None of these therapies reduced 30-day mortality.

Medical gases, noble gases and gaseous molecules have also been evaluated at neuroprotectants. The combination of xenon and induced mild hypothermia, which is beneficial and superior to induced mild hypothermia alone in experimental settings, ²⁸² has been studied in several clinical trials without convincing effects. ^{246,283} Volatile anaesthetics have demonstrated positive effects on cardiac and cerebral recovery in experimental settings ²⁸⁴ and clinical feasibility studies, ^{285,286} but outcome data are scarce and uncertain. ^{287–289}

The 2025 ILCOR treatment recommendation in respect of neuroprotective therapies after cardiac arrest is that there is insufficient evidence to recommend the use of any specific drug therapy for comatose survivors of cardiac arrest (weak recommendation, lowto very low-certainty evidence), and the ERC/ESICM supports this.

General intensive care management

Most of the guidelines for the general ICU management of post-cardiac arrest patients are based on expert opinion. Most aspects of post-cardiac arrest care follow general ICU practices. Some differences and nuances are inherent. Few aspects of general intensive care have been studied separately in the cardiac arrest population, but cardiac arrest patients have been included in trials on general intensive care practices. Specific features of the post cardiac arrest patients include the risk of brain injury and need to apply neurocritical care principles, the high occurrence of myocardial dysfunction, the use of anticoagulants and anti-platelet drugs and the high risk of aspiration pneumonitis among others. The typical length of stay in cardiac arrest patients will vary from three days to several weeks because of differences in time to awakening.²⁹⁰ This will influence

certain aspects of care such as the initiation of and management of nutrition.

Prophylactic antibiotics

Many post-cardiac arrest patients are at high risk of developing aspiration and ventilator-associated pneumonia^{291,292} and in some centres it is routine practice to give prophylactic antibiotics to all comatose post-cardiac arrest patients.²⁶⁸ An RCT examining the prophylactic use of antibiotics in OHCA patients showed a decrease in ventilator-associated pneumonia but did not find any other differences in other clinical outcomes.²⁵⁶ A systematic review underpins an ILCOR treatment recommendation which suggests against the use of prophylactic antibiotics in patients following ROSC (weak recommendation, low certainty of evidence), and this is supported by the ERC/ESICM.^{62,293} Despite this recommendation, it is reasonable to have a low threshold for giving antibiotics when there is any clinical suspicion of pneumonia.

Sedation and analgesia

Many post-cardiac arrest patients will require sedation and pain management, particularly those who are treated with active temperature control. ²⁹⁴ During hypothermic temperature control, shivering is common – this can be managed with opioids and sedation. The role of sedation in patients not treated with hypothermic temperature control remains controversial, and practice varies from deep to light sedation targets. While we await the results from the ongoing Sedation, TEmperature, and Pressure after Cardiac Arrest and REsuscitation (STEPCARE) trial comparing a deep sedation target with minimal sedation, ²⁹⁵ it is reasonable to treat pain, discomfort and shivering in patients not treated with hypothermic temperature control. It is best practice to monitor the level of sedation with a tool such as the Richmond Agitation Sedation Scale (RASS). ²⁹⁶

One RCT has compared the use of propofol and fentanyl with midazolam and fentanyl.²⁴⁸ In a trial of 59 patients, the use of propofol and remifentanil resulted in shorter time to awakening but was associated with more frequent need of noradrenaline²⁴⁸ Similar findings have been shown in observational studies²⁹⁷ Volatile anaesthetics have been proposed as alternative sedatives because they are cleared more rapidly. A systematic review and meta-analysis including three observational studies compared volatile anaesthetics with conventional sedatives in post-cardiac arrest patients.²⁸⁷ Those patients sedated with volatile anaesthetics received a shorter duration of mechanical ventilation, but there was no difference in any other outcomes. In a recent propensity-matched control study, sedation of post-cardiac arrest patients with isoflurane was associated with a reduced incidence of delirium and shorter duration of mechanical ventilation compared with those given intravenous sedation.²⁸⁹ However, results of a recent trial on 687 adults with ARDS, in most cases due to COVID-19, showed that inhaled sedation with sevoflurane resulted in fewer ventilator-free days at day 28 and higher 90day mortality (53 % vs. 44 %; relative risk 1.31 [95 % confidence intervals 1.05 – 1.62]) than sedation with propofol Moreover, patients randomised to inhaled sedation with sevoflurane had higher rates of acute kidney injury.²⁹⁸ We suggest using short-acting intravenous sedative agents and daily sedation holds when treating post-cardiac arrest patients receiving mechanical ventilation - this may enable earlier clinical examination that is less confounded by sedation when assessing neurological recovery.

Neuromuscular blocking drugs

A systematic review and meta-analysis of the use of neuromuscular blockers in post-cardiac arrest patients included 12 studies (three RCTs and nine observational studies) and over 11,000 patients.²⁹⁹ The use of prophylactic (continuous) neuromuscular blockade was associated with a reduced mortality rate compared with patients managed without neuromuscular blocking drugs (OR 0.74; 95 % CI 0.64-0.86; p < 0.0001). There was no difference in outcomes between those managed with continuous neuromuscular blocking drugs and those managed with bolus doses. There are major limitations to this systematic review: most of the included studies were retrospective and therefore potentially confounded; observational studies were combined with RCTs; most of the patients in these studies are likely to have been treated with hypothermic temperature control and any beneficial effects of neuromuscular blocking drugs may not be seen in patients treated with normothermic temperature control. In patients with ARDS and critical hypoxaemia, an RCT³⁰⁰ and a meta-analysis³⁰¹ have shown reduced mortality with the use of neuromuscular blockers, but a more recent RCT showed no survival benefit. 302 Thus, in patients with critical hypoxaemia and ARDS following cardiac arrest, the use of a neuromuscular blocker may be considered, given some evidence for their use in ARDS. Short-term use of neuromuscular blockade may be considered in other specific situations such as when performing neurophysiological testing, if shivering occurs during temperature control and in patients with severe myoclonus unresponsive to other measures. In other patients (without ARDS), ERC/ESICM does not recommend systematic use of neuromuscular blocking drugs.

Nutrition

Patients require a nasogastric tube to decompress any abdominal distension. There are no RCTs evaluating nutrition in post-cardiac arrest patients, but 5 observational studies have indicated that enteral feeding is tolerated after OHCA. 303-307 In observational studies, early enteral nutrition (started in less than 48 h from cardiac arrest) appears to be safe and associated with a higher proportion of patients with a good 3-month neurological outcome, 304 improved survival, 305 and a lower 7-day bacteraemia rate. 306 In contrast, in another observational study among patients treated with extracorporeal CPR and hypothermia, delayed enteral nutrition (>48 h) was associated with improved neurologically favourable survival compared with early enteral feeding. 307 It is reasonable to start gastric feeding at low rates (trophic feeding) and increase as tolerated. Low-calorie, low-protein intake during the acute phase of illness or haemodynamical instability is associated with fewer complications compared with standard intakes of energy and protein. 308

Gastric ulcer prophylaxis

Routine use of ulcer prophylaxis in intensive care patients does not decrease mortality. 309,310 However, a meta-analysis showed that in high-risk patients, the use of ulcer prophylaxis decreased gastrointestinal bleeding 311 and a recent randomised trial in 4821 patients undergoing invasive mechanical ventilation showed a significant reduction in the risk of clinically significant upper gastrointestinal bleeding with pantoprazole 40 mg daily compared with placebo. The incidence of ventilator-associated pneumonia or Clostridium difficile infection was similar in the two study groups. 312 There has been no subgroup study of post-cardiac arrest patients. In one observational retrospective study, non-occlusive mesenteric ischaemia

occurred in 2.5–6 % of patients admitted to a cardiac arrest centre. 313 However, in a prospective study, among 214 post-cardiac arrest patients who were still intubated after 2–4 days and systematically underwent upper gastrointestinal endoscopy 121 (57 %) had an upper gastrointestinal ischaemic lesion and these were severe (ulceration or necrosis) in half the cases. 314 Given the high incidence of upper gastrointestinal ulceration in post-cardiac arrest patients and the use of anticoagulant and antiplatelet drugs both pre and post arrest, 315 we suggest the use of stress ulcer prophylaxis in post-cardiac arrest patients, especially in those with coagulopathy. 316

Anticoagulation

Unless patients receive anticoagulation because of a myocardial infarction or ischaemia, deep venous thrombosis (DVT) prophylaxis is recommended in critically ill patients. ^{317,318} A systematic review that included 13 RCTs and 9619 critically ill patients showed that low molecular weight heparin (LMWH) reduced the rate of DVT compared with unfractionated heparin. ³¹⁹ The use of antiplatelet drugs does not prevent DVTs. ³²⁰ Out-of-hospital cardiac arrest patients are at risk for developing DVTs, especially if treated with hypothermic temperature control. ³²¹ Deep venous thrombosis may be more common in those treated with an invasive temperature control device, likely related to catheter placement in the femoral vein. ³²² No specific evidence exists on DVT prophylaxis in cardiac arrest patients. Thus, treatment should be individualised and be based on general ICU recommendations. ³¹⁷

Glucose control

Hyperglycaemia is common after OHCA.¹⁶¹ Hyperglycaemia is best managed with continuous infusion of insulin. An evidence update on glucose control after resuscitation found no new studies that examined active glucose management in the post-cardiac arrest period, and the 2014 ILCOR treatment recommendation remains valid and supported by the ERC/ESICM: we suggest no modification of standard glucose management protocols for adults with ROSC after cardiac arrest (weak recommendation, moderate-quality evidence).⁹

The 2024 Guidelines of the American Diabetes Association recommend a target glucose range of 7.8–10.0 mmol L $^{-1}$ (140–180 mg dL $^{-1}$) for most critically ill patients. The American Diabetes Association also recommends that more stringent goals, such as 6.1–7.8 mmol/L (110–140 mg/dL), may be appropriate for selected patients, as long as this can be achieved without significant hypoglycaemia. However, very tight glucose control does not appear to convey benefit and may be associated with hypoglycaemia (<4.0 mmol L $^{-1}$ (<70 mg dL $^{-1}$)), 325 which is harmful in critically ill patients. 326 In general, glucose-containing solutions are not recommended in patients with brain injury, 327 but they may be needed to treat hypoglycaemia. 326

Predicting neurological outcome

About two-thirds of in-hospital deaths in patients who are admitted to an intensive care unit in a coma following resuscitation from OHCA are caused by hypoxic-ischaemic brain injury (HIBI). 328,329 In a minority of cases, these deaths occur as a direct consequence of HIBI, which results in an irreversible loss of all brain function, i.e., brain death. However, most neurological deaths following cardiac arrest result from active withdrawal of life-sustaining treatment (WLST) in patients where the severity of HIBI indicates that survival with a poor neurological outcome is very likely. 331,332 Accurate

prognostication is therefore essential to avoid an inappropriate withdrawal of life-sustaining treatment in patients who still have a chance of a neurologically meaningful recovery and to avoid futile treatment in patients with a severe and irreversible brain injury.

Outcome measures in neuroprognostication studies

Neurological outcome after cardiac arrest is commonly reported as good or poor and is measured by ordinal hierarchical functional outcome scales, where a poor functional outcome refers to a patient being either dead or having a dependency in basic activities of daily living. Neurological outcome after cardiac arrest is most commonly reported using Cerebral Performance Categories (CPC).333 The CPC is expressed on a five-point scale: CPC 1 (no or minimal neurological disability); CPC 2 (minor neurological disability); CPC 3 (severe neurological disability); CPC 4 (persistent vegetative state); and CPC 5 (death). Although the CPC is the most commonly used scale, the preferred measure for functional outcome in cardiac arrest is the modified Rankin Score (mRS), which ranges from 0 (no symptoms) to 6 (dead). 334 In 2018, a statement from ILCOR335 suggested using mRS rather than CPC for measuring functional recovery after cardiac arrest, because mRS is more suitable than CPC for discriminating between mild and moderate disability^{336,337} and may have better interrater reliability.³³⁸ However, for both of these scales interrater reliability is generally acceptable in the separation of good and poor outcome.

For both clarity and statistical purposes in studies on neuroprognostication after cardiac arrest the outcome is dichotomised as 'good' or 'poor'. However, there is no universal consensus on what represents a poor functional outcome. Up to 2006, most neuroprognostication studies reported CPC 4 or 5 (vegetative state or death) as a poor outcome, and CPC from 1 to 3 (from absent to severe neurological disability) as a good outcome, while after that date an increasing number of studies included CPC 3 (severe neurological disability) among poor neurological outcomes. ³³⁹ In a 2020 systematic review, among 94 total studies on neurological prognostication after cardiac arrest, 90 (96 %) defined a poor neurological outcome as CPC 3–5, while only four defined poor outcome as CPC 4–5. ³⁴⁰

In prognostic accuracy studies, a predictor (index test) is evaluated for its ability to predict an outcome. When test results are expressed in binary format (i.e., positive vs. negative), accuracy is measured using sensitivity and specificity, which indicate the test's ability to identify individuals who will develop or will not develop the target condition, respectively. Sensitivity is the fraction of subjects who will develop the target condition and have a positive test result. For this reason, sensitivity is also known as the true positive rate. A highly sensitive test will be positive in most of the patients who will develop the target condition. Specificity is the fraction of subjects who will not develop the target condition and have a negative test result. For this reason, specificity is also known as the true negative rate. A very specific test will be negative in most of the patients who will not develop the target condition. Importantly, the remaining patients who will not develop the target condition will, by definition, have a positive test result. These are the false positives, and their fraction of the total patients who will not develop the condition is the false positive rate. Specificity and false positive rate complement each other: Specificity = 1 - False Positive Rate.

Since most neuroprognostic tests predict poor functional outcome, having a very high specificity (i.e., a very low rate of falsely pessimistic predictions) is desirable. Ideally, an index test should

be 100 % specific, i.e., its false positive rate should be zero. There is no universal consensus on how low the false positive rate of an index test should be for neuroprognostication after cardiac arrest. In a survey of 640 healthcare providers, the majority (51 %) considered an acceptable false positive rate for withdrawing life-sustaining treatment from patients who might otherwise recover to be ≤0.1 %.341 Along with the absolute specificity value, the precision of its estimate is essential. A very specific test predicting poor outcome is of little clinical use when its precision is low (i.e., when the confidence intervals [CI] around the point estimate of its specificity are wide), because this indicates a high degree of uncertainty around the estimated specificity. In the 2014 ERC-ESICM Advisory Statement on neuroprognostication after cardiac arrest, the single most robust predictors were identified as those in which the upper boundary of the 95 % confidence interval of the false positive rate was below 5 %. 332 To increase the safety of neuroprognostication, from 2021, ERC and ESICM have recommended using a combination of at least two concordant unfavourable predictors for predicting poor neurological outcome in patients who are comatose after cardiac arrest. In two multicentre validation studies of the 2021 ERC-ESICM neuroprognostication strategy, one conducted mostly in Central and Nothern Europe³⁴² and the second conducted in South Korea where withdrawal of life-sustaining treatment was not practised, 343 the ERC-ESICM neuroprognostication algorithm predicted poor outcome with 0 % false positive rate and 95 % confidence intervals of 0-1.2 % and 0-3.4 %, respectively.

For some neuroprognostic tests used after cardiac arrest, such as blood values of biomarkers of neurological injury or the grey matter to white matter density ratio on brain CT, the results are expressed as continuous variables. In this case, sensitivity and specificity will depend on the value of the variable that is chosen as a threshold to separate positive from negative test results, and the values of sensitivity and specificity that are obtained by varying the positivity threshold across all its possible values are expressed by a receiver operating characteristic (ROC) curve. The problem with dichotomising continuous predictive variables to obtain a binary test result is the difficulty in finding a consistent threshold for 100 % specificity. Very high test results can be caused by outliers, which can distort the data and reduce test sensitivity.

Main sources of bias in neuroprognostication

One of the major biases in neuroprognostication after cardiac arrest is self-fulfilling prophecy. This occurs when the treating team is aware of the result of the prognostic test and uses it for decisions that affect the patient's outcome, e.g., withdrawal of life-sustaining treatment (WLST). This leads to an overestimation of test performance and potentially to an inappropriate WLST. In a 2013 systematic review on neuroprognostication after cardiac arrest, 64/73 (88 %) studies were at risk of self-fulfilling prophecy bias. 344,345

Ideally, the index tests should be investigated blindly to avoid self-fulfilling prophecy bias. However, this is difficult to achieve in practice. Concealing clinical examination results from the treating team is almost impossible, while concealing EEG or brain imaging results would be unethical, since they may reveal the presence of potentially treatable complications (e.g., seizures or intracranial hypertension, respectively). Nevertheless, some predictors, such as biomarkers, have been evaluated blindly. 346-348 A special condition limiting the risk of self-fulfilling prophecy bias is the absence of

an active WLST policy. This has been described in some studies conducted in countries or communities where treatment limitations are not accepted due to cultural, legal or religious reasons. 349,350

Other strategies to reduce the risk of falsely pessimistic predictions include avoiding confounding from treatments (e.g., sedatives or other drugs) affecting the results of some predictors, such as clinical examination or EEG; avoiding basing decisions on life-sustaining treatments on the results of a single index test, but instead using a multimodal approach (see Fig. 5 – Multimodal prognostication algorithm); and always interpreting the results of the index tests within the clinical context.

A specific source of bias in neuroprognostic studies after cardiac arrest is the presence of a time lag between the recording of the index test, which is usually done very early after the arrest, and the assessment of the target condition, i.e., neurological outcome. Since recovery from hypoxic-ischaemic brain injury following cardiac arrest requires time, the minimum recommended timing for its assessment is 30 days or later from the event or neurological discharge. ³³⁵ However, further neurological recovery can occur later. Consequently, an early prediction of outcome, which is confirmed by CPC or mRS measured at hospital discharge, may occasionally prove false when the outcome is reassessed later. ³⁵¹ For that reason, guidelines suggest reassessing neurological outcome at three or six months after the event. ³⁵² Most studies in the systematic review informing these guidelines report neurological outcomes at least six months after cardiac arrest. ³⁴⁰

Another bias, which is partly related to the time delay between index test assessment and outcome, is the interference from extracerebral causes of death after cardiac arrest. These include cardiovascular instability, which is the second most common cause of inhospital death after cardiac arrest, ³²⁹ and multiple organ failure due to global ischaemia—reperfusion injury. ^{128,353} Although the incidence of these complications is maximal early after arrest, death from extracerebral organ failure may occur after neurological recovery. ²⁹⁰ The prevalence of death after awakening was 16 % in the ICU in a single-centre study, ³⁵⁴ and 4.2 % during hospital stay in a multicentre European study including 4646 patients. ³⁵⁵ In that study, death occurred at a median time of 9 (3–18) days after awakening, and it was more common after IHCA than after OHCA.

The present guidelines apply only to neurological prognostication. Besides hypoxic-ischaemic brain injury, other, albeit less common, causes of death in resuscitated comatose patients include cardiovascular instability, 329 and multiple organ failure. 128,353 These factors may result in treatment limitations independently from the patient's neurological status or cause non-neurological death even after the neurological recovery has occurred. 352,355,356 In clinical practice, a comprehensive prognostic approach in resuscitated comatose patients should inevitably consider the role of extracerebral factors as well as patient characteristics such as age, comorbidities, and functional status.

Multimodal prognostication

We recommend that neuroprognostication always be undertaken using a multimodal approach because no single test has sufficient specificity to eliminate false positives (strong recommendation, very low-certainty evidence).

Clinical examination

These guidelines are supported by evidence from a systematic review on prognostication and 2025 ILCOR CoSTRs. 62,340 The relevant treatment recommendations in the 2025 ILCOR CoSTR are:

- We suggest using pupillary light reflex at 72 h or later after ROSC for predicting neurological outcome of adults who are comatose after cardiac arrest (weak recommendation, very-low-certainty evidence).
- We suggest using bilateral absence of corneal reflex at 72 h or later after ROSC for predicting poor neurological outcome in adults who are comatose after cardiac arrest (weak recommendation, very low-certainty evidence).
- We suggest using the presence of myoclonus or status myoclonus within 7 days after ROSC, in combination with other tests, for predicting poor neurological outcome in adults who are comatose after cardiac arrest (weak recommendation, very low-certainty evidence). We also suggest recording EEG in the presence of myoclonic jerks to detect any associated epileptiform activity (weak recommendation, very low-certainty evidence)

Ocular reflexes currently used for neurological Ocular reflexes. prognostication after cardiac arrest include pupillary and corneal reflexes. The pupillary light reflex comprises a temporary reduction of pupil size induced by a light stimulus. Standard pupillary light reflex is evaluated visually and elicited generally using a penlight. In recent years, a quantitative evaluation of pupillary light reflex using portable pupillometers has become available in the ICU. A bilaterally absent standard pupillary light reflex has low specificity for predicting poor outcome in the first hours after ROSC, but its accuracy progressively increases, and it achieves 0 % false positive rate 100 % specificity after 96 h from ROSC with 20-25 % sensitivity.340 This is presumably due to the process of brain recovery after anoxic-ischaemic injury, but it may be due partly to interference from sedatives used in the early post-resuscitation phase to maintain temperature control. Standard pupillary light reflex is inexpensive and easy to use, but it is subjective and prone to interrater variability.357

Quantitative evaluation of pupillary light reflex (automated pupillometry) provides an objective and quantifiable measurement of the pupillary response. The most common pupillometry measures are the percentage reduction of pupillary size, generally indicated as q-pupillary light reflex³⁵⁸ and the neurological pupil index.^{358–360} The neurological pupil index is calculated from several dynamic parameters of the pupillary response (including constriction and dilation velocity, size, and percentage size reduction after stimulation) using a proprietary algorithm. A neurological pupil index value ≥ 3 is considered normal. Limited evidence showed that, unlike standard (visual) pupillary light reflex, neurological pupil index can predict unfavourable outcome with no false positive results from 24 h or less to 72 h from ROSC.340 In one study, this was because of the pupillometer's ability to detect a response even when the pupil size was minimal, presumably due to sedation.³⁶¹ Pupillometry results are expressed as a continuous measure, and the threshold for a 0 % false positive rate varied among studies. In three studies in a recent evidence review, this neurological pupil index threshold varied between <2.0 and 3.14.358-360 Another limitation of automated pupillometry is its cost.

The corneal reflex is elicited by touching the cornea's outer margin (limbus) with a cotton wisp. Alternatively, an air or water squirt can be used to minimise the risk of corneal abrasion. ³⁶² An eye blink represents the corresponding response. In patients who are comatose after cardiac arrest, an absent corneal reflex predicts poor neurological outcome after 72 h from ROSC with 0 % false positive rate (95 % confidence interval 0–3.4 %) and 25–40 % sensitivity in most studies. ³⁴⁰ Like pupillary light reflex, corneal reflex is prone to inter-

ference from sedation. In addition, it may be affected by muscle relaxants. A 2020 survey revealed that the modalities used to assess the corneal reflex in comatose patients are inconsistent.³⁶³

Motor response. An absent or extensor motor response to pain (motor component [M] 1 or 2 of the Glasgow Coma Score) is associated with poor neurological outcome after cardiac arrest. However, its specificity is low, rarely achieving 100 %, even after 96 h from ROSC. Like corneal reflex, the motor response is based on striate muscle contraction, which can be affected by muscle relaxants.

Myoclonus and status myoclonus. Myoclonus consists of sudden, brief, involuntary jerks caused by muscular contractions or inhibitions. Their distribution can be focal, multifocal, or generalised. He presence of myoclonus within 96 h from ROSC in patients who are comatose after cardiac arrest is associated with poor neurological outcome in most cases. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. However, a false positive rate of up to 22 % has been described. How

Clinical myoclonus can inconsistently be associated with electrographic seizures; therefore, EEG recording can be helpful. Some studies have identified specific EEG features associated with benign myoclonus, such as a reactive^{201,207} and/or continuous EEG background.^{201,204} The presence of diffuse and continuous myoclonic jerks is usually described as status myoclonus. However, a consensus definition of status myoclonus is lacking. The 2014 ERC-ESICM Advisory Statement on neurological prognostication after cardiac arrest suggested that in comatose survivors of cardiac arrest, status myoclonus should be defined as a continuous and generalised myoclonus persisting for 30 min or more.³³² Evidence from two studies that did not distinguish electrographic features of status myoclonus³⁴⁰ showed that status myoclonus within 24 h³⁶⁹ or seven days from ROSC^{199,369} is almost invariably associated with poor neurological outcome (specificity 99–100 %).

The advantages of predictors based on clinical examination include minimal equipment and costs (except pupillometry) and availability at the bedside. Their major limitations include interference from sedatives, opioids, and – except for the pupillary light reflex – from muscle relaxants. In addition, their assessment is prone to subjectivity. Automated assessment, such as pupillometry for the pupillary light reflex, may at least address these limitations. Finally, clinical examination results cannot be concealed from the treating team, potentially causing a self-fulfilling prophecy bias.

Neurophysiology

These guidelines are supported by evidence derived from a systematic review on prognostication and the subsequent updates incorporated in the 2025 ILCOR CoSTRs. ^{9,340} The relevant ILCOR treatment recommendations (which have been adopted by the ERC/ESICM) are:

 We suggest using a bilaterally absent N20 wave of somatosensory evoked potential (SSEP) at ≥ 24 h from ROSC in combination with other indices to predict poor outcome in adult patients who are comatose after cardiac arrest (weak recommendation, very low-certainty evidence).

- We suggest against using the absence of EEG background reactivity alone to predict poor outcome in adult patients who are comatose after cardiac arrest (weak recommendation, very lowcertainty evidence).
- We suggest using suppression or burst-suppression on EEG to predict poor outcome in adult patients who are comatose and who are off sedation after cardiac arrest (weak recommendation, very low-certainty evidence).

Electroencephalography (*EEG*). Electroencephalography (EEG) is one of the most widely used and studied methods to assess brain function and prognosis after cardiac arrest. ³⁷⁰ EEG is also essential for diagnosing and treating seizures. The main aspects of assessing EEG for neuroprognostication are background activity, superimposed discharges, and reactivity. The EEG background continuity is most important for prognosis and is commonly categorised as continuous, discontinuous, burst suppression (50–99 % suppression periods), or suppression (>99 % activity with <10 μV amplitude). ³⁷¹ A standardised terminology for critical care EEG has been proposed by the American Clinical Neurophysiology Society (ACNS). ²⁰⁰

Immediately after a cardiac arrest, the EEG background is suppressed in many patients, but it returns to a continuous normal voltage EEG within the first 24 h in most patients who ultimately achieve a good outcome. The time for this restitution is correlated with the outcome. The EEG background is often discontinuous and of low frequency on its first appearance. Sedative drugs affect background continuity and have the potential to induce discontinuous or burst-suppression background in a dose-dependent manner.

Background patterns

Suppression

A suppressed (<10 μ V) or low-voltage (<20 μ V) background, based on the American Clinical Neurophysiology Society terminology, 200 is relatively common during the first day after a cardiac arrest in patients who later recover (Fig. 6). 349,372,373 However, 24 h after ROSC, a suppressed EEG background <10 μ V is a reliable sign of a poor prognosis, with a false positive rate of 0.4 % (95 % confidence interval 0.04–1.46 %), $^{378-383}$ although two false-positive predictions by this pattern 48–72 h after cardiac arrest were reported in a total of 1351 patients included in the systematic review informing these guidelines 340 . There was moderate interrater agreement for suppressed background among senior neurophysiologists. 380,384

Burst suppression. According to the American Clinical Neurophysiology Society terminology, burst suppression is defined as 50–99 % of the recording consisting of suppression alternating with bursts. The terminology does not specify any amplitude criteria for the bursts, but these may be further defined as 'highly epileptiform bursts' based on their appearance. The presence of 'identical bursts' (either the first 0.5 s of each burst or each stereotyped cluster of \geq 2 bursts appear visually similar in >90 % of bursts) portends a poor prognosis in post-anoxic coma. A substantial portion of patients with burst suppression during the first 24 h and occasional patients with burst suppression-pattern after 24 h still have a good outcome, which is possibly related to sedation use.

Fig. 6 - EEG patterns with high specificity for poor neurological outcome at 24 h or later after ROSC.

A. Suppressed EEG background. Based on the American Clinical Neurophysiology Society (ACNS) 2021 terminology, 200 this is defined as a very low-voltage background with more than 99 % of the activity having an amplitude below 10 μ V. B. Suppressed EEG background with periodic discharges. C. Burst-suppression with identical bursts. Burst-suppression is defined as 50–99 % of the recording consisting of suppression alternating with bursts. When either the first 0.5 s of each burst or each stereotyped cluster of \geq 2 bursts appear visually similar in > 90 % of bursts, these bursts are defined as identical. D. Burst-suppression with heterogeneous bursts (variable burst appearance).

American Clinical Neurophysiology Society-defined suppression and burst-suppression are highly specific for predicting poor outcome after cardiac arrest, especially when these patterns are recorded after 24 h from ROSC. \$^{378,379,389,390}\$ However, in a large substudy of the multicentre TTM2 trial including 845 patients, the specificity of these 'highly malignant' patterns assessed locally at each participating centre was only 93 %, suggesting a possible suboptimal implementation. \$^{391}\$ Limited evidence shows that suppression with periodic discharges and burst-suppression with identical bursts are more specific and less time-dependent than suppression and heterogeneous burst-suppression $^{392-396}$ There is substantial interrater agreement among experienced neurophysiologists for burst-suppression. 380

Reactivity

EEG reactivity is a measurable change in amplitude or frequency upon external stimulation (auditory and pain). The interrater agreement for assessing EEG reactivity varied from slight to almost perfect. 380,397 A proposal for international consensus on reactivity

testing exists. ³⁹⁸ The prognostic performance of this feature varied substantially between studies. ^{340,399} The absence of EEG reactivity during the first 24 h after cardiac arrest predicts poor outcome with high sensitivity but low specificity (41.7–87.5 %). ^{388,400–402} After 24 h, the sensitivity of absent reactivity remains high, but the specificity varied from 50 % to 100 %. ^{378,380,386,388,401–405} In a recent substudy on 821 comatose patients from the multicentre TTM2 trial, the absence of reactivity on EEG at 24 h to 14 days from ROSC predicted poor neurological outcome at 6 months with 79 [76–82]% sensitivity but only 60 [55–66]% specificity. ³⁹¹

Superimposed patterns

Periodic discharges. A 'periodic' pattern is a waveform that occurs repeatedly, with a quantifiable interval between discharges. If no such interval exists, the pattern is termed 'rhythmic'.²⁰⁰ Periodic discharges may be superimposed on various backgrounds and are related to a worse prognosis. Generalised periodic discharges are a sign of a poor

prognosis with limited specificity. 378,379,382,386 Generally, the background on which periodic discharges appear is more closely related to neurological outcome. 371 Periodic discharges on a continuous and reactive EEG background should not be considered as an indicator of a poor outcome. 204

Sporadic epileptiform discharges. 'Sporadic epileptiform discharges' describes sharp waves or spikes resembling those seen in patients with epilepsy but without the regularity of a periodic pattern. The frequency by which they appear may vary extensively from 'rare' (<1/h) to 'abundant' (≥1/10 s), bordering on periodic discharges. While their appearance is related to a worse outcome, their specificity to predict poor outcome ranges from 66.7 to 100 %, 340 and reports on the potentially important frequency or number of discharges were lacking in studies. 349,380,382,383 Presence of sporadic epileptiform discharges is *not* a reliable indicator of a poor neurological prognosis.

Electrographic seizures and electrographic status epilepticus. The American Clinical Neurophysiology Society defines 'unequivocal seizures' as epileptiform discharges >2.5 Hz for $\geq \! 10$ s or any pattern with definite evolution lasting $\geq \! 10$ s. 200 This definition was inconsistently used in studies. Seizures had a low sensitivity but high specificity for a poor outcome regardless of timing. 378,380,382,386,406

The term 'electrographic status epilepticus' defines an electrographic seizure for ≥10 continuous minutes or for a total duration of >20 % of any 60-min period of recording. This definition has been included for the first time in the 2021 update of the American Clinical Neurophysiology Society terminology, and none of the currently available prognostic studies has incorporated it yet. Some studies based their definition of electrographic status epilepticus on the American Clinical Neurophysiology Society classification of unequivocal seizures extending ≥30 min but also included epileptiform discharges \geq 1 Hz, 215,374 and in one study \geq 0.5 Hz as electrographic status epilepticus.407 Other studies had an unclear definition of electrographic status epilepticus. 351,386,387,401 The proportion of patients classified with electrographic status epilepticus varied considerably between studies, possibly reflecting differences in definitions. One study showed that electrographic status epilepticus evolves from high-frequency discharges early after onset to progressively slower frequencies during the following days and weeks.²¹⁰ While electrographic status epilepticus is associated with hypoxic-ischaemic brain injury after cardiac arrest, it is not as specific and consistent as suppression and burst-suppression. 214,215,217 This is likely partly due to its inconsistent definition in the available literature. As with periodic discharges, it is important to consider whether the EEG background is continuous and reactivity is present, both of which are favourable features. 215,217 Due to the lack of a standardised classification, we recommend avoiding the term 'status epilepticus' for assessments of prognosis and instead classify the EEG background and superimposed discharges, as well as unequivocal seizures, according to the standardised terminology of the American Clinical Neurophysiology Society.²⁰⁰

Quantitative FFG indices

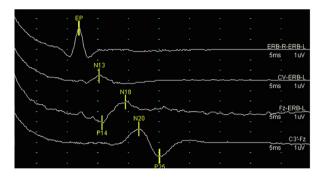
Automated assessment of quantitative EEG features such as the burst-suppression amplitude ratio and reactivity has been tested in individual studies. 408,409 Combinations of quantitative EEG features include the Bispectral index (BIS) and the Cerebral Recovery Index. 410 The threshold value and specificity for BIS to predict poor outcome varied widely between studies. 411–413 Automated EEG assessments may decrease subjectivity. Prospective multi-centre studies are needed to assess their prognostic performance after cardiac arrest.

Evoked potentials

Somatosensory evoked potentials (SSEPs). When performing SSEPs, the median nerve is electrically stimulated and the ascending signals are recorded from the peripheral plexus brachialis, cervical level, subcortical level and the sensory cortex (N20-potential) (Fig. 7a). SSEPs may be depressed by barbiturate coma but are preserved with other sedative drugs such as propofol and midazolam. 414 A bilateral absence of the short-latency N20-potentials over the sensory cortex (Fig. 7b) is a reliable sign of a poor prognosis after cardiac arrest with high specificity both within 48 h (99.7; 85 % confidence interval 98.2-100.0%) and at 48-96 h (99.8; 95% confidence interval 99.0-100.0) arrest. 198,223,351,361,383,387,400,402,403,409,415-426 with a sensitivity ranging between 37.7 % (95 % confidence interval 34.4-41.1 %) and 45.2 % (95 % confidence interval 40.8-49.7 %). Occasional falsepositive predictions were reported.⁴²⁷ The interrater reliability for interpretation of SSEPs was moderate to good. 428,429 The recording quality is critical, and noise from muscle activity is an important limiting factor that neuromuscular blocking drugs may eliminate. 414,428

Recent studies have shown that very low cortical SSEP amplitudes predict poor outcome with similar specificity as absent N20 potential. $^{430-434}$ In most studies, the N20 amplitude threshold for 100 % specificity was < 0.5 μV . However, because of the documented variability in thresholds and SSEP montages across studies and the potential interference from sedation, low N20 amplitude is not yet recommended for predicting poor outcome after cardiac arrest. 435

Biomarkers


These guidelines are supported by evidence derived from a systematic review on prognostication and the 2025 ILCOR CoSTRs. ³⁴⁰ The relevant 2025 ILCOR treatment recommendations (which have been adopted by the ERC/ESICM) are:

- We suggest using neuron-specific enolase (NSE) within 72 h after ROSC, in combination with other tests, for predicting neurological outcome of adults who are comatose after cardiac arrest (weak recommendation, very-low-certainty evidence).
- We suggest against using S-100B protein for predicting neurological outcome of adults who are comatose after cardiac arrest (weak recommendation, low-certainty evidence).
- We suggest against using serum levels of glial fibrillary acidic protein (GFAP), serum tau protein, or neurofilament light chain (NfL) for predicting poor neurological outcome of adults who are comatose after cardiac arrest (weak recommendation, very low-certainty evidence).

Protein biomarkers released following injury to neurons and glial cells may be measured in blood and are likely to correlate with the extent of brain injury and neurological outcome. Neuron-specific biomarkers include NSE, NfL, and tau protein, while S100B and glial fibrillary acidic protein originate from astrocytes. Neuron-specific enolase has been recommended for assessment of brain injury and to help prognosticate outcome after cardiac arrest since 2015.² Several reports on novel biomarker candidates have been

a. Present SSEP N20-potentials

b. Absent SSEP N20-potentials

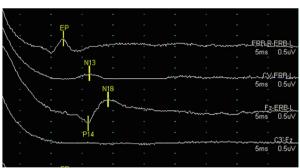


Fig. 7 – Short-latency somatosensory evoked potentials (SSEP) in a patient with preserved SSEP cortical activity (a) and in a patient with severe HIBI (b).

SSEP of the upper limb are obtained after bipolar transcutaneous electrical stimulation of the median nerve at the wrist. In each SSEP recording, the four tracings represent the electrical neural activity induced by the stimulus at various anatomical levels during its central propagation along the somatosensory pathway. Positive waves are downward deflections of the tracing from the baseline, and negative waves are upward deflections. Each positive or negative wave is indicated by a P or N letter, respectively, followed by a number indicating its latency from the stimulus in milliseconds. The more distal the generator of a wave from the stimulus site, the longer its latency is. The four tracings represent, from top to bottom: brachial plexus on the same side of the stimulus (EP or Erb); cervical cord (N13); cervicomedullary junction (P14) and upper midbrain and thalamus (N18); primary somatosensory cortex on the opposite side of the stimulus (N20 and P25). On the left-hand side of the figure, the N20 is present. The tracing on the right-hand side, from a patient with severe HIBI, shows no cortical N20/P25 waves.

published since 2020. 347,436-442 Use of biomarkers other than NSE may be recommended in the future if consistent thresholds for predicting a poor outcome are indentified and further evidence for their ability to predict recovery becomes available.

Importantly, a multimodal approach should be used for assessment of comatose survivors after cardiac arrest. Advantages of biomarkers include quantitative results, the relative ease of sampling and interpretation and their independence from the effects of sedatives. Limitations include availability, limited knowledge of their kinetics, and lack of standardisation across analytical methods. Most of the available evidence is limited to a time span of up to 72 h after cardiac arrest, which is relevant for most patients. However, very limited evidence supports using biomarkers after 72 h in patients who fail to awaken.

Biomarkers are released with different latency and speed following acute brain injury. Although the kinetics of NSE after cardiac arrest is incompletely known, studies have shown that NSE blood levels increase up to 72 h in patients with unfavourable outcome and tend to decrease in patients with favourable outcome. 443,444

Large studies are needed to investigate and validate promising novel biomarkers, confirm their predictive value, assess their reproducibility outside specialised laboratories, and identify consistent thresholds for specificity that should be close to 100 %. The rationale for accepting a specificity of less than 100 % is that when using blood biomarkers, there will always be outliers that must be taken into consideration, e.g., due to poor calibration or issues with laboratory standards, haemolysis (for NSE), or due to poor technique in handling samples. Demanding 100 % specificity from a blood biomarker

may lower its sensitivity to levels where its clinical use can be questioned, while allowing an FPR of 1 % or 2 % will increase its clinical relevance. With a multimodal approach, every prognostic method used to assess an individual patient must point in the same direction to be trusted. This may be particularly true for biomarkers, given their continuous nature; normal or mildly elevated levels (at the correct sampling time) should always alert the clinician to potential errors in other methods, indicating a poor prognosis.

Neuron-specific enolase

Neuron-specific enolase has been extensively studied following cardiac arrest. A large substudy of the TTM-trial identified thresholds of $48 \mu g L^{-1}$ at 48 h and $38 \mu g L^{-1}$ at 72 h with a false positive rate of 2 % (95 % confidence interval 1-5 %) for poor neurological outcome at 6 months.346 The 2021 guidelines suggest using a threshold of 60 μg L⁻¹ at 48 h and 72 h to predict poor outcome after cardiac arrest. In 2022, a validation study of these guidelines in 660 patients found no falsely pessimistic predictions (specificity 100 [83-100]) for an NSE >60 μ g L⁻¹ in comatose patients with a GCS motor score no better than 3 at ≥72 h after ROSC. 343 In the 2025 ILCOR evidence update 9 NSE values between >60 $\mu g L^{-1}$ and 87 $\mu g L^{-1}$ at 48 h from ROSC predicted poor neurological outcome with a specificity ranging from 95 % to 100 %, 440,443-447 while NSE values between $46.2~\mu g~L^{-1}$ and $60~\mu g~L^{-1}$ at 72 h from ROSC predicted poor neurological outcome with a specificity ranging from 94 % to 100 %.443,444,446,448 In another study, NSE with a threshold of 50.2 μg L⁻¹ on day 4 predicted poor neurological outcome at one month with 100 % specificity and 42.1 % sensitivity. 449

NSE decreases after 24 h in patients with good outcome and typically increases in patients with a poor outcome peaking at 48-96 h. NSE performs poorly at 24 h and best at 48 or 72 h. 346,425,449-454 However, an NSE measurement at 24 is useful as a baseline value to detect the NSE trend during the two following days. Increasing NSE from 24 to 48 or 48-72 h is a reliable indicator of a poor prognosis with similar performance as the absolute value.455 Different chemiluminescence immunoassays were used in the included studies, which may have affected the NSE detection limits and the reference intervals.456 Thresholds for high NSE values must be established in collaboration with the local laboratory considering the analytical method. Red blood cells contain NSE, so haemolysis (free haemoglobin) must be measured, and samples discarded if the haemolysis index threshold is exceeded because this may generate a falsely high NSE value. 456 The half-life of free haemoglobin is approximately 2-4 h compared with the 30-h half-life of NSE. Thus, the NSE value may be inappropriately increased (by NSE from red blood cells) when free haemoglobin is no longer detectable. which is a concern when using NSE for prognostication after cardiac arrest.456

Serum neurofilament light chain

There is an increasing interest in assessing NfL to predict neurological outcome. After the publication of the 2020 systematic review informing the 2021 guidelines, 340 several studies evaluated the ability of the blood values of NfL measured between 24 h and 72 h after ROSC to predict poor neurological outcome. 347,438-440,446,457 One study⁴³⁸ investigated NfL at 12 after ROSC. In this study, NfL values of 90 pg mL⁻¹ in OHCA and 207 pg mL⁻¹ in IHCA predicted poor functional outcome at 2-6 months with 100 % specificity and sensitivity of 53 [48-59]% and 29 [20-39]%, respectively. Other studies investigated NfL at 24 h, 347,439,440,457,458 showing that values between 242 and 609 pg mL⁻¹ predicted poor neurological outcome between hospital discharge and 12 months with 100 % specificity and sensitivity ranging from 54 [47-61]% and 66 [54-76]%. At 48 h from ROSC, NfL values between 330 and 4660 pg mL⁻¹ predicted poor neurological outcome between hospital discharge and 12 months with 100 % specificity and sensitivity ranging from 35 [26-45]% to 83 [69-91]%. 347,439,440,446,457,458 Fewer studies investigated NfL at 72 h after ROSC. 347,439,458 In these studies, NfL values between 244 and 9701 pg mL⁻¹ predicted poor outcome with 99-100 % specificity and a sensitivity ranging from 74 [62-83]% to 85 [76-90]%. The prognostic performance of NfL was superior to that of NSE across all time points. Most studies included fewer than 100 patients. In larger studies, the Area Under the Receiver Operating Characteristic Curve (AUROC) of NfL ranged from 0.88 to 0.97 at 48 h after ROSC. 438,440,459 Unlike NSE, NfL is not affected by haemolysis and can achieve an AUROC above 0.90 as early as 24 h after ROSC. 459 The kinetics of NfL after cardiac arrest are not entirely known. However, studies in patients after cardiac arrest^{457,460} and other types of acute brain injury⁴⁶¹ suggest that NfL levels rise earlier and remain high for longer than those of NSE. As for NSE, a source of confounding for NfL is the presence of different assays, which may create different results across measurement methods. Blood values of NfL after cardiac arrest are comparatively lower than those of NSE. Most studies have used the ultrasensitive single molecular array (SIMOA) assay, a semi-automated research method that is not yet certified for clinical use. Several assays for NfL are available; however, most are for research use

only and are not CE-marked for clinical use in Europe. A process to standardise methods is ongoing. 462

S100B

Two observational studies investigated S100B levels immediately after ROSC and identified threshold values ranging from 3.56 to 16.6 $\mu g \, L^{-1}$ with 100 % specificity for poor outcome but low sensitivities of 2.8 % to 26.9 %. 452,453 In the largest study, S100B discriminated best at 24 h with a threshold value of 2.59 $\mu g \, L^{-1}$ for 100 % specificity, but with a low sensitivity of 10 %. The corresponding sensitivity for 98 % specificity (2 % FPR) was 32 % (threshold value 0.36 $\mu g \, L^{-1}).^{463}$ The authors concluded that S100B did not add value to existing prognostication models with or without NSE. S100B is rarely used in clinical practice and is not included in our recommendations.

Glial fibrillary acidic protein

Five studies published after the 2020 review evaluated the ability of the blood values of Glial Fibrillary Acidic Protein (GFAP) measured between 12 and 72 h after ROSC to predict poor neurological outcome in comatose patients after CA. 436,439,441,458,464 In these studies, high GFAP values predicted a poor neurological outcome with 98–100 % specificity at all time points; however, the thresholds for this prediction varied widely. GFAP blood values rise earlier than NSE after cardiac arrest 465 and can achieve an area under the receiver operating characteristic (ROC) curve of 0.85 at 12–24 h after ROSC, 436,458 higher than that of NSE. 464

Serum tau

Tau is a microtubule stabilising protein expressed predominantly in the unmyelinated axons of the central nervous system. 465 Three recent studies showed that tau blood levels of >502.5 pg mL $^{-1}$ at 12 h after ROSC in one study 436 and 40 pg mL $^{-1}$ in one study 441 or >131 pg mL $^{-1}$ in another study 458 predicted poor neurological outcome with 100 % specificity and 20–25 % sensitivity. All three studies measured tau using the ultrasensitive single molecular array (SIMOA) assay.

Recommendations on NfL, GFAP, and tau for neuroprognostica-

tion after cardiac arrest

Recent evidence has shown that novel biomarkers of brain injury, such as NfL, GFAP, or tau, have comparable or superior accuracy than NSE for predicting neurological outcome in patients who are comatose after resuscitation from cardiac arrest. This is especially true for NfL, whose AUROC was 0.90 or greater in some studies. Additionally, there is limited information on their kinetics during the acute phase following cardiac arrest. Finally, no consistent thresholds for predicting poor neurological outcome have been identified. For this reason, at present, the ERC/ESICM do not recommend using NfL, GFAP and tau for neuroprognostication after cardiac arrest. Further research is ongoing, and this recommendation will likely be revised in the near future.

Imaging

These guidelines are supported by evidence derived from a systematic review on prognostication and 2025 ILCOR CoSTRs. The relevant treatment recommendations in the 2025 ILCOR CoSTR (which have been adopted by the ERC/ESICM) are:

 We suggest using the presence of a marked reduction of the grey matter/white matter (GM/WM) ratio on brain CT within 72 h after ROSC or the presence of extensive diffusion restriction on brain MRI at 2 to 7 days after ROSC in combination with other predictors for prognosticating a poor neurologic outcome in patients who are comatose after cardiac arrest and who are treated with TTM (weak recommendation, very low-quality evidence).

Computed tomography (CT) of the brain

Following cardiac arrest, hypoxic-ischaemic brain injury causes cytotoxic oedema, which appears as an attenuation of the GM/WM interface, and vasogenic oedema leading to brain swelling, visible as an effacement of cortical sulci. 466 Measurement of the ratio between the GM and WM densities (GWR), expressed in Hounsfield units, is a method for quantifying the degree of oedema. The density of the GM is higher than that of the WM, so normal GWR is higher than 1. The lower the GWR, the greater the severity of brain oedema.

GWR reduction occurs early in patients with severe hypoxicischaemic brain injury. Most studies on reduced GWR have shown that this sign is 100 % specific for poor neurological outcome as early as 1 h after ROSC. 340 However, the sensitivity of brain CT to predict poor outcome increases over time. In one study on 2204 unconscious patients who underwent brain CT in the first 24 h after ROSC, the sensitivity of GWR for predicting in-hospital mortality increased over the first four hours post-arrest, reaching a maximum of 25 % after 5 h, while false-positive rates remained <5 % at all time points. 467 In a substudy of the TTM trial on 356 patients undergoing brain CT within seven days after ROSC, brain oedema was more common (46 % vs 10 %) at >24 h to 7 days than within 24 h after ROSC. Sensitivity increased from 14 % to 57 % and specificity from 97 % to 100 % across these two time points. Among 36 patients with repeated brain CT, 15/36 had oedema at the second CT (median 77 h after ROSC), while only one of the 15 patients with a positive result on the second CT had oedema at the first brain CT 2 h after ROSC.468 These results were replicated by a similar study in 95 patients. 469 In another study comparing brain CT performed within 6 h (n = 76) or 72-96 h (n = 54) after ROSC, the area under the receiver operating characteristics (AUCs) of GWR increased from 0.70 to 0.92. Nonquantitative signs of brain oedema, such as the presence of sulcal effacement, loss of boundary between grey and white matter at the basal ganglia level, and presence of the pseudo subarachnoid sign, were also more common in brain CTs performed 72-96 h after ROSC.470

The methods for GWR measurement varied across studies. In most of them, GWR was calculated between GM and WM areas within the basal ganglia. 340,469–473 In others, measurements within the cerebrum (centrum semiovale and high convexity area) were performed. 474–476 Finally, other studies calculated an average of the GWR in the two previous areas. 472,477,478 In almost all studies, a GWR threshold for 100 % specificity was identified. However, its value varied across studies, 340 probably reflecting differences between scanners and software, 479 and in calculation methods.

In recent studies, methods for automated GWR assessment to measure brain oedema on CT in cardiac arrest patients have been investigated. These methods showed comparable ⁴⁸⁰ or superior accuracy compared to manual GWR assessment. ^{481,482} Automated GWR measurement holds promise for standardising the assessment of the severity of HIBI after cardiac arrest with brain

CT, making it less operator-dependent. However, the optimal method has not been established, and the evidence is limited to a few studies.

Magnetic resonance imaging (MRI) of the brain

Along with CT, magnetic resonance imaging (MRI) of the brain is the most investigated imaging-based predictive index in patients who are comatose after cardiac arrest.340 Brain MRI is more challenging to perform in ventilated ICU patients, and MRI was generally performed later than brain CT, usually at 48 h or later from ROSC. On brain MRI, cytotoxic oedema from hypoxic-ischaemic brain injury appears as a hyperintensity on diffusion-weighted imaging (DWI) sequences.483 In several studies, the presence of DWI lesions is associated with poor neurological outcome after cardiac arrest.474,484-487 However, the assessment was done qualitatively, and specificity was inconsistent (range 55.7-100 %). The apparent diffusion coefficient (ADC) enables a semiguantitative evaluation of DWI changes, thereby limiting subjectivity. However, the ADC metrics in prognostication studies varied.³⁴⁰ The two more common measures are the lowest mean ADC, 473,478,488,489 and the proportion of brain volume (percentage of voxels) below a given ADC threshold. 473,478,488-493 All these studies identified an ADC threshold for 100 % specificity, often with sensitivities above 50 %. All studies on ADC MRI had a small sample size, which limited their precision. In many studies, imaging was performed at the treating physician's discretion, which may have introduced a selection bias.

Unlike clinical examination and EEG, imaging studies are not prone to interference from sedative drugs. In addition, they can be assessed blindly. Their major limitation is the lack of standardisation of measurement techniques. Despite evidence showing high accuracy for both brain CT and MRI, the number of studies was limited, with a wide variability in measurement techniques, which significantly limits the reproducibility of their results. For this reason, it is reasonable to reserve the use of imaging studies for prognostication only in centres where specific experience is available. Since there is currently no standard for CT-GWR or MR-ADC measurements, these techniques can be recommended to confirm the presence of generalised and extensive ischemic injury apparent from conventional visual analysis by an experienced neuroradiologist. Finally, imaging studies cannot be performed at the bedside, and MRI may not be feasible in the most unstable patients, which limits its applicability, especially in the early post-resuscitation period. In patients undergoing ECPR, the strong magnetic field of conventional MRI may interfere with the functioning of the ECMO pump.

The 2021 prognostication algorithm

The 2021 ERC-ESICM Guidelines on Post-Resuscitation Care included an algorithm for the prediction of poor neurological outcome in patients who are comatose after cardiac arrest. This algorithm recommended that, in patients who are comatose with a motor response no better than abnormal flexion at \geq 72 h from ROSC after major confounders have been excluded, poor neurological outcome was predicted when at least two concordant signs indicating poor outcome are present. These signs were:

- Bilaterally absent pupillary and corneal reflex 72 h or later after ROSC; use of an automated pupillometer, when available, is recommended:
- A bilaterally absent N20 SSEP wave;

- Highly malignant EEG patterns, defined as a suppressed background ± periodic discharges or burst-suppression according to American Clinical Neurophysiology Society, after 24 h from BOSC:
- NSE blood values above 60 µg/L at 48 and/or 72 h after ROSC; increasing NSE blood levels between 24–48 h or 24/48 and 72 h further support a likely poor outcome;
- Status myoclonus, defined as continuous and generalised myoclonus for more than 30 min in the first 72 h after ROSC;
- Signs of diffuse and extensive anoxic injury on brain CT or MRI.

This algorithm was subsequently validated in three multicentre studies on a total of 1791 patients. 343,494,495 All these studies confirmed that the 2021 ERC-ESICM prognostication algorithm predicts poor outcome with a 0 % false positive rate (95 % confidence intervals 0–3.7 %). One of these studies was conducted in the KOHRN-PRO 1.0 registry in Korea, where withdrawal of life-sustaining therapy was reported in only 12 patients (0.9 % of the total cohort), resulting in a consequent low risk of self-fulfilling prophecy bias. 343 However, this algorithm also had limitations:

- In validation studies, almost half of patients remained with indeterminate outcome after applying the 2021 algorithm.⁴⁹⁶
- The 2021 algorithm was focused only on predicting poor neurological outcome and did not include evidence from the ERC/ESICM endorsed systematic review on the prediction of good neurological outcome published in 2022. Although the 2021 guidelines recommend caution if discordant signs indicate a potentially good outcome, no guidance was provided on incorporating these signs in a specific prognostic strategy. In studies validating the 2021 guidelines, 21 % of patients whose outcome was indeterminate after applying the algorithm experienced neurological recovery.
- No guidance was provided on the timing of SSEP or imaging. For SSEP, evidence from prognostication studies has shown that a bilaterally absent wave accurately predicts a poor outcome at 24 h or earlier after ROSC. 432,497,498 For imaging, the evidence mentioned above showed that the sensitivity of brain CT increased after 24 h from ROSC.

The 2025 writing group revised the suggested prognostication algorithm to address the limitations outlined above (Fig. 5). The changes were based mainly on evidence published after 2021 and on a recent study designed to improve the sensitivity of the previous algorithm, reduce indeterminate outcome, and allow the prediction of good neurological outcome.

Prediction of good neurological outcome

Predicting good neurological outcome after cardiac arrest has several advantages. Firstly, it can reduce uncertainty in prognostication. Recent evidence suggests that the prognosis remains indeterminate in approximately half of cases when using an algorithm based solely on the prediction of poor neurological outcome. 1,496 Secondly, detecting a chance of good neurological recovery can reassure patients' relatives and inform their discussions with clinicians. Thirdly, it may help inform decisions about escalation of organ support. Finally, it may counterbalance a falsely pessimistic signal from predictors of poor neurological outcome. In fact, no single test predicts poor outcome with absolute certainty. 340 The 2021 guidelines for post-resuscitation care acknowledged these limits and suggested using caution and repeating the assessment when discordance is

present, i.e., if signs indicating a poor outcome coexist with signs indicating a potential for recovery.

Based on an ERC-ESICM-endorsed systematic review of 36 studies in 7149 adult patients with post-anoxic coma, 499 the 2025 ILCOR CoSTR identified six signs predicting neurological recovery in comatose cardiac arrest survivors. These include a withdrawal or localising response to pain (motor score of the Glasgow Coma Scale [GCS-M] 4–5) in the first 4 days after ROSC, normal (<17 mcg/L) NSE blood values within 72 h after ROSC, absence of diffusion restriction on MRI between 72 h and 7 days after ROSC, and a continuous or nearly continuous normal-voltage EEG background without periodic discharges or seizures within 72 h from ROSC. Similar to unfavourable EEG patterns, the ILCOR 2025 CoSTR recommends using the American Clinical Neurophysiology Society (ACNS) EEG terminology. 200

The ERC-ESICM review also identified a high (>4 μ V) amplitude of the N20 SSEP wave as a good neurological outcome predictor after cardiac arrest. ^{365,433,500} However, ILCOR does not recommend using this sign yet because of variability in the methods to calculate it and concerns regarding potential interference from sedative drugs, which may reduce the sensitivity of this sign. Normal (<55 pg mL $^{-1}$) blood levels of NfL at 24–72 h from ROSC predicted good outcome with high specificity and sensitivity.

Two cohort studies have investigated the ability of ILCOR-recommended good outcome predictors to counterbalance discordant poor prognostic signs. ^{495,501} In one of these studies, ⁴⁹⁵ the coexistence of one good outcome predictor with one ERC-ESICM-recommended ⁵⁰² poor outcome predictor was associated with neurological recovery in 11 % of cases, compared to 3 % when only a poor outcome predictor was present. In another study, ⁵⁰¹ among 2245 patients who underwent prognostication, one unfavourable predictor and one or more favourable predictors coexisted in 104, of whom 33 (32 %) had a good neurological outcome at six months.

Suggested prognostication strategy

Prognostication is a continuous process that begins immediately, even if the prognostic balance is established 72 h or later after ROSC (Figs. 5 and 8). Some indices, such as EEG signs of potential recovery, are best detected within 24–36 h from ROSC, while others, such as NSE blood levels, must be recorded daily to determine their trend. Even if the accuracy of NSE values for predicting poor outcome is highest at 48–72 h, NSE values at 24 h provide a baseline.

Prognostic assessment should start with an accurate clinical examination. ⁵⁰³ Its main scope is to confirm that the patient is comatose because of hypoxic-ischaemic brain injury. Clinical examination should be performed daily to detect signs of neurological recovery, such as purposeful movements or to identify a clinical picture suggesting impending brain death. The latter may include fixed, dilated pupils, diabetes insipidus, and cardiovascular changes suggesting herniation, such as bradycardia associated with hypertension or unexplained haemodynamic instability. Brain death occurs in 5–10 % of patients who die after cardiac arrest resuscitation with extracorporeal CPR. ^{330,502} In most cases, brain death occurs during the first 3–4 days after ROSC. A suggested algorithm for brain death screening after cardiac arrest is shown in Fig. 9.

Awakening from post-anoxic coma typically occurs within 3–4 days from ROSC. ^{223,290} However, patients who are initially unconscious following cardiac arrest are usually treated with sedatives and

neuromuscular blocking drugs to facilitate temperature management, mechanical ventilation and other life support measures. Therefore, to enable a reliable clinical examination, these drugs should be stopped for sufficient time to avoid interference from their effects. The World Brain Death Project consensus group recommends that clinical examination be delayed until at least five elimination half-lives of the drug administered with the longest half-life. 504 Although this recommendation has been made in the context of diagnosing brain death, it can be equally suitable for prognostic assessment. Shortacting drugs are preferred whenever possible but even a short-acting drug such as propofol has a half-life of 2.3 – 4.7 h, which implies the need to stop sedatives for at least 24 h in most cases. This will be much longer if there is renal and/or hepatic impairment or if longeracting drugs have been given. When residual sedation or paralysis is suspected, consider using antidotes to reverse the effects of these drugs. Use caution when administering flumazenil to reverse the effects of benzodiazepines because this may precipitate seizures. Apart from sedation and neuromuscular blockade, other major confounders include hypothermia, severe hypotension, sepsis, and metabolic or respiratory derangements.

A motor response no better than abnormal flexion (M \leq 3) of the Glasgow Coma Scale was the entry point of the 2021 prognostication algorithm, based on its high sensitivity for poor outcome prediction. However, this low threshold leaves out most patients destined to neurological recovery. Recent evidence showed that using M < 6 as an entry point increases the ability of the algorithm to identify

patients with good outcome without reducing specificity for poor outcome. ⁵⁰¹ Hence, the prognostication strategy described below applies to unconscious patients, defined as not being awake and obeying commands (M < 6) at ≥ 72 h after ROSC. Results of earlier prognostic tests are also considered at this time.

In an unconscious patient at \geq 72 h from ROSC, in absence of confounders, poor outcome is very likely when two or more of the following predictors are present: no pupillary and corneal reflexes at \geq 72 h, bilaterally absent N20 SSEP wave at \geq 24 h, highly malignant EEG at >24 h, NSE >60 μ g/L at 48 h and/or 72 h, status myoclonus \leq 72 h, or a diffuse and extensive anoxic injury on brain CT/MRI. Most of these signs can be recorded before 72 h from ROSC. However, their results will be evaluated only when the prognosis is formulated (Fig. 8). In one study, 505 a strategy of using \geq 2 predictors had 0 [0–8]% FPR compared with 7[1–18]% of the 2015 ERC-ESICM stepwise strategy (due to false positives for pupillary light reflexes).

Evidence from the 2013 and 2020 reviews showed that a bilaterally absent N20 SSEP wave is the most widely documented predictor of poor outcome and the most consistently associated with 100 % specificity. However, false-positive predictions have been reported occasionally. In some of these cases, the cause of a false positive result was an incorrect reading of the SSEP record because of artefacts. Neuromuscular blockade improves readability of SSEPs, and it should be considered whenever possible. Time after ROSC does not affect the specificity of SSEPs, which can be recorded from day 1.

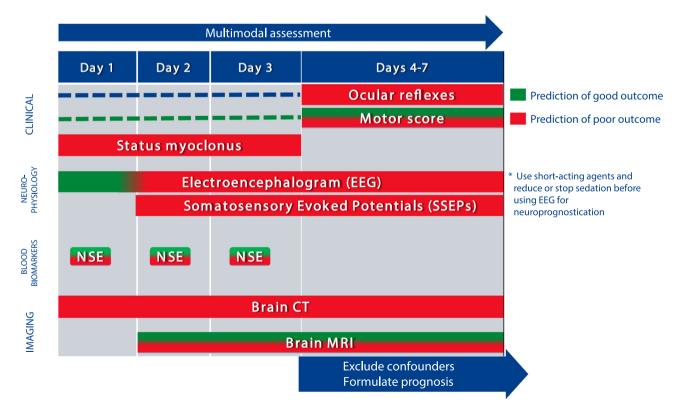


Fig. 8 - Simplified timeline showing suggested timings for recording multimodal predictors and formulating neurological prognosis in patients who are comatose after resuscitation from cardiac arrest.

 $Abbreviations-CT: computed \ tomography; \ MRI: \ magnetic \ resonance \ imaging; \ NSE: \ neuron-specific \ enolase.$

Based on expert opinion, we suggest that both pupillary and corneal reflexes should be absent at the time of prognostic assessment to predict poor outcome. Unlike SSEPs, ocular reflexes are prone to interference from sedation. Evidence in post-anoxic coma suggests that automated pupillometry is more sensitive than the standard pupillary light reflex in detecting pupil responses to light, particularly when pupil size is small, thereby reducing the risk of false-positive results. In Unlike standard pupillary light reflex, automated pupillometry delivers a stimulating light source with standard characteristics (intensity, duration, and distance from the eye) and quantitatively measures pupillary response, ensuring reproducibility. For this reason, we suggest using a pupillometer to detect the absence of the pupillary light reflex, if available.

Status myoclonus is a prolonged period of myoclonic jerks. Although there is no universal definition for status myoclonus, based on our previous definition, we suggest that, in comatose survivors of cardiac arrest, status myoclonus should be defined as a continuous and generalised myoclonus persisting for 30 min or more. Aside from duration and continuity, other clinical features of myoclonus suggest poor outcome. These include a generalised (vs. focal), axial (vs. distal), or stereotyped (vs. variable) distribution. Conversely, some EEG features, such as a continuous or reactive background or the presence of spike-wave discharges synchronised with the myoclonic jerks indicate a potential for good outcome. We suggest recording an EEG in patients with post-arrest status myoclonus to identify epileptiform activity and detect signs associated with potential recovery.

Among unfavourable EEG patterns, those more consistently associated with poor neurological outcome are suppression and burst suppression ('highly malignant' patterns). During the first 12–24 h after ROSC, these patterns are more prevalent but carry a higher risk of false-positive prediction. Confounding from sedatives may contribute to this. We suggest using these EEG patterns for prognostication only after 24 h from ROSC. The absence of EEG background reactivity has an inconsistent specificity for poor neurological outcome, and we no longer recommend using it for this purpose.

High blood NSE values are a sign of neuronal cell damage and have long been recommended as a predictor of poor neurological outcome after cardiac arrest. 508 While prediction with 0 % FPR can be achieved anytime from 24 h to 7 days after ROSC, the sensitivity of an individual NSE measurement for prediction of poor neurological outcome with 0 % FPR is highest at 48-72 h after ROSC.340 However, the NSE threshold value for 0 % FPR is inconsistent because of a few patients with good neurological outcome despite very high NSE values. The presence of these outliers can be partly explained by the release of NSE from extracerebral sources, such as red blood cells or neuroendocrine tumours. Repeated blood sampling and careful exclusion of extracerebral sources is recommended when using NSE for neuroprognostication. Another cause of variability in the NSE thresholds is the use of different measurement techniques. 456 In the 2020 ERC/ESICM review, the highest recorded NSE thresholds for 0 % FPR at 48 and 72 h from ROSC were 120 μ g/L and 79 μ g/L, respectively. However, these data refer to outliers, and in most studies the 0 % FPR threshold was 60 μg/L and $50 \mu g/L$, respectively. Based on these data, we presume that the risk of a false-positive prediction associated with an NSE value of 60 μg/L is modest, especially because at least another predictor should confirm the NSE signal. Increasing NSE values between 24 h and 48 h or between 24/48 h and 72 h also suggests a poor outcome, even

if the incremental prognostic value of adding NSE trends to a single NSE value is uncertain. 340,451,455 We suggest performing serial NSE samples at 24, 48, and 72 h after ROSC to detect NSE trends and minimise confounding from occasional haemolysis.

Although signs of diffuse and extensive hypoxic-ischaemic brain injury on brain CT can be present very early after ROSC, ³⁴⁰ several studies have shown that sensitivity of brain CT to detect hypoxic-ischemic brain injury increases during the first week after ROSC. ^{468–470,509,510} Patients who are admitted to hospital after OHCA often have their brain CT performed in the emergency department. We suggest repeating brain CT if the patient is unconscious at the time of prognostication (72 –96 h after ROSC) and the first brain CT does not show signs of hypoxic-ischemic brain injury.

Cytotoxic oedema reduces water diffusivity, which appears on magnetic resonance imaging (MRI) as a hyperintensity on diffusion-weighted imaging (DWI) with corresponding low apparent diffusion coefficient (ADC) values Because measurement methods are not standardised and multicentre validation studies using comparable measurement techniques are lacking, we suggest that predictive indices based on neuroimaging are used only in places where specific experience is available. We also suggest that centres using neuroimaging for prognostication after cardiac arrest create their own normal and threshold values based on the technique. Where specialist neuroradiology expertise is unavailable, consider telemedicine consultation for brain imaging interpretation.

When none of the criteria for poor outcome described above are present, patients should be assessed for signs of potential recovery. These include a GCS motor score of 4 or 5 at 72–96 h after ROSC, normal blood values of neuron-specific enolase (NSE) at 24 h-72 h after ROSC, a continuous background without discharges on EEG within 72 h from ROSC, and absent diffusion restriction in the cortex or deep grey matter on MRI on days 2–7 after ROSC. In a recent study on 2445 patients with GCS-M \leq 5 and no concordant signs of poor functional outcome, more than 60 % of patients with at least one of these signs had a favourable outcome at six months. In those with two concordant favourable signs and no signs of a poor outcome, the neurological recovery rate was greater than 80 %. 501

Indeterminate outcome

When neither concordant unfavourable signs nor favourable signs are present, the neurological outcome remains *indeterminate*. Although the prognosis is generally poor for most of these patients, neurological recovery is still possible. ^{495,501} We therefore suggest observing and re-evaluating patients with an indeterminate outcome over time to detect signs of awakening (Fig. 5).

Late awakening does not preclude full neurological recovery. However, the likelihood of awakening in resuscitated patients who remain comatose decreases progressively with time, and the rates of good neurological outcome are generally lower in late vs. early awakeners. ^{226,290,511,512}

In three studies, the prevalence of late awakening, defined as a recovery of consciousness at \geq 48 h from the suspension of sedation, was 20/89 (22 %), ⁵¹³ 56/194 (29 %), ²⁹⁰ and 78/228 (34 %). ²²⁶ The last awakening occurred on days 11, 12, and 23 after the suspension of sedation, respectively. The rates of good neurological outcome among late awakeners were 80 %, 90 % and 73 %, respectively. In two other studies, the last patient awoke on day 22 and day 29. ^{511,514} Organ dysfunction, such as post resuscitation shock or renal failure ^{226,290} and use of midazolam instead of propofol for sedation ^{226,297} were associated with

a higher likelihood of late awakening, suggesting that at least some of these cases may have been due to reduced clearance of sedation. In a before-and-after study comparing two sedative regimens (propofol-remifentanil versus midazolam-fentanyl) in 460 comatose resuscitated patients undergoing temperature control targeted at hypothermia, use of propofol-remifentanil was associated with significantly lower odds of delayed awakening after adjustment (OR 0.08 [0.03–0.2]), 290 confirming indirect evidence from a previous smaller study. 248

Neuroprognostication in extracorporeal cardiopulmonary resuscitation

Hypoxic-ischaemic brain injury (HIBI) is common in patients resuscitated with ECPR. Because ECPR is used in patients with refractory cardiac arrest, those who are admitted to the ICU with ECPR have prolonged resuscitation times, which may increase the risk of severe HIBI. In a systematic review of 23,388 resuscitated patients in 32 studies, the prevalence of brain death was three times higher in patients resuscitated with ECPR vs. those resuscitated with conventional resuscitation (27.9 vs. 8.3 %). There is no validated neuroprognostication strategy for patients with HIBI after ECPR, and the general neuroprognostic principles apply to these patients. However, some special considerations are necessary in this category of patients.

Clinical examination in patients undergoing ECPR is often hampered by profound and prolonged sedation. Sedation and muscle relaxants only minimally affect the pupillary light reflex, which can provide valuable prognostic information. In a study of 100 patients undergoing veno-arterial ECMO (of whom 49 with refractory cardiac arrest and 51 with refractory cardiogenic shock), a neurological pupil index (NPi) below 3 (abnormal) anytime from 24 h to 72 h after arrest was 100 % specific for predicting 90-day mortality with 53 % sensitivity. ⁵¹⁶

A significant concern regarding biomarkers is haemolysis due to extracorporeal circulation, which may lead to the release of NSE from red blood cells and cause false-positive results. NSE values are linearly correlated with the degree of haemolysis and the free haemoglobin levels.⁵¹⁷

Although a continuous NSE release from haemolysis due to ECPR should result in persistently high NSE, a study on 129 ECMO patients, most of whom undergoing ECPR,518 showed that NSE decreases in patients who had neurological recovery and increases in those who had poor neurological outcome, therefore showing a similar kinetic to that in patients resuscitated from conventional CPR. Similar trends were observed during the first 48 h in another study on 190 ECPR patients.519 Prognostic accuracy studies on ECPR patients suggest that the NSE threshold for predicting poor outcome may be higher than in patients resuscitated with conventional CPR. In a study on 256 OHCA patients from the Prague trial, 520 the NSE values corresponding to 95 % specificity for predicting poor neurological outcome were higher in the ECPR group at all three time points (84 μ g L⁻¹ at 24 h and 48 h and 129 μ g L⁻¹ at 72 h, compared with 60, 65, and 57 µg L⁻¹, respectively, in the conventional CPR group). However, the AUROCs for outcome prediction were not significantly different, suggesting that NSE had comparable overall accuracy in both groups. In a study of 159 patients treated with venoarterial ECMO, of whom 101 (64%) had cardiac arrest, six of the 36 patients with good neurological outcome at 29 months had an NSE >100 μ g L⁻¹ 48 h after the start of ECMO.⁵²¹ The optimal NSE thresholds for predicting poor outcome with a minimal risk

of falsely pessimistic prediction in patients resuscitated with ECPR are currently unknown.

Unlike NSE, NfL is unaffected by haemolysis, and it can be particularly advantageous for neuroprognostication in ECPR patients. However, the evidence in ECPR patients is still preliminary. One study of 98 patients undergoing venoarterial ECMO, of whom 74 were in cardiac arrest, showed that suppression or burst-suppression on EEG in these patients were associated with poor neurological outcome. Fee Recording EEG is helpful in ECPR patients because of the high rate of neurological injury, prolonged sedation and paralysis confounding neurological examination, and the risk of epileptiform activity from HIBI. Fee Recording SSEPs in patients undergoing ECPR is feasible, but the small size of available studies prevents any conclusion regarding SSEP accuracy in these patients

Performing MRI in ECPR patients is difficult because the strong magnetic fields (1.5–3 Tesla) of conventional MRI are incompatible with extracorporeal life support circuits. Portable MRI with lower magnetic fields has been used to identify brain injury (but not hypoxic-ischaemic brain injury) in ECPR patients. However, their spatial resolution is lower than that of conventional MRI. At the time of this writing, there are no published studies on the use of MRI for prognostication in comatose ECPR patients.

Brain CT can be safely performed in patients undergoing ECPR. In a study on 30 ECPR patients, GWR had an AUROC for predicting neurological outcome ranging from 0.848 to 0.952, depending on the calculation method used. 526 In a substudy of the Prague ECPR trial including 45 patients, GWR calculated at the caudate and putamen levels on brain CT performed within 36 h from arrest predicted neurological outcome at six months with AUROCs of 0.86 and 0.77, respectively. 527 GWR was not significantly different between patients resuscitated with ECPR vs. conventional CPR. Another study, however, showed a low accuracy of brain CT performed early (<3 h from ROSC) for assessing the severity of HIBI in ECPR patients. A substudy of the Prague OHCA trial showed that GWR measured at the basal ganglia level performed poorly as a measure of brain oedema on brain CT performed at a median of 4.3 h after arrest. Almost all (93 %) patients had contrast agents administered for coronary angiography before brain CT. 527 None of the above mentioned studies assessed cerebral postanoxic oedema with standard visual assessment criteria used by neuroradiologists, such as the presence of sulcal effacement, loss of boundary at the basal ganglia level, or pseudo-subarachnoid haemorrhage sign described in other studies.468,470

Only a few studies specifically investigated the accuracy of standard neuroprognostic tests in predicting neurological outcomes in patients undergoing ECPR. On the other hand, there is no specific pathophysiologic reason for these tests to perform differently in comatose ECPR patients as compared to those resuscitated with conventional CPR. Pending further research, we suggest using a multimodal approach for prognostication in comatose ECPR patients. We recommend paying particular attention to the risk of confounding from haemolysis when using NSE (see above). The optimal NSE threshold for predicting a poor outcome is currently unknown. Imaging studies require transport to the imaging suite, which implies technical difficulties and potential risk in ECPR patients. Standard MRI carries the additional risk of interference with extracorporeal circuit from the strong magnetic field. Specific prospective studies are needed to assess the optimal prognostication strategy in patients resuscitated with ECPR. Assessment of

cerebral oedema on brain CT using GWR in ECPR patients is insufficiently supported by available evidence.

Withdrawal of life-sustaining therapy

While a minority of the resuscitated patients treated in an ICU die during the first few days due to cardiovascular collapse or massive brain swelling causing brain death, most deaths will be secondary withdraw life-sustaining (WLST). 329,331,353,528 Generally, a presumption that the patient's final neurological outcome will be poor is central to this decision. 331 Pre-existing co-morbidities may also contribute to a WLST decision. 528 The clinical team discussing the prognosis of an individual patient need to consider that inaccurately pessimistic prognostication could lead to WLST in patients who might otherwise achieve a good functional outcome, but also that overly conservative prognostication could leave patients in a severely disabled state undesired by themselves and their relatives. 529 Patients may not receive specific treatments because they are not available, or because there is an active decision to withhold them. The main reasons for withholding treatments are that they will not benefit the patient or, if known, the patient's wishes not to have a specific treatment. 529,530 There is little data on withholding life-sustaining therapies in post-cardiac arrest patients specifically.

The practice of WLST varies widely across Europe and impacts the proportion of cardiac arrest patients surviving with severe brain injury (CPC 3–4). Lacking high-quality data, this fraction appears to vary widely from approximately 10 % to 50 %. ^{243,349,356} The most apparent effects are seen for patients who remain in an unresponsive wakefulness/vegetative state (CPC 4). As an example, 1/243 (0.4 %) survivors in a northern European study²⁴³ compared with 61/195 (31 %) in an Italian multi-centre study³⁴⁹ were in CPC 4 at 6 months. Evidence for variation in WLST practice across Europe was also found in the ETHICUS Study: physicians from southern Europe were less prone to withdraw treatment compared with those from northern Europe, and there was also an effect of religion. ⁵³¹ The Ethicus-2 Study has shown that the frequency of WLST and withholding decisions among general ICU patients has increased over the last 15–20 years. ⁵³²

Studies using propensity score matching indicate that premature (<72 h from cardiac arrest) WLST for neurological reasons (WLST-N) are common and may be the cause of death for a substantial proportion of patients who might have recovered to a good outcome if their intensive care treatment had been prolonged. A recent study found that the practice of WLST-N < 72 h varied between 20–60 % among nine US hospitals and was inversely related to the rate of neurological consultation. A similar variation in the practice of early WLST was found in a nationwide UK study. A high frequency of early WLST-N may indicate prognostic pessimism and lower healthcare quality.

The brain stem is more resistant to hypoxic-ischaemic injury than the cerebrum, and the recovery of functions such as spontaneous breathing and sleep-wake cycle is part of the trajectory towards an unresponsive wakefulness/vegetative syndrome. The period when the patient is still dependent on intensive care is sometimes referred to as the 'window of opportunity for death'. This perception may cause a sense of urgency for the relatives and treating team, indirectly impacting decisions on premature WLST. 537,538 One qualitative study identified limitations in family-team communication as an

important factor for premature WLST after cardiac arrest.⁵³⁸ Caregivers' inappropriate avoidance of uncertainty may also play a role, leading to overly pessimistic perceptions of the prognosis.⁵³⁹

Although some tests show high specificity for predicting a poor outcome before 72 h, we recommend that, in general, conclusions about the neurological prognosis are postponed until at least 72 h after the cardiac arrest and the influence of sedative and metabolic factors has been ruled out. This will enable most patients with good outcome to awaken before the prognostic assessment, decreasing the risk of false predictions.²⁹⁷ We encourage local protocols for collecting information about the extent of brain injury during the first days. Use all available resources to inform a multimodal assessment. 62,340 Relatives will require regular, clear, and structured information and an understanding of their role in decision-making. Early indicators of a poor prognosis may be conveyed in a balanced manner to inform relatives that the situation is grave and allow time for adjustment before critical decisions are made. The bedside nurses are confronted by grieving caregivers, which may be very stressful. 538 Allocate sufficient time for communication around the prognosis within the team and with the relatives. 540

While the assessment of post-cardiac arrest neurological prognosis and discussions about WLST are most often linked, try to separate these processes in discussions and documentation. Decisions about WLST need to consider several aspects beyond the perceived brain injury; for example, age, comorbidities, and the prognosis for general organ function. ⁵²⁸ Consequently, for ethical reasons, WLST may be considered for patients in whom the neurological prognosis is uncertain or even favourable. Conversely, intensive care may be prolonged despite dismal neurological prognosis because absolute certainty is unobtainable for an individual patient. ⁵⁴¹ The patient's preferences are central. Since the patient cannot be asked and advance directives are rare among cardiac arrest victims, the relatives are usually the primary source of information about the patient's likely wishes.

Once a decision on WLST has been made, the ERC/ESICM recommend a transition to a structured end-of-life care, to address patient symptoms, the caregiver situation and potential for organ donation. Guidelines on end-of-life and palliative care in the ICU were recently updated by the ESICM. ⁵⁴²

Organ donation

These recommendations encourage providing patients and their families with the opportunity to donate organs in the event of brain death or the decision to WLST (Fig. 9). In the face of the increasing shortage of transplant organs, it is essential to remember that a significant proportion of patients who will not survive cardiac arrest represent a potential source of solid organ donors. All health systems should develop, implement and evaluate protocols designed to optimise organ donation opportunities for patients who have had a cardiac arrest.

Recent CPR is not a barrier to organ donation. A recent ILCOR systematic review identified 33 observational studies of organ donation after donor cardiac arrest. For all organ grafts studied (heart, lung, kidney, pancreas, liver, intestine) there was no significant difference in graft function or recipient survival with organs from donors who died after an initially successful resuscitation, compared with donors who had not received CPR.

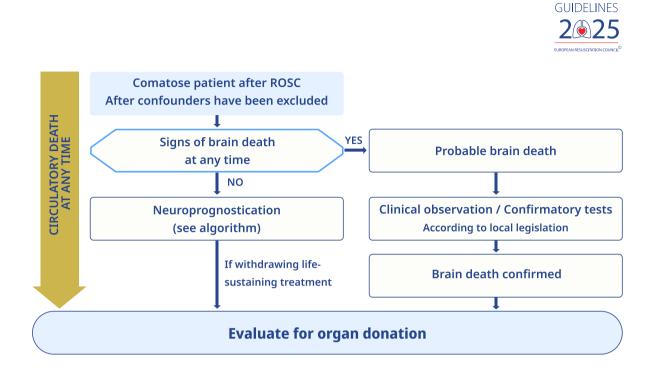


Fig. 9 - Organ donation algorithm after cardiac arrest.

Abbreviations - ROSC: return of spontaneous circulation; WLST: withdrawal of life-sustaining treatment.

Organ donation policies and practices vary internationally, and clinicians must respect local legal and ethical requirements. There are different pathways for patients with cardiac arrest to become organ donors. These guidelines specifically address organ donation after brain death (DBD) or controlled donation after circulatory death (cDCD: Maastricht category III donors) in patients with ROSC or who have been treated with ECPR. Challenges in implementing uncontrolled donation protocols after cardiac arrest (Maastricht category I/II donors) are discussed in the ERC Guidelines 2025 on Adult Advanced Life Support, and ethical aspects are discussed in the ERC Guidelines 2025 on Ethics in Resuscitation. 181,546

A systematic review identified 26 studies that showed that the prevalence of brain death in ventilated comatose patients with hypoxic-ischemic brain injury who died after cardiopulmonary resuscitation was 12.6 % (95 % CI 10.2–15.2 %), with a higher prevalence after ECPR [27.9 % (19.7–36.6 %) vs. 8.3 % (6.5–10.4 %)], and that approximately 40 % of them donated organs. The median time to diagnosis of brain death was 3.2 days. Patients who remain comatose after resuscitation from cardiac arrest, especially when resuscitated by ECPR, should be actively evaluated for signs of brain death. Scoring systems that may enable early detection of patients with a high probability of brain death after cardiac arrest may help increase organ donation after out-of-hospital cardiac arrest. High-volume centres are more likely to refer and procure transplantable organs from patients with non-survivable OHCA.

Even in the absence of brain death, some patients may be evaluated as possible cDCDs when WLST is considered (Maastricht III donors). Donation after controlled circulatory determination of death

is an increasingly important source of organ donations. For kidneys, the proportion of cDCDs has increased from 17 % to 31 % in Australia between 2009 and 2019⁵⁵⁰. However, cDCDs after cardiac arrest are probably underreported. In the 2025 ILCOR-endorsed systematic review, ⁵⁴³ only one of the 33 included studies compared the outcome of grafts transplanted from cDCDs after CPR with those of grafts transplanted from standard brain-dead donors who did not receive CPR, showing no difference. ⁵⁵¹ Two recent controlled studies investigated the outcomes of organs from cDCDs after cardiac arrest resuscitation and showed that the survival of kidneys ⁵⁵² or hearts ⁵⁵¹ donated by cDCDs after cardiac arrest was not inferior to that of non-CPR donors.

Implementation of ECPR to treat refractory OHCA is associated with increased organ donation and an excellent outcome of transplanted organs. Thus, ECPR has a potential to increase not only the number of survivors of prolonged cardiac arrest but also the number of organ donors. The Utstein OHCA template includes organ donation as a supplementary outcome, and we suggest that cardiac arrest registries report if organ donation after initial resuscitation from cardiac arrest occurred.

Long-term outcome after cardiac arrest

Long-term outcome

In settings where WLST is rare, poor outcomes because of severe hypoxic-ischaemic brain injury are common. 558,559 In contrast, in

countries practising WLST, most survivors (82-91 %) experience a 'good' functional outcome and return home; just 1-10 % require long-term care. At one year and beyond, evidence suggests that general health status approximates normal population values.560 However, such generic health assessments may lack sufficient granularity to capture the breadth of problems. 335,561 Cardiac arrest survivors often continue to experience symptoms such as memory difficulties, anxiety, fatigue, insomnia, and physical limitations, which can impact their health-related quality of life and societal participation. 558-560,562-567 Supplementing generic assessment with condition or problem-specific assessment is therefore recommended.335 Older age, female sex, anxiety, depression, and impaired neurocognitive function are significantly associated with poorer health-related quality of life following OHCA.563 A registrybased study reported significantly worse health-related quality of life in IHCA (n = 1369) survivors when compared to OHCA (n = 772) survivors. 568

Coanition

A recent review of neurocognitive function following OHCA highlighted the substantial heterogeneity in outcome reporting and use of different cut-points, ⁵⁶² with possible cognitive impairment ranging between 0–88 %. Most common impairments affect episodic memory, executive functioning, and processing speed. ^{562,569} Most cognitive recovery occurs within the first three to six months after the cardiac arrest. ^{558,559,570}

Fatique

Up to 70 % of cardiac arrest survivors report fatigue. ^{558,559,571} Limited evidence suggests no significant difference in fatigue levels between 1–5 years after OHCA. ⁵⁷¹ Both physical and mental fatigue is widely described and associated with cognitive deficits, anxiety, depression, ^{569,571} and low levels of physical activity. ⁵⁷²

Emotional wellbeing

A review of IHCA and OHCA survivors described little change in the prevalence of short (<6-months) and long-term (>6-months) anxiety (22–24 %) and depression (19 %).⁵⁶⁴ A further review, of OHCA survivors only, reported similar levels of anxiety (26 %), depression (19 %) and post-traumatic stress disorder (20 %), with symptom prevalence appearing to increase over time for anxiety and depression.⁵⁶⁵ For OHCA, age and female sex are non-significant moderators for anxiety and depression.⁵⁶⁵ However, younger survivors (<60 years) are at a higher risk of developing depressive symptoms within six months.⁵⁶⁴

Physical function

Survivors frequently experience mobility limitations over both the short and longer-term, ^{568,573–576} which are more common compared to both general ⁵⁵⁹ and matched cardiac populations. ⁵⁷³ Problems are more common in older individuals, females, and those with cognitive impairment, anxiety or depression. ⁵⁷³ Similarly, at six months post-OHCA, one-third of survivors in the TTM2 trial self-reported low levels of physical activity, ⁵⁷⁴ an important cardiovascular risk factor, ⁵⁷⁷ which were more common in those who were obese, had mobility problems, or cognitive impairment. ⁵⁷⁴

Pain

Pain is reported by 21–58 % of survivors at 3–6 months, 566,576,578 and in 53 % of IHCA survivors at 12 months. 579

Societal participation and return to work

Limitations in usual activities are reported at 3–6 months, ^{575,578} and 12 months. ⁵⁷⁹ Up to 50 % self-report difficulties performing work or other activities due to physical (50 %) or emotional (35 %) problems at six months. ⁵⁷⁶ Self-reported restrictions in societal participation are greater when compared to matched cardiac patients. ⁵⁸⁰ Cognitive impairment, depression, fatigue and restricted mobility negatively affect societal participation. ⁵⁸⁰ Younger patients also report more restrictions in returning to societal activities. ⁵⁸¹

Approximately 50 % return to previous work levels within six months, rising to 63 % with reduced hours; median return time is around 80 days. 581 Although a smaller sample size, similar percentages of return have been reported by others; for example, 42 % and 55 % at six and 12 months, respectively. 582 Factors reducing work return include cognitive impairment, fatigue, and female sex. $^{580,583-585}$

Family members and close friends

Family members and close friends, often referred to as co-survivors, particularly those who witness or participate in the resuscitation, commonly experience anxiety, posttraumatic stress, and sleep disturbance. Higher acute traumatic stress in the partners of cardiac arrest survivors was associated with symptoms of posttraumatic stress at both 3 months and 1 year. These symptoms were greater in partners than in survivors. Bereaved family members also experience high levels of emotional burden.

Rehabilitation and follow-up after cardiac arrest

Rehabilitation during hospitalisation

Although there are no ICU rehabilitation studies for cardiac arrest specifically, there are rehabilitation guidelines for post-intensive care syndrome, and these recommend early mobilisation, delirium management and ICU diaries. Early mobilisation (e.g., functional/resistance exercises) within 72 h of ICU admission may reduce ventilation duration, length of stay, delirium and muscle strength. Information on the type, dose and length of mobilisation is limited, and evidence for long-term outcomes is lacking.

A randomised controlled trial (N = 750) compared usual levels of ICU mobilisation (mean 8.8 (SD 9.0) min/day) with increased early mobilisation (mean 20.8 (SD 14.6) min/day). Whilst there were no significant effects in any of the prespecified outcomes, the intervention group showed a trend towards more adverse events. No cardiac arrest survivors were included. A subsequent systematic review and meta-analysis report mobilisation in the ICU to be safe, and with no overall increase of adverse events. 592

Delirium is common among cardiac arrest survivors (up to 92 %).⁵⁹³ Multimodal prevention strategies and assessment, as described for general intensive care patients, may be relevant.^{589,594} The Confusion Assessment Method for the ICU or the Intensive Care

Delirium Screening Checklist are recommended assessment approaches. Physical and non-physical assessments are recommended before hospital discharge. Early screening of cognitive and emotional status to predict later problems in OHCA survivors is widely supported. 595–599

Specialised in-patient neurological rehabilitation

In-patient rehabilitation for cardiac arrest survivors is provided within general brain injury rehabilitation programmes, informed by multiple clinical practice guidelines for different types of acquired brain injuries, including hypoxic or traumatic brain injury and stroke. 600–602 Even minor improvements may reduce the burden of care on family and society.

A review of five observational studies of in-patient rehabilitation for adult cardiac arrest survivors with acquired brain injury (N = 187) reported low-quality evidence of positive effects for functional and neurological outcome (standardised mean difference 0.71, 95 % CI 0.45–0.96). 603 Additional observational studies of HIBI report similar findings. $^{604-606}$ Whilst worse recovery in HIBI patients when compared to other acquired brain injury groups has been reported, 605 where baseline function was similar, outcomes were not statistically different. 607 For those who are comatose or in an unresponsive wakefulness state, outcome was unfavourable, and they rarely recover. $^{608-610}$

Cardiac rehabilitation

Many, but not all, cardiac arrest survivors are eligible for generic cardiac rehabilitation programs. ⁶¹¹ These typically include aerobic exercise, sometimes with addition of resistance training, for 20–90 min/1–7 sessions a week ⁶¹² delivered at an institution, home-based or electronically.

A recent meta-analysis including 85 RCTs (> 23,000 patients) confirmed that exercise-based cardiac rehabilitation for patients with coronary heart disease reduces cardiovascular mortality, recurrent cardiovascular events and hospitalisation; some evidence suggests cost-effectiveness and improvements in health-related quality of life. Whilst there is no evidence of specific benefit following cardiac arrest, two small observational studies (N = 33) included in a recent review suggest that exercise-based rehabilitation is safe for survivors and without adverse events. One of the difference 3.7 min (95 % CI 0.5–7.0), p = 0.02). Cognitive and emotional problems are inadequately addressed in traditional cardiac rehabilitation programmes, and access remains limited for cardiac arrest survivors.

Follow up

Based on limited evidence, 614–617 a structured follow-up including screening of fatigue, cognitive and emotional status, and information provision is suggested to identify the problems and care needs of both cardiac arrest survivors and co-survivors (Fig. 10). 1,3,586 Asking about physical impairment should also be considered. 573 Information should cover both medical subjects, such as cardiac disease, risk factors, medication, and ICD, as well as other topics, including potential physical, cognitive, and emotional changes, fatigue, resuming daily activities, driving, work, relationships, and sexuality. 3 Some useful links include: Heartsight (https://ourheartsight.com/), Sudden Cardiac Arrest UK (https://suddencardiacarrestuk.org/), and Life

After Cardiac Arrest (https://www.hlr.nu/wp-content/uploads/2022/04/livetefterhjartstopp_ENG.pdf). Whilst patient forums report on the benefit and value of peer support networks, 618 published studies on the effectiveness of such networks or virtual/online forums are not available. 619,620

Screening and management of cognitive, emotional and physical status, and fatigue

Cognitive issues

Screening should include asking the survivor about cognitive complaints. Family members or close friends can offer valuable insights. Formal screening is recommended when possible. Evidence supports use of the Montreal Cognitive Assessment (MoCA) (Table 2)^{621,622}; sensitivity improves when used in combination with the Symbol Digit Modalities Test (Table 2).⁶²¹ For those that screen positive, consider referral to a healthcare professional with experience in brain injury-related impairments – e.g., an occupational therapist or neuropsychologist.

Cognitive rehabilitation aims to reduce the impact of cognitive impairments on daily life. 623 Psychoeducation is an essential part of this approach. There are no studies of cognitive rehabilitation for cardiac arrest, 603 but clinical practice guidelines in other acute brain injury patients are useful. 623,624 For example, compensatory memory strategies 623,625 and metacognitive strategy training. 623,626,627 Examples of integrated cardiac and cognitive rehabilitation for cardiac arrest survivors are described but not evaluated. 613,628

Emotional issues

The Hospital Anxiety and Depression Scale (HADS) is widely used in cardiac arrest, 564,565 but there are few psychometric evaluations of its performance in this population. 629,630 However, there is strong evidence to support the use of the Hospital Anxiety and Depression Scale in the general population and patients with cardiac disease⁶³¹ (Table 2). Although the Impact of Events Scale-revised^{588,595} and the Post-Traumatic Stress Disorders Checklist (Table 2) have been used in cardiac arrest, 597,598 evidence of psychometric properties in this population is limited. For those who screen positive, consider referral to a specialist in the management of emotional problems - e.g., general practitioner, psychologist, psychiatrist, social worker. It is also important to monitor the well-being of family members and close friends.3,558,559 Emotional difficulties could be treated in line with symptom-specific pharmacological and non-pharmacological recommendations.

There is limited evidence that psychosocial interventions specifically designed for cardiac arrest survivors can be of value. 603 A single RCT (involving 121 of the 301 patients who were cardiac arrest survivors) of a social-cognitive intervention suggests that when delivered to cardiac patients and their partners, a more positive impact on emotional well-being is reported than when delivered to patients alone. 632,633

A small study confirmed the feasibility of an individual acceptance and mindfulness-based exposure therapy delivered digitally for cardiac arrest survivors with post-traumatic stress disorder (n = 11); the potential for outcome improvement was described. 634

Screening and management of fatigue

Whilst assessment guidance in this population is lacking, the most widely used measures include the Modified Fatique Impact Scale

(MFIS), ^{635–637} the Multi-dimensional Fatigue Inventory-20 items (MFI-20), ^{569,635} and the Fatigue Severity Scale (FSS) ^{636–638} (Table 2). Evidence from other populations (e.g., multiple sclerosis) suggests that, where both mental and physical fatigue are important, the Modified Fatigue Impact Scale is preferable to the Fatigue Severity Scale. ⁶³⁹ For those that screen positive, consider referral to specialist in fatigue and fatigue management – e.g. psychologist, occupational therapist, physiotherapist, rehabilitation medicine physician.

Limited evidence suggests that a telephone-delivered energy conservation and problem-solving therapy may benefit cardiac arrest survivors. 636,637 Clinical practice guidelines in other patient groups may be useful 640,641 including, for example, behavioural interventions such as pacing and prioritising activities. And whilst fatigue is a survivor-reported barrier to returning to work following OHCA, 585 compensatory strategies, such as modified work tasks and flexible work hours, can be helpful. 582,585

Screening and management of physical challenges

Assessment guidance for physical function or physical activity in this population is lacking. Whilst patient self-reports, such as those described in a recent trial, ^{642,643} may over-estimate the amount of physical activity engaged in, ⁶⁴⁴ they could be useful indicators of where cardiac arrest survivors could benefit from physical activity interventions (Table 2). For those reporting low levels of physical activity or limitations in physical function, consider referral to a physiotherapist or an occupational therapist.

Rehabilitation and interventions to increase societal participation and overall health-related quality of life

Comprehensive care pathways should be multi-factorial, multidisciplinary, and tailored to an individual's needs based on the biopsychosocial model. The ultimate goals of care should support survivors in achieving optimal psychological recovery, relative inde-

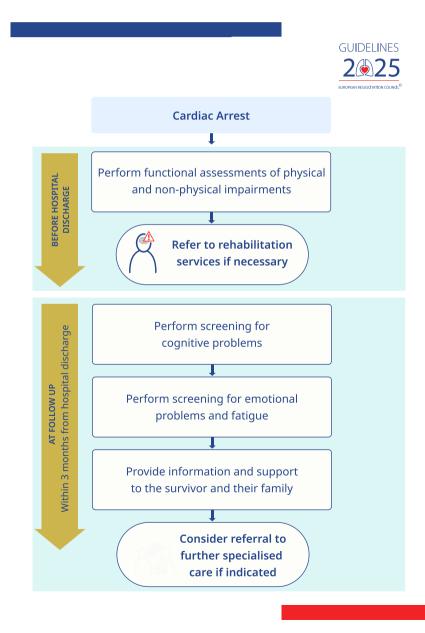


Fig. 10 – Recommendations for in-hospital functional assessments, follow-up and rehabilitation after cardiac arrest.

Table O. Massaures of basili			
Table 2 – Measures of health	1 OUTCOME WNICH COUID D	e used with cardiac arresi	survivors.

WHAT to measure?	HOW to measure?		
Aspect of health	Suggested measurement tool	Access	Administration
Cognitive impairment	Montreal Cognitive Assessment (MoCA) Global cognitive screening	Requires training and certification. Free for students, faculty members, academic researchers and publicly operated healthcare institutions. Access: https://www.mocatest.org	How: Performance based measure (approx.10 min). 10 items; each scored on a 4-point scale (0-3); higher scores, better cognitive function Score: item summation. Total score 0-30 Interpretation: scores of 26 and below may indicate cognitive impairment
	AND (when possible)		
	Symbol Digit Modalities Test (SDMT) Processing speed, attention and visual scanning	Requires Level 2 qualifications. Purchased by Hogrefe https://www. hogrefe.com/group/locations	How: Performance based measure. Score: The number of correctly paired symbols. Raw scores 0–110; higher scores, better cognition Interpretation: Norm adjusted scores by age and education; transformed Z-scores, where scores <-1.5 indicate possible cerebral dysfunction
Emotional problems	Hospital Anxiety and Depression Scale Two domains: Anxiety (HADS-A) (7 items) Depression (HADS-D) (7 items)	Extensively available, although copyrighted. Copies and permission available through: GL Assessments (permissions@gl-assessment.co.uk) or MAPI Trust (https://eprovide.mapi-trust.org/instruments/hospital-anxiety-and-depression-scale). Cost will depend on the project and may be high.	How: Self-report measure (approx. 5 min) 14 items; each item scored on a 4-point scale (0–3); higher scores, greater levels of anxiety / depression Score: Two domain scores; item summation, with domain scores ranging 0 to 21. Interpretation: scores of 8 and above
		project and may be night.	suggest symptoms of anxiety or depression (8–10 mild; 11–15 moderate; 16 and above severe)
	AND		
	Impact of Events Scale-revised (IESr): 2 sub-scales: Experience (7 intrusion items) and Avoiding Reminders (8 avoidance items)	Access by contacting the authors or via various websites (e.g., https://psypack.com/assessments/ies-r-impact-of-event-scale-ptsd/ OR https://www.onlinecbtresources.co.uk/impact-of-events-scale/). Free to use.	How: Self-report measure (approx. 5 min) 20 items; each item scored on a 5-point scale (0–4); higher scores, worse health. Score: Item summation, total score 0–80. Interpretation: recommended cut point 33.
	OR		
	Post-Traumatic Stress Disorders Checklist updated for DSM-5 (PCL-5):	Accessible via website: https://www.ptsd. va.gov/professional/assessment/adult-sr/ ptsd-checklist.asp Free to use.	How: Self-report measure 20 items; each item scored 0–4 (higher scores, worse health). Score: item summation, total score 0–80. Interpretation: recommended cut-point 33.
Fatigue	Modified Impact Scale (MFIS) Total fatigue, physical, cognitive and psychosocial impact on fatigue	Access by MAPI trust. https://eprovide.mapi-trust.org/ instruments/modified-fatigue-impact-scale Free to use for clinical purposes.	How: Self-report measure (approx. 5–10 min) 21 items; each item scored 0–4 (higher scores, worse fatigue). Score: item summation: total score 0–84 (higher score, worse fatigue). Interpretation: scores >37 indicate fatigue

	ontinued)		
WHAT to measure?	HOW to measure?		
Aspect of health	Suggested measurement tool	Access	Administration
	OR		
	Multi-dimensional Fatigue Inventory-20 (MFI-20) 5 domains: general fatigue, physical fatigue, mental fatigue, reduced activity and reduced motivation	The MFI-20 is a registered trademark – therefore copies should be obtained from an official source. Available from EMA Smets, Academic Medical Centre, Dept of Medical Psychology, University of Amsterdam, Amsterdam, Netherlands. (e. m.smets@amsterdamumc.nl)	How: Self-report measure (approx. 5–10 min) 20-items; each item scored 1–5 (higher scores, more fatigue) Score: item summation per domain; scoring 4–20. Interpretation: no recommended cut-point.
	OR		
	Fatigue Severity Scale (FSS) 9 statements which rate the severity of fatigue symptoms	Original version and instructions included in the original article.{Krupp, 1989 #669} Also accessible at various websites (e.g., https://www.med.upenn.edu/cbti/assets/user-content/documents/Fatigue% 20Severity%20Scale%20(FSS).pdf Free to use.	How: Self-report measure (approx. 5–10 min) 9 items; each scored 1–7 agreement scale (higher scores, more severe fatigue) Score: item summation; total score 9–63 Interpretation: scores of 36 and more concerns over fatigue
Physical	SF-36v2 Physical Function	Extensively available but copyrighted.	How: Self report measure
Function	domain (PF10): Self-care; mobility and other physical activities; movements such as lifting and bending.	Permission to use by Qualitymetrics and associated to a (high) cost; https://www.qualitymetric.com/health-surveys/the-sf-36v2-health-survey/	10 items; items scored 1–3, where 3 is most limited and 1 is not limited at all (lower scores, most limited) Score: Algorithm required to calculate PF score. Interpretation: Norm-based scoring, where the mean of the US population is set at 50 (SD10) (transformed to T-scores); scores range 0–100, with lower scores indicating worse function.
	OR		
	EuroQoL EQ-5D-5L EQ-5D descriptive system: 5 domains (Mobility, Self-Care, Usual Activities, Pain/Discomfort, Anxiety/Depression)	Free to use, but use must be registered on EuroQoL website: https://euroqol.org/ License required for use per project.	How: Self report measure Five 'level' (5L) response options per item ((1) no problems to (5) extreme problems; higher scores, worse health) Score: i) Simple descriptive domain profile (range no problems (1) to extreme problems (5)) could be used to 'simply' describe limitations in mobility, self-care, and usual activities. Interpretation: higher scores at domain level indicate worse health. OR ii) Single index value for general health status — underpinned by a scoring algorithm and 'value set' (all items). Interpretation: Index score ranges —0.59 to 1.00 (1 is best health; values <0 suggest a state worse than death. Note: Completion of all items produces a 5-digit number ('health state'); but the numerical numbers have no inherent arithmetic properties and should not be used to create a summary/ cardinal score.

Table 2 (c	Table 2 (continued)				
WHAT to measure?	HOW to measure?				
Aspect of health	Suggested measurement tool	Access	Administration		
	AND?				
	Questions about Physical Activity (included in the 6-months follow-up to the TTM2 trial)	Ruestion 1: Moderate intensity In the last week, how many days have you engaged in moderate intensity physical activities for at least 30-min a day? (could be performed in blocks that last for at least 10 min adding up to a total of 30 min or more). Ruestion 2: vigorous intensity In the last week, how many days have you engaged in vigorous intensity physical activities for at least 20 min (in one block)?	How: interview / self-report Score: categorisation in three ordered group based on number of days of self- reported 30 min total moderate and 20 min vigorous physical activity a day during the last week. Interpretation: - Low level: <5 days of moderate intensity PA at least 30 min in total per day/<3 days of vigorous intensity PA at least 20 min per day - Moderate level: >/=5 days of moderate PA at least 30 min in total per day / >/ =3 days vigorous intensity PA at least 20 min per day - High level: >/=2 days of moderate intensity PA at least 30 min in total per day and >/=3 days vigorous intensity PA at least year at least 20 min per day		

pendence, reintegration into society, and an improved health-related quality of life. However, underpinned by the low quality of evidence, a recent review of rehabilitation interventions was unable to determine the effectiveness of interventions on the secondary consequences of cardiac arrest survival, including health-related quality of life and neurological function. Among cardiac arrest survivors working before the event, almost half report an unmet rehabilitation need at six months. Ruther high-quality studies are urgently needed. Ruther high-quality studies are urgently needed. Ramall pilot study (N = 40) evaluated a residential and home-based rehabilitation program that included education, physical activity training, and psychosocial support. Whilst recruitment rates were less than expected and the specialised residential component may not be feasible in many settings, patient and clinicians' satisfaction was high. Initial reports suggest a positive impact on depression, disability, and life activities.

Family members and close friends

Prior to hospital discharge and at follow-up, enhanced communication with family and close friends is important to highlight 'what to expect', signpost to helpful resources including survivor/patient organisations and, where appropriate, to seek further help from, for example, a general practitioner. ⁵⁸⁶

Investigating sudden unexplained cardiac arrest

Unexplained cardiac arrest refers to cases where no diagnosis is evident after initial ECG, echocardiography, and coronary assessment in sudden cardiac arrest survivors. Recent registry data suggest that 12.3 % of sudden cardiac arrest survivors had no diagnosis after the initial assessment, with higher rates observed in younger or exercise-related cases. Purther testing may identify a specific diagnosis in 41–61 % of patients. Possible diagnoses include

primary electrical disorders like Brugada and long QT syndromes, latent genetic cardiomyopathies (e.g. arrhythmogenic RV, hypertrophic and dilated cardiomyopathies), inflammatory heart disease (e.g. myocarditis, sarcoidosis), ischaemia without atherosclerotic coronary artery disease (e.g. coronary spasm) and conduction system abnormalities.

A thorough diagnosis after unexplained cardiac arrest is important for patient clarity, tailored treatment, and identifying at-risk family members. The latest ESC guidelines standardise sudden cardiac arrest survivor evaluations before diagnosing idiopathic ventricular fibrillation and emphasise a multidisciplinary approach. ¹⁸⁹ Recommended diagnostic testing for patients with unexplained cardiac arrest includes blood sample collection for toxicology and genetic testing, retrieval of data from cardiac implantable electronic devices and wearable monitors, repeated 12-lead ECGs and continuous cardiac monitoring, cardiac MRI, sodium channel blocker tests, and exercise testing. ¹⁸⁹

Genetic testing plays an important role in identifying heritable causes of unexplained cardiac arrest. 649 A confirmed diagnosis of a heritable condition should prompt targeted genetic testing, focusing on genes with strong evidence of causative links with diagnostic yields varying by condition (e.g., $\sim\!\!20\,\%$ in Brugada Syndrome to \sim 80 % in Long QT Syndrome). 189,649 However, a negative result does not rule out a genetic cause, and family screening may still be necessary. The role of genetic testing in unexplained cardiac arrest survivors without a clear diagnosis remains uncertain, with diagnostic yields up to 17 % in unexplained cardiac arrest and \sim 10 % after detailed clinical assessment. Long-term follow-up of unexplained cardiac arrest patients is recommended because of the high risk of recurrence of arrhythmia (16-26 %) often within the first few years. The risk is higher for those who lack a thorough initial evaluation. 650 In the absence of diagnosis at the initial phase, prolonged follow-up and repetition of investigations can help isolate a diagnosis, most often related to an electrical heart disorder. 651

Cardiac arrest centres

There is wide variation among hospitals in the availability and type of post-resuscitation care, as well as clinical outcomes, which has given rise to the concept of the cardiac arrest centre as a means of providing post-cardiac arrest patients with uniform, high-quality treatment according to current standards of care. 652-654 Definitions of a cardiac arrest centre vary, but an expert consensus paper published by the Association for Acute Cardiovascular Care of the European Society of Cardiology, European Association of Percutaneous Coronary Interventions, European Heart Rhythm Association, European Resuscitation Council, European Society for Emergency Medicine and European Society of Intensive Care Medicine, states that the minimum requirements for a cardiac arrest centre are 24/7 availability of an on-site coronary angiography laboratory, an emergency department, an intensive care unit (ICU), imaging facilities (such as echocardiography, computed tomography, and magnetic resonance imaging), as well as a network organization. 655 Access to neurophysiological investigations is also essential so that comprehensive multimodal prognostication is facilitated.656

ILCOR suggests that adult patients with non-traumatic OHCA cardiac arrest should be cared for in cardiac arrest centres, and ERC/ESICM have adopted this recommendation.41 The weak recommendation is based on low-certainty evidence from a systematic review that used the European position paper to define cardiac arrest centres. 656 The systematic review included one RCT 657 and 15 observational studies. 658-672 Of these, 13 reported survival to hospital discharge and all reported a survival benefit with care at a cardiac arrest centre, except for one, which showed no difference. However, the studies were very heterogeneous, and their interpretation is problematic because all were at moderate or serious risk of bias. The one RCT was undertaken in London, UK and randomised OHCA patients with ROSC and without ST elevation on their ECGs to be transferred to a cardiac arrest centre or the nearest acute hospital. 657 There was no difference in 30-day mortality (primary outcome), but there was also little difference in the treatment provided in the acute hospitals and cardiac arrest centres.

The optimal configuration of cardiac arrest centres will likely vary among different countries and regions; however, in many healthcare systems, the trend is to regionalise the care of cardiac arrest patients in a similar manner to the regionalisation of major trauma. Despite only low-certainty evidence supporting cardiac arrest centres, major European scientific organisations are generally supportive of their implementation. Further details on the system behind cardiac arrest centres are in the ERC Guidelines 2025 System Saving Lives.⁶⁷³

Declaration of competing interests

Declarations of competing interests for all ERC Guidelines authors are displayed in a COI table which can be found online at https://doi.org/10.1016/j.resuscitation.2025.110809.

Acknowledgements

We thank Erik Westhall for providing the EEG and SSEP images and Jonathan Elmer for providing unpublished data on the prognostic preferences of healthcare providers.

Author details

^aResuscitation Medicine, University of Warwick, Warwick Medical School, Coventry CV4 7AL, United Kingdom bAnaesthesia and Intensive Care Medicine, Royal United Hospital, Bath BA1 3NG, UK ^cDepartment of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy d Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy Cochin University Hospital (AP-HP) and University Paris Cité (Medical School), Paris, France ^fDepartment of Clinical Sciences, Neurology, Lund University, ^gWarwick Research in Skane University Hospital, Lund, Sweden Nursing, Room A108, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, United ^hDepartment Intensive Care, Radboud University Medical Center, Nijmegen, the Netherlands 'Neurology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden ^jNeurology, Skåne University Hospital, Lund, Sweden ^kCardiology Department, Konstantopouleio General Hospital, Athens, Greece Department of Anesthesiology, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway mAnesthesia and Critical Care, San Martino Policlinico Hospital, University of Genoa, Genoa, Italy ⁿDepartment of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Finland ^oSudden Cardiac Arrest, UK ^pAnaesthesia and Intensive Care Medicine, Southmead Hospital, North Bristol NHS Trust, Bristol BS10 5NB, UK

REFERENCES

- Nolan JP, Soar J, Cariou A, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines for post-resuscitation care 2015: section 5 of the European Resuscitation Council guidelines for resuscitation 2015. Resuscitation 2015;95:202–22.
- Nolan JP, Soar J, Cariou A, et al. European Resuscitation Council and European Society of Intensive Care Medicine 2015 guidelines for post-resuscitation care. Intensive Care Med 2015;41:2039–56.
- Nolan JP, Sandroni C, Bottiger BW, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Resuscitation 2021;161:220–69.
- Nolan JP, Sandroni C, Bottiger BW, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med 2021;47(4):369–421.
- Nolan JP, Hazinski MF, Aickin R, et al. Part 1: executive summary: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation 2015;95:e1–e.
- Berg KM, Bray JE, Djarv T, et al. Executive summary: 2025 international liaison committee on resuscitation consensus on science with treatment recommendations. Resuscitation 2025;215 (Suppl 2):110805.
- Berg KM, Bray JE, Djarv T, et al. Executive summary: 2025 international liaison committee on resuscitation consensus on science with treatment recommendations. Circulation 2025;152 (Suppl 1):S00–S00. https://doi.org/10.1161/
 CIR.0000000000001361.
- Morley PT, Atkins DL, Finn JC, et al. Evidence evaluation process and management of potential conflicts of interest: 2020 international consensus on cardiopulmonary resuscitation and emergency

- cardiovascular care science with treatment recommendations. Resuscitation 2020;156:A23–34.
- Drennan IR, Berg K, Botitiger BW, et al. Advanced life support: 2025 international consensus on science with treatment recommendations. Resuscitation 2025;215 (Suppl 2):110806.
- Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a "two-hit" model. Crit Care 2017;21(1):90.
- Sandroni C, Cronberg T, Sekhon M. Brain injury after cardiac arrest: pathophysiology, treatment, and prognosis. Intensive Care Med 2021;47(12):1393–414.
- Hoiland RL, Robba C, Menon DK, Citerio G, Sandroni C, Sekhon MS. Clinical targeting of the cerebral oxygen cascade to improve brain oxygenation in patients with hypoxic-ischaemic brain injury after cardiac arrest. Intensive Care Med 2023;49(9):1062–78.
- Sekhon MS, Stukas S, Hirsch-Reinshagen V, et al. Neuroinflammation and the immune system in hypoxic ischaemic brain injury pathophysiology after cardiac arrest. J Physiol 2024;602 (21):5731–44.
- 14. Nolan JP, Neumar RW, Adrie C, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A scientific statement from the international liaison committee on resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the council on cardiovascular surgery and anesthesia; the council on cardiopulmonary, perioperative, and critical care; the council on clinical cardiology; the council on stroke. Resuscitation 2008;79 (3):350–79.
- Johnson NJ, Carlbom DJ, Gaieski DF. Ventilator management and respiratory care after cardiac arrest: oxygenation, ventilation, infection, and injury. Chest 2018;153(6):1466–77.
- Jentzer JC, Chonde MD, Dezfulian C. Myocardial dysfunction and shock after cardiac arrest. Biomed Res Int 2015;2015:314796.
- Perkins GD, Neumar R, Hsu CH, et al. Improving outcomes after post-cardiac arrest brain injury: a scientific statement from the international liaison committee on resuscitation. Resuscitation 2024;201:110196.
- lavarone IG, Donadello K, Cammarota G, et al. Optimizing brain protection after cardiac arrest: advanced strategies and best practices. Interface Focus 2024;14(6)20240025.
- McGuigan PJ, Pauley E, Eastwood G, et al. Drug therapy versus placebo or usual care for comatose survivors of cardiac arrest; a systematic review with meta-analysis. Resuscitation 2024;205:110431.
- Vlachos S, Rubenfeld G, Menon D, Harrison D, Rowan K, Maharaj R. Early and late withdrawal of life-sustaining treatment after out-ofhospital cardiac arrest in the United Kingdom: institutional variation and association with hospital mortality. Resuscitation 2023;193:109956.
- Geri G, Passouant O, Dumas F, et al. Etiological diagnoses of outof-hospital cardiac arrest survivors admitted to the intensive care unit: Insights from a French registry. Resuscitation 2017;117:66–72.
- Chelly J, Mongardon N, Dumas F, et al. Benefit of an early and systematic imaging procedure after cardiac arrest: insights from the PROCAT (Parisian Region Out of Hospital Cardiac Arrest) registry. Resuscitation 2012;83(12):1444–50.
- Collet JP, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2021;42 (14):1289–367.
- Legriel S, Bougouin W, Chocron R, et al. Early in-hospital management of cardiac arrest from neurological cause: diagnostic pitfalls and treatment issues. Resuscitation 2018;132:147–55.
- 25. Lee KY, So WZ, Ho JSY, et al. Prevalence of intracranial hemorrhage amongst patients presenting with out-of-hospital

- cardiac arrest: a systematic review and meta-analysis. Resuscitation 2022;176:136–49.
- Champigneulle B, Haruel PA, Pirracchio R, et al. Major traumatic complications after out-of-hospital cardiac arrest: insights from the Parisian registry. Resuscitation 2018;128:70–5.
- 27. Karatasakis A, Sarikaya B, Liu L, et al. Prevalence and patterns of resuscitation-associated injury detected by head-to-pelvis computed tomography after successful out-of-hospital cardiac arrest resuscitation. J Am Heart Assoc 2022;11(3)e023949.
- Branch KRH, Gatewood MO, Kudenchuk PJ, et al. Diagnostic yield, safety, and outcomes of Head-to-pelvis sudden death CT imaging in post arrest care: the CT FIRST cohort study. Resuscitation 2023;188:109785.
- Adel J, Akin M, Garcheva V, et al. Computed-tomography as firstline diagnostic procedure in patients with out-of-hospital cardiac arrest. Front Cardiovasc Med 2022;9:799446.
- Hwang CW, Chowdhury MAB, Curtis DZ, et al.
 A descriptive analysis of cross-sectional imaging findings in patients after non-traumatic sudden cardiac arrest. Resusc Plus 2021;5:100077.
- 31. Yang KJ, Wang CH, Huang YC, Tseng LJ, Chen YS, Yu HY. Clinical experience of whole-body computed tomography as the initial evaluation tool after extracorporeal cardiopulmonary resuscitation in patients of out-of-hospital cardiac arrest. Scand J Trauma Resusc Emerg Med 2020;28(1):54.
- Byrne RA, Rossello X, Coughlan JJ, et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur Heart J 2023;44(38):3720–826.
- Berg KM, Grossestreuer AV, Uber A, Patel PV, Donnino MW. Intubation is not a marker for coma after in-hospital cardiac arrest: a retrospective study. Resuscitation 2017;119:18–20.
- Benger JR, Kirby K, Black S, et al. Effect of a strategy of a supraglottic airway device vs tracheal intubation during out-ofhospital cardiac arrest on functional outcome: the AIRWAYS-2 randomized clinical trial. JAMA 2018;320(8):779–91.
- **35.** Higgs A, McGrath BA, Goddard C, et al. Guidelines for the management of tracheal intubation in critically ill adults. Br J Anaesth 2018;120(2):323–52.
- 36. Nolan JP, Kelly FE. Airway challenges in critical care. Anaesthesia 2011;66(Suppl 2):81–92.
- Acquisto NM, Mosier JM, Bittner EA, et al. Society of critical care medicine clinical practice guidelines for rapid sequence intubation in the critically III adult patient. Crit Care Med 2023;51(10):1411–30.
- Karamchandani K, Nasa P, Jarzebowski M, et al. Tracheal intubation in critically ill adults with a physiologically difficult airway. An international Delphi study. Intensive Care Med 2024;50 (10):1563–79.
- Miller M, Groombridge CJ, Lyon R. Haemodynamic changes to a midazolam-fentanyl-rocuronium protocol for pre-hospital anaesthesia following return of spontaneous circulation after cardiac arrest. Anaesthesia 2017;72(5):585–91.
- Chrimes N, Higgs A, Hagberg CA, et al. Preventing unrecognised oesophageal intubation: a consensus guideline from the Project for Universal Management of Airways and international airway societies. Anaesthesia 2022;77(12):1395–415.
- 41. Greif R, Bray JE, Djarv T, et al. 2024 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations: summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces. Resuscitation 2024;205:110414.
- 42. Klemisch R, Nichol G. Post resuscitation oxygen supplementation: throw it away? Resuscitation 2025;207:110485.
- Bernard SA, Bray JE, Smith K, et al. Effect of lower vs higher oxygen saturation targets on survival to hospital discharge among

- patients resuscitated after out-of-hospital cardiac arrest: the EXACT randomized clinical trial. JAMA 2022;328(18):1818–26.
- Schmidt H, Kjaergaard J, Hassager C, et al. Oxygen targets in comatose survivors of cardiac arrest. N Engl J Med 2022;387 (16):1467–76.
- Martin DS, Gould DW, Shahid T, et al. Conservative oxygen therapy in mechanically ventilated critically III adult patients: the UK-ROX randomized clinical trial. JAMA 2025;334(5):398–408. https://doi.org/10.1001/jama.2025.9663.
- 46. Young PJ, Al-Fares A, Aryal D, et al. Protocol and statistical analysis plan for the mega randomised registry trial comparing conservative vs. liberal oxygenation targets in adults in the intensive care
 - unit with suspected hypoxic ischaemic encephalopathy following a cardiac arrest (Mega-ROX HIE). Crit Care Resusc 2024;26 (2):87–94.
- Yamamoto R, Yamakawa K, Endo A, et al. Early restricted oxygen therapy after resuscitation from cardiac arrest (ER-OXYTRAC): protocol for a stepped-wedge cluster randomised controlled trial. BMJ Open 2023;13(9)e074475.
- Sanfilippo F, Uryga A, Santonocito C, et al. Effects of very early hyperoxemia on neurologic outcome after out-of-hospital cardiac arrest: a secondary analysis of the TTM-2 trial. Resuscitation 2025;207:110460.
- Robba C, Badenes R, Battaglini D, et al. Oxygen targets and 6-month outcome after out of hospital cardiac arrest: a pre-planned sub-analysis of the targeted hypothermia versus targeted normothermia after Out-of-Hospital Cardiac Arrest (TTM2) trial. Crit Care 2022;26(1):323.
- Helmerhorst HJ, Arts DL, Schultz MJ, et al. Metrics of arterial hyperoxia and associated outcomes in critical care. Crit Care Med 2017;45(2):187–95.
- Martin D, de Jong A, Radermacher P. Is the U-shaped curve still of relevance to oxygenation of critically ill patients? Intensive Care Med 2023;49(5):566–8.
- Martin D, Johns C, Sorrell L, et al. Effect of skin tone on the accuracy of the estimation of arterial oxygen saturation by pulse oximetry: a systematic review. Br J Anaesth 2024;132(5):945–56.
- Spindelboeck W, Gemes G, Strasser C, et al. Arterial blood gases during and their dynamic changes after cardiopulmonary resuscitation: a prospective clinical study. Resuscitation 2016:106:24–9.
- 54. Mekontso Dessap A, Charron C, Devaquet J, et al. Impact of acute hypercapnia and augmented positive end-expiratory pressure on right ventricle function in severe acute respiratory distress syndrome. Intensive Care Med 2009;35(11):1850–8.
- Curley G, Kavanagh BP, Laffey JG. Hypocapnia and the injured brain: more harm than benefit. Crit Care Med 2010;38(5):1348–59.
- 56. Pynnonen L, Falkenbach P, Kamarainen A, Lonnrot K, Yli-Hankala A, Tenhunen J. Therapeutic hypothermia after cardiac arrest cerebral perfusion and metabolism during upper and lower threshold normocapnia. Resuscitation 2011;82(9):1174–9.
- Eastwood G, Nichol AD, Hodgson C, et al. Mild hypercapnia or normocapnia after out-of-hospital cardiac arrest. N Engl J Med 2023;389(1):45–57.
- Falkenbach P, Kamarainen A, Makela A, et al. Incidence of iatrogenic dyscarbia during mild therapeutic hypothermia after successful resuscitation from out-of-hospital cardiac arrest. Resuscitation 2009;80(9):990–3.
- Eastwood GM, Nielsen N, Nichol AD, Skrifvars MB, French C, Bellomo R. Reported practice of temperature adjustment (alpha-stat v pH-stat) for arterial blood gases measurement among investigators from two major cardiac arrest trials. Crit Care Resusc 2019;21(1):69–71.
- Hoedemaekers C, van der Hoeven JG. Is alpha-stat or pH-stat the best strategy during hypothermia after cardiac arrest?*. Crit Care Med 2014;42(8):1950–1.

- Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome. N Engl J Med 2017;377(6):562–72.
- 62. Soar J, Berg KM, Andersen LW, et al. Adult advanced life support: 2020 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation 2020;156:A80–A119.
- 63. Serpa Neto A, Cardoso SO, Manetta JA, et al. Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. JAMA 2012;308(16):1651–9.
- 64. Johnson NJ, Caldwell E, Carlbom DJ, et al. The acute respiratory distress syndrome after out-of-hospital cardiac arrest: incidence, risk factors, and outcomes. Resuscitation 2019;135:37–44.
- 65. Czerwinska-Jelonkiewicz K, Grand J, Tavazzi G, et al. Acute respiratory failure and inflammatory response after out-of-hospital cardiac arrest: results of the Post-Cardiac Arrest Syndrome (PCAS) pilot study. Eur Heart J Acute Cardiovasc Care 2020;9(4_suppl): S110–21.
- Kim JS, Kim YJ, Kim M, et al. Impact of lung compliance on neurological outcome in patients with acute respiratory distress syndrome following out-of-hospital cardiac arrest. J Clin Med 2020;9(2):527.
- Gonzalvo R, Marti-Sistac O, Blanch L, Lopez-Aguilar J. Bench-tobedside review: brain-lung interaction in the critically ill–a pending issue revisited. Crit Care 2007;11(3):216.
- 68. Robba C, Badenes R, Battaglini D, et al. Ventilatory settings in the initial 72 h and their association with outcome in out-of-hospital cardiac arrest patients: a preplanned secondary analysis of the targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest (TTM2) trial. Intensive Care Med 2022;48 (8):1024–38.
- Griffiths MJD, McAuley DF, Perkins GD, et al. Guidelines on the management of acute respiratory distress syndrome. BMJ Open Respir Res 2019;6(1)e000420.
- Beitler JR, Ghafouri TB, Jinadasa SP, et al.
 Favorable neurocognitive outcome with low tidal volume ventilation after cardiac arrest. Am J Respir Crit Care Med 2017;195
 (9):1198–206.
- Moskowitz A, Grossestreuer AV, Berg KM, et al. The association between tidal volume and neurological outcome following inhospital cardiac arrest. Resuscitation 2018;124:106–11.
- Asehnoune K, Rooze P, Robba C, et al. Mechanical ventilation in patients with acute brain injury: a systematic review with metaanalysis. Crit Care 2023;27(1):221.
- 73. Pozuelo-Carrascosa DP, Cobo-Cuenca AI, Carmona-Torres JM, Laredo-Aguilera JA, Santacruz-Salas E, Fernandez-Rodriguez R. Body position for preventing ventilator-associated pneumonia for critically ill patients: a systematic review and network meta-analysis. J Intensive Care 2022;10(1):9.
- Vahatalo JH, Huikuri HV, Holmstrom LTA, et al. Association of silent myocardial infarction and sudden cardiac death. JAMA Cardiol 2019;4(8):796–802.
- Patterson T, Perkins GD, Hassan Y, et al. Temporal trends in identification, management, and clinical outcomes after out-ofhospital cardiac arrest: insights from the myocardial ischaemia national audit project database. Circ Cardiovasc Interv 2018;11(6) e005346.
- Nikolaou NI, Netherton S, Welsford M, et al. A systematic review and meta-analysis of the effect of routine early angiography in patients with return of spontaneous circulation after Out-of-Hospital Cardiac Arrest. Resuscitation 2021;163:28–48.
- 77. Baldi E, Schnaubelt S, Caputo ML, et al. Association of timing of electrocardiogram acquisition after return of spontaneous circulation with coronary angiography findings in patients with outof-hospital cardiac arrest. JAMA Netw Open 2021;4(1)e2032875.
- 78. Naas CJ, Saleh HO, Engel 2nd TW, et al. Associations with resolution of ST-segment elevation myocardial infarction criteria on

- out-of-hospital 12-lead electrocardiograms following resuscitation from cardiac arrest. Resuscitation 2025;209:110567.
- Aufderheide TP, Engel 2nd TW, Saleh HO, et al. Change in out-of-hospital 12-lead ECG diagnostic classification following resuscitation from cardiac arrest. Resuscitation 2021;169:45–52.
- Dumas F, Bougouin W, Geri G, et al. Emergency percutaneous coronary intervention in post-cardiac arrest patients without STsegment elevation pattern: insights from the PROCAT II registry. JACC Cardiovasc Interv 2016;9(10):1011–8.
- Elfwen L, Lagedal R, James S, et al. Coronary angiography in outof-hospital cardiac arrest without ST elevation on ECG-Short- and long-term survival. Am Heart J 2018;200:90–5.
- Lemkes JS, Janssens GN, van der Hoeven NW, et al. Coronary angiography after cardiac arrest without ST-segment elevation. N Engl J Med 2019;380(15):1397–407.
- Desch S, Freund A, Akin I, et al. Angiography after out-of-hospital cardiac arrest without ST-segment elevation. N Engl J Med 2021;385(27):2544–53.
- 84. Spoormans EM, Thevathasan T, van Royen N, et al. One-year outcomes of coronary angiography after out-of-hospital cardiac arrest without ST elevation: an individual patient data metaanalysis. JAMA Cardiol 2025.
- 85. Hauw-Berlemont C, Lamhaut L, Diehl JL, et al. Emergency vs delayed coronary angiogram in survivors of out-of-hospital cardiac arrest: results of the randomized, multicentric EMERGE Trial. JAMA Cardiol 2022;7(7):700–7.
- 86. Kern KB, Radsel P, Jentzer JC, et al. Randomized pilot clinical trial of early coronary angiography versus no early coronary angiography after cardiac arrest without ST-segment elevation: the PEARL study. Circulation 2020;142(21):2002–12.
- Viana-Tejedor A, Andrea-Riba R, Scardino C, et al. Coronary angiography in patients without ST-segment elevation following outof-hospital cardiac arrest. COUPE clinical trial. Rev Esp Cardiol (Engl Ed) 2023;76(2):94–102.
- 88. Hamidi F, Anwari E, Spaulding C, et al. Early versus delayed coronary angiography in patients with out-of-hospital cardiac arrest and no ST-segment elevation: a systematic review and metaanalysis of randomized controlled trials. Clin Res Cardiol 2024;113 (4):561–9.
- 89. Bougouin W, Dumas F, Karam N, et al. Should we perform an immediate coronary angiogram in all patients after cardiac arrest? Insights from a large French registry. JACC Cardiovasc Interv 2018;11(3):249–56.
- Pareek N, Kordis P, Beckley-Hoelscher N, et al. A practical risk score for early prediction of neurological outcome after out-ofhospital cardiac arrest: MIRACLE2. Eur Heart J 2020;41 (47):4508–17.
- Pareek N, Beckley-Hoelscher N, Kanyal R, et al. MIRACLE(2) score and SCAI grade to identify patients with out-of-hospital cardiac arrest for immediate coronary angiography. JACC Cardiovasc Interv 2022;15(10):1074–84.
- Oksanen T, Skrifvars M, Wilkman E, Tierala I, Pettila V, Varpula T. Postresuscitation hemodynamics during therapeutic hypothermia after out-of-hospital cardiac arrest with ventricular fibrillation: a retrospective study. Resuscitation 2014;85(8):1018–24.
- Laurent I, Monchi M, Chiche JD, et al. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol 2002;40(12):2110–6.
- 94. Uray T, Lamade A, Elmer J, et al. Phenotyping cardiac arrest: bench and bedside characterization of brain and heart injury based on etiology. Crit Care Med 2018;46(6):e508–15.
- Jentzer JC, Anavekar NS, Mankad SV, et al. Changes in left ventricular systolic and diastolic function on serial 4echocardiography after out-of-hospital cardiac arrest. Resuscitation 2018;126:1–6.

- Cha KC, Kim HI, Kim OH, et al. Echocardiographic patterns of postresuscitation myocardial dysfunction. Resuscitation 2018;124:90–5.
- Anderson RJ, Jinadasa SP, Hsu L, et al. Shock subtypes by left ventricular ejection fraction following out-of-hospital cardiac arrest. Crit Care 2018;22(1):162.
- Grand J, Kjaergaard J, Bro-Jeppesen J, et al. Cardiac output, heart rate and stroke volume during targeted temperature management after out-of-hospital cardiac arrest: association with mortality and cause of death. Resuscitation 2019:142:136–43.
- Grand J, Hassager C, Schmidt H, et al. Serial assessments of cardiac output and mixed venous oxygen saturation in comatose patients after out-of-hospital cardiac arrest. Crit Care 2023;27 (1):410.
- 100. Ameloot K, De Deyne C, Eertmans W, et al. Early goal-directed haemodynamic optimization of cerebral oxygenation in comatose survivors after cardiac arrest: the Neuroprotect post-cardiac arrest trial. Eur Heart J 2019;40(22):1804–14.
- 101. Jakkula P, Pettila V, Skrifvars MB, et al. Targeting low-normal or high-normal mean arterial pressure after cardiac arrest and resuscitation: a randomised pilot trial. Intensive Care Med 2018;44 (12):2091–101.
- 102. Grand J, Meyer AS, Kjaergaard J, et al. A randomised double-blind pilot trial comparing a mean arterial pressure target of 65 mm Hg versus 72 mm Hg after out-of-hospital cardiac arrest. Eur Heart J Acute Cardiovasc Care 2020;9(4_suppl):S100-9.
- Niemela V, Siddiqui F, Ameloot K, et al. Higher versus lower blood pressure targets after cardiac arrest: systematic review with individual patient data meta-analysis. Resuscitation 2023;189:109862.
- Scheinberg P, Jayne HW. Factors influencing cerebral blood flow and metabolism; a review. Circulation 1952;5(2):225–34.
- Haddad SH, Arabi YM. Critical care management of severe traumatic brain injury in adults. Scand J Trauma Resusc Emerg Med 2012:20:12
- 106. Ameloot K, Genbrugge C, Meex I, et al. An observational near-infrared spectroscopy study on cerebral autoregulation in post-cardiac arrest patients: time to drop 'one-size-fits-all' hemodynamic targets? Resuscitation 2015;90:121–6.
- Sundgreen C, Larsen FS, Herzog TM, Knudsen GM, Boesgaard S, Aldershvile J. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke 2001;32(1):128–32.
- Sekhon MS, Griesdale DE. Individualized perfusion targets in hypoxic ischemic brain injury after cardiac arrest. Crit Care 2017;21 (1):259
- 109. Sekhon MS, Gooderham P, Menon DK, et al. The burden of brain hypoxia and optimal mean arterial pressure in patients with hypoxic ischemic brain injury after cardiac arrest. Crit Care Med 2019;47 (7):960–9.
- 110. Hoiland RL, Robba C, Menon DK, Sekhon MS. Differential pathophysiologic phenotypes of hypoxic ischemic brain injury: considerations for post-cardiac arrest trials. Intensive Care Med 2020;46(10):1969–71.
- 111. van den Brule JM, Vinke E, van Loon LM, van der Hoeven JG, Hoedemaekers CW. Middle cerebral artery flow, the critical closing pressure, and the optimal mean arterial pressure in comatose cardiac arrest survivors-an observational study. Resuscitation 2017;110:85–9.
- 112. Buunk G, van der Hoeven JG, Meinders AE. Cerebrovascular reactivity in comatose patients resuscitated from a cardiac arrest. Stroke 1997;28(8):1569–73.
- Lemiale V, Huet O, Vigue B, et al. Changes in cerebral blood flow and oxygen extraction during post-resuscitation syndrome. Resuscitation 2008;76(1):17–24.
- 114. Rafi S, Tadie JM, Gacouin A, et al. Doppler sonography of cerebral blood flow for early prognostication after out-of-hospital cardiac arrest: DOTAC study. Resuscitation 2019;141:188–94.

- 115. Torgersen C, Meichtry J, Schmittinger CA, et al. Haemodynamic variables and functional outcome in hypothermic patients following out-of-hospital cardiac arrest. Resuscitation 2013;84(6):798–804.
- Post H, Schmitto JD, Steendijk P, et al. Cardiac function during mild hypothermia in pigs: increased inotropy at the expense of diastolic dysfunction. Acta Physiol (Oxf) 2010;199(1):43–52.
- 117. Staer-Jensen H, Sunde K, Olasveengen TM, et al. Bradycardia during therapeutic hypothermia is associated with good neurologic outcome in comatose survivors of out-of-hospital cardiac arrest. Crit Care Med 2014;42(11):2401–8.
- 118. Thomsen JH, Hassager C, Bro-Jeppesen J, et al. Sinus bradycardia during hypothermia in comatose survivors of out-of-hospital cardiac arrest - a new early marker of favorable outcome? Resuscitation 2015;89:36–42.
- Oksanen T, Tiainen M, Vaahersalo J, et al. Lower heart rate is associated with good one-year outcome in post-resuscitation patients. Resuscitation 2018;128:112–8.
- Adrie C, Adib-Conquy M, Laurent I, et al. Successful cardiopulmonary resuscitation after cardiac arrest as a "sepsis-like" syndrome. Circulation 2002;106(5):562–8.
- 121. Kim F, Nichol G, Maynard C, et al. Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial. JAMA 2014;311 (1):45–52.
- 122. Hammond NE, Zampieri FG, Di Tanna GL, et al. Balanced crystalloids versus saline in critically III adults - a systematic review with meta-analysis. NEJM Evid 2022;1(2)EVIDoa2100010.
- 123. Arabi YM, Belley-Cote E, Carsetti A, et al. European Society of Intensive Care Medicine clinical practice guideline on fluid therapy in adult critically ill patients. Part 1: the choice of resuscitation fluids. Intensive Care Med 2024;50(6):813–31.
- 124. Strand K, Soreide E, Kirkegaard H, et al. The influence of prolonged temperature management on acute kidney injury after out-ofhospital cardiac arrest: a post hoc analysis of the TTH48 trial. Resuscitation 2020;151:10–7.
- Jeppesen KK, Rasmussen SB, Kjaergaard J, et al. Acute kidney injury after out-of-hospital cardiac arrest. Crit Care 2024;28 (1):169.
- 126. Geri G, Guillemet L, Dumas F, et al. Acute kidney injury after out-of-hospital cardiac arrest: risk factors and prognosis in a large cohort. Intensive Care Med 2015;41(7):1273–80.
- 127. Rundgren M, Ullen S, Morgan MPG, et al. Renal function after outof-hospital cardiac arrest; the influence of temperature management and coronary angiography, a post hoc study of the target temperature management trial. Crit Care 2019;23(1):163.
- 128. Sandroni C, Dell'anna AM, Tujjar O, Geri G, Cariou A, Taccone FS. Acute kidney injury after cardiac arrest: a systematic review and meta-analysis of clinical studies. Minerva Anestesiol 2016;82 (9):989–99.
- 129. Grand J, Hassager C, Winther-Jensen M, et al. Mean arterial pressure during targeted temperature management and renal function after out-of-hospital cardiac arrest. J Crit Care 2019;50:234–41.
- 130. Laurikkala J, Ameloot K, Reinikainen M, et al. The effect of higher or lower mean arterial pressure on kidney function after cardiac arrest: a post hoc analysis of the COMACARE and NEUROPROTECT trials. Ann Intensive Care 2023;13(1):113.
- 131. Bro-Jeppesen J, Annborn M, Hassager C, et al. Hemodynamics and vasopressor support during targeted temperature management at 33 °C versus 36 °CC after out-of-hospital cardiac arrest: a post hoc study of the target temperature management trial*. Crit Care Med 2015;43(2):318–27.
- Kjaergaard J, Moller JE, Schmidt H, et al. Blood-pressure targets in comatose survivors of cardiac arrest. N Engl J Med 2022;387 (16):1456–66.
- 133. Chaves RCF, Barbas CSV, Queiroz VNF, et al. Assessment of fluid responsiveness using pulse pressure variation, stroke volume variation, plethysmographic variability index, central venous

- pressure, and inferior vena cava variation in patients undergoing mechanical ventilation: a systematic review and meta-analysis. Crit Care 2024;28(1):289.
- 134. Mekontso Dessap A, AlShamsi F, Belletti A, et al. European Society of Intensive Care Medicine (ESICM) 2025 clinical practice guideline on fluid therapy in adult critically ill patients: part 2-the volume of resuscitation fluids. Intensive Care Med 2025;51 (3):461–77.
- 135. Pansiritanachot W, Vathanavalun O, Chakorn T. Early post-resuscitation outcomes in patients receiving norepinephrine versus epinephrine for post-resuscitation shock in a non-trauma emergency department: a parallel-group, open-label, feasibility randomized controlled trial. Resusc Plus 2024;17:100551.
- 136. Normand S, Matthews C, Brown CS, et al. Risk of arrhythmia in post-resuscitative shock after out-of-hospital cardiac arrest with epinephrine versus norepinephrine. Am J Emerg Med 2024;77:72–6.
- Bougouin W, Slimani K, Renaudier M, et al. Epinephrine versus norepinephrine in cardiac arrest patients with post-resuscitation shock. Intensive Care Med 2022;48(3):300–10.
- 138. Wender ER, Counts CR, Van Dyke M, Sayre MR, Maynard C, Johnson NJ. Prehospital administration of norepinephrine and epinephrine for shock after resuscitation from cardiac arrest. Prehosp Emerg Care 2024;28(3):453–8.
- 139. Smida T, Crowe RP, Martin PS, Scheidler JF, Price BS, Bardes JM. A retrospective, multi-agency 'target trial emulation' for the comparison of post-resuscitation epinephrine to norepinephrine. Resuscitation 2024;198:110201.
- 140. Li CJ, Wu KH, Chen CC, Law YY, Chuang PC, Chen YC. Comparison of dopamine and norepinephrine use for the treatment of hypotension in out-of-hospital cardiac arrest patients with return of spontaneous circulation. Emerg Med Int 2020;2020:7951025.
- 141. Levy B, Clere-Jehl R, Legras A, et al. Epinephrine versus norepinephrine for cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol 2018;72(2):173–82.
- 142. Myburgh JA, Higgins A, Jovanovska A, et al. A comparison of epinephrine and norepinephrine in critically ill patients. Intensive Care Med 2008;34(12):2226–34.
- 143. De Backer D, Biston P, Devriendt J, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med 2010;362(9):779–89.
- 144. Gamper G, Havel C, Arrich J, et al. Vasopressors for hypotensive shock. Cochrane Database Syst Rev 2016;2(2)CD003709.
- 145. Henry TD, Tomey MI, Tamis-Holland JE, et al. Invasive management of acute myocardial infarction complicated by cardiogenic shock: a scientific statement from the American Heart Association. Circulation 2021;143(15):e815–29.
- 146. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 2018;39(2):119–77.
- 147. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021;42(36):3599–726.
- 148. Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med 2021;47(11):1181–247.
- 149. Yerke JR, Mireles-Cabodevila E, Chen AY, et al. Peripheral administration of norepinephrine: a prospective observational study. Chest 2024;165(2):348–55.
- Christensen J, Andersson E, Sjoberg F, et al. Adverse events of peripherally administered norepinephrine during surgery: a prospective multicenter study. Anesth Analg 2024;138(6):1242–8.
- **151.** Lancellotti P, Price S, Edvardsen T, et al. The use of echocardiography in acute cardiovascular care: recommendations

- of the European Association of Cardiovascular Imaging and the Acute Cardiovascular Care Association. Eur Heart J Cardiovasc Imaging 2015;16(2):119–46.
- 152. Lazzarin T, Tonon CR, Martins D, et al. Post-cardiac arrest: mechanisms, management, and future perspectives. J Clin Med 2022;12(1):259.
- 153. Grand J, Moller JE, Hassager C, et al. Impact of blood pressure targets on central hemodynamics during intensive care after out-ofhospital cardiac arrest. Resuscitation 2024;194:110094.
- 154. Nicholson TC, Drennan I, Andersen LW, et al., on behalf of the International Liaison Committee on Resuscitation Advanced Life Support Task Force. Use of Vasopressin and Corticosteroids during Cardiac Arrest in Adults: Consensus on Science with Treatment Recommendations, Brussels, Belgium: International Liaison Committee on Resuscitation (ILCOR) Advanced Life Support Task Force, Feb 2022. Available from: http://ilcor.org.
- 155. Mentzelopoulos SD, Malachias S, Chamos C, et al. Vasopressin, steroids, and epinephrine and neurologically favorable survival after in-hospital cardiac arrest: a randomized clinical trial. JAMA 2013;310(3):270–9.
- 156. Mentzelopoulos SD, Zakynthinos SG, Tzoufi M, et al. Vasopressin, epinephrine, and corticosteroids for in-hospital cardiac arrest. Arch Intern Med 2009;169(1):15–24.
- 157. Donnino MW, Andersen LW, Berg KM, et al. Corticosteroid therapy in refractory shock following cardiac arrest: a randomized, doubleblind, placebo-controlled, trial. Crit Care 2016;20:82.
- 158. Holmberg MJ, Granfeldt A, Mentzelopoulos SD, Andersen LW. Vasopressin and glucocorticoids for in-hospital cardiac arrest: a systematic review and meta-analysis of individual participant data. Resuscitation 2022:171:48–56.
- Mentzelopoulos SD, Pappa E, Malachias S, et al. Physiologic effects of stress dose corticosteroids in in-hospital cardiac arrest (CORTICA): a randomized clinical trial. Resusc Plus 2022:10:100252.
- Holm A, Lascarrou JB, Cariou A, et al. Potassium disorders at intensive care unit admission and functional outcomes after cardiac arrest. Resuscitation 2024;205:110439.
- 161. Skrifvars MB, Pettila V, Rosenberg PH, Castren M. A multiple logistic regression analysis of in-hospital factors related to survival at six months in patients resuscitated from out-of-hospital ventricular fibrillation. Resuscitation 2003;59(3):319–28.
- 162. Jessen MK, Andersen LW, Djakow J, et al. Pharmacological interventions for the acute treatment of hyperkalaemia: a systematic review and meta-analysis. Resuscitation 2025;208:110489.
- 163. Schupp T, Behnes M, Zworowsky MV, et al. Hypokalemia but not hyperkalemia is associated with recurrences of ventricular tachyarrhythmias in ICD recipients. Clin Lab 2020;66(3).
- 164. Skogestad J, Aronsen JM. Hypokalemia-induced arrhythmias and heart failure: new insights and implications for therapy. Front Physiol 2018;9:1500.
- 165. Banning AS, Sabate M, Orban M, et al. Venoarterial extracorporeal membrane oxygenation or standard care in patients with cardiogenic shock complicating acute myocardial infarction: the multicentre, randomised EURO SHOCK trial. EuroIntervention 2023;19(6):482–92.
- 166. Bochaton T, Huot L, Elbaz M, et al. Mechanical circulatory support with the Impella(R) LP5.0 pump and an intra-aortic balloon pump for cardiogenic shock in acute myocardial infarction: The IMPELLA-STIC randomized study. Arch Cardiovasc Dis 2020;113(4):237–43.
- Brunner S, Guenther SPW, Lackermair K, et al. Extracorporeal life support in cardiogenic shock complicating acute myocardial infarction. J Am Coll Cardiol 2019;73(18):2355–7.
- 168. Burkhoff D, Cohen H, Brunckhorst C, O'Neill WW, TandemHeart Investigators G. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J 2006;152(3):469.e1–8.

- Firdaus I, Yuniadi Y, Andriantoro H, et al. Early insertion of intraaortic balloon pump after cardiac arrest on acute coronary syndrome patients: a randomized clinical trial. Cardiol Cardiovasc Med 2019;03(04).
- Moller JE, Engstrom T, Jensen LO, et al. Microaxial flow pump or standard care in infarct-related cardiogenic shock. N Engl J Med 2024;390(15):1382–93.
- 171. Ohman EM, Nanas J, Stomel RJ, et al. Thrombolysis and counterpulsation to improve survival in myocardial infarction complicated by hypotension and suspected cardiogenic shock or heart failure: results of the TACTICS Trial. J Thromb Thrombolysis 2005;19(1):33–9.
- 172. Ostadal P, Rokyta R, Karasek J, et al. Extracorporeal membrane oxygenation in the therapy of cardiogenic shock: results of the ECMO-CS randomized clinical trial. Circulation 2023;147 (6):454–64.
- 173. Ouweneel DM, Eriksen E, Sjauw KD, et al. Percutaneous mechanical circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol 2017;69(3):278–87.
- 174. Seyfarth M, Sibbing D, Bauer I, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol 2008;52(19):1584–8.
- 175. Thiele H, Engelmann L, Elsner K, et al. Comparison of pre-hospital combination-fibrinolysis plus conventional care with pre-hospital combination-fibrinolysis plus facilitated percutaneous coronary intervention in acute myocardial infarction. Eur Heart J 2005;26 (19):1956–63.
- Thiele H, Zeymer U, Akin I, et al. Extracorporeal life support in infarct-related cardiogenic shock. N Engl J Med 2023;389 (14):1286–97.
- 177. Thiele H, Zeymer U, Neumann FJ, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 2012;367(14):1287–96.
- 178. Prondzinsky R, Lemm H, Swyter M, et al. Intra-aortic balloon counterpulsation in patients with acute myocardial infarction complicated by cardiogenic shock: the prospective, randomized IABP SHOCK Trial for attenuation of multiorgan dysfunction syndrome. Crit Care Med 2010;38(1):152–60.
- 179. Thiele H, Moller JE, Henriques JPS, et al. Temporary mechanical circulatory support in infarct-related cardiogenic shock: an individual patient data meta-analysis of randomised trials with 6-month followup. Lancet 2024;404(10457):1019–28.
- Tiainen M, Parikka HJ, Makijarvi MA, Takkunen OS, Sarna SJ, Roine RO. Arrhythmias and heart rate variability during and after therapeutic hypothermia for cardiac arrest. Crit Care Med 2009;37 (2):403–9.
- Soar J, Bottiger B, Carli P, et al. European Resuscitation Council guidelines 2025: adult advanced life support. Resuscitation 2025.
- 182. Thomsen JH, Hassager C, Erlinge D, et al. Atrial fibrillation following out-of-hospital cardiac arrest and targeted temperature management-are we giving it the attention it deserves? Crit Care Med 2016;44(12):2215–22.
- 183. Dombrowski A, Curtis K, Wisniewski S, et al. Post-ROSC Atrial fibrillation is not associated with rearrest but is associated with stroke and mortality following out of hospital cardiac arrest. Resuscitation 2024;201:110270.
- 184. Bellut H, Guillemet L, Bougouin W, et al. Early recurrent arrhythmias after out-of-hospital cardiac arrest associated with obstructive coronary artery disease: analysis of the PROCAT registry. Resuscitation 2019;141:81–7.
- **185.** Thomsen JH, Hassager C, Erlinge D, et al. Repolarization and ventricular arrhythmia during targeted temperature management post cardiac arrest. Resuscitation 2021;166:74–82.

- Soar J, Bottiger BW, Carli P, et al. European Resuscitation Council guidelines 2021: adult advanced life support. Resuscitation 2021;161:115–51.
- Jentzer JC, Noseworthy PA, Kashou AH, et al. Multidisciplinary critical care management of electrical storm: JACC state-of-the-art review. J Am Coll Cardiol 2023;81(22):2189–206.
- 188. Lenarczyk R, Zeppenfeld K, Tfelt-Hansen J, et al. Management of patients with an electrical storm or clustered ventricular arrhythmias: a clinical consensus statement of the European Heart Rhythm Association of the ESC-endorsed by the Asia-Pacific Heart Rhythm Society, Heart Rhythm Society, and Latin-American Heart Rhythm Society. Europace 2024;26(4).
- 189. Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J 2022;43(40):3997–4126.
- Alba AC, Foroutan F, Duero Posada J, et al. Implantable cardiac defibrillator and mortality in non-ischaemic cardiomyopathy: an updated meta-analysis. Heart 2018;104(3):230–6.
- 191. Maron MS, Rowin EJ, Wessler BS, et al. Enhanced American College of Cardiology/American Heart Association strategy for prevention of sudden cardiac death in high-risk patients with hypertrophic cardiomyopathy. JAMA Cardiol 2019;4(7):644–57.
- 192. Connolly SJ, Hallstrom AP, Cappato R, et al. Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials. AVID, CASH and CIDS studies. Antiarrhythmics vs Implantable Defibrillator study. Cardiac Arrest Study Hamburg. Canadian Implantable Defibrillator Stud. Eur Heart J 2000;21(24):2071–8.
- 193. Hallstrom AP, Greene HL, Wyse DG, et al. Antiarrhythmics Versus Implantable Defibrillators (AVID)–rationale, design, and methods. Am J Cardiol 1995;75(7):470–5.
- 194. Connolly SJ, Gent M, Roberts RS, et al. Canadian implantable defibrillator study (CIDS): a randomized trial of the implantable cardioverter defibrillator against amiodaron. Circulation 2000;101 (11):1297–302.
- 195. Kuck KH, Cappato R, Siebels J, Ruppel R. Randomized comparison of antiarrhythmic drug therapy with implantable defibrillators in patients resuscitated from cardiac arrest: the Cardiac Arrest Study Hamburg (CASH). Circulation 2000;102 (7):748–54.
- 196. Garcia R, Combes N, Defaye P, et al. Wearable cardioverter-defibrillator in patients with a transient risk of sudden cardiac death: the WEARIT-France cohort study. Europace 2021;23(1):73–81.
- 197. Crepeau AZ, Fugate JE, Mandrekar J, et al. Value analysis of continuous EEG in patients during therapeutic hypothermia after cardiac arrest. Resuscitation 2014;85(6):785–9.
- 198. Sondag L, Ruijter BJ, Tjepkema-Cloostermans MC, et al. Early EEG for outcome prediction of postanoxic coma: prospective cohort study with cost-minimization analysis. Crit Care 2017;21(1):111.
- 199. Lybeck A, Friberg H, Aneman A, et al. Prognostic significance of clinical seizures after cardiac arrest and target temperature management. Resuscitation 2017;114:146–51.
- Hirsch LJ, Fong MWK, Leitinger M, et al. American Clinical Neurophysiology Society's standardized critical care EEG terminology: 2021 version. J Clin Neurophysiol 2021;38(1):1–29.
- Seder DB, Sunde K, Rubertsson S, et al. Neurologic outcomes and postresuscitation care of patients with myoclonus following cardiac arrest. Crit Care Med 2015;43(5):965–72.
- Gupta HV, Caviness JN. Post-hypoxic myoclonus: current concepts, neurophysiology, and treatment. Tremor Other Hyperkinet Mov (N Y) 2016;6:409.
- 203. Nutma S, Ruijter BJ, Beishuizen A, et al. Myoclonus in comatose patients with electrographic status epilepticus after cardiac arrest: corresponding EEG patterns, effects of treatment and outcomes. Resuscitation 2023;186:109745.

- Elmer J, Rittenberger JC, Faro J, et al. Clinically distinct electroencephalographic phenotypes of early myoclonus after cardiac arrest. Ann Neurol 2016;80(2):175–84.
- Lucas JM, Cocchi MN, Salciccioli J, et al. Neurologic recovery after therapeutic hypothermia in patients with post-cardiac arrest myoclonus. Resuscitation 2012;83(2):265–9.
- Bouwes A, van Poppelen D, Koelman JH, et al. Acute posthypoxic myoclonus after cardiopulmonary resuscitation. BMC Neurol 2012;12:63.
- Aicua Rapun I, Novy J, Solari D, Oddo M, Rossetti AO. Early Lance-Adams syndrome after cardiac arrest: prevalence, time to return to awareness, and outcome in a large cohort. Resuscitation 2017:115:169–72.
- Lance JW, Adams RD. The syndrome of intention or action myoclonus as a sequel to hypoxic encephalopathy. Brain 1963;86:111–36.
- Angeles-Sistac D, Izura-Gomez M, Barguilla-Arribas A, Sierra-Marcos A, Moran-Chorro I. Lance-Adams syndrome in the intensive care unit: a case report. Cureus 2024;16(4)e58241.
- 210. Backman S, Westhall E, Dragancea I, et al. Electroencephalographic characteristics of status epilepticus after cardiac arrest. Clin Neurophysiol 2017;128 (4):681–8.
- 211. Koutroumanidis M, Sakellariou D. Low frequency nonevolving generalized periodic epileptiform discharges and the borderland of hypoxic nonconvulsive status epilepticus in comatose patients after cardiac arrest. Epilepsy Behav 2015;49:255–62.
- 212. Thomke F, Weilemann SL. Poor prognosis despite successful treatment of postanoxic generalized myoclonus. Neurology 2010;74 (17):1392–4.
- Ruijter BJ, Keijzer HM, Tjepkema-Cloostermans MC, et al. Treating rhythmic and periodic EEG patterns in comatose survivors of cardiac arrest. N Engl J Med 2022;386(8):724–34.
- 214. Beretta S, Coppo A, Bianchi E, et al. Neurologic outcome of postanoxic refractory status epilepticus after aggressive treatment. Neurology 2018;91(23):e2153–62.
- 215. Dragancea I, Backman S, Westhall E, Rundgren M, Friberg H, Cronberg T. Outcome following postanoxic status epilepticus in patients with targeted temperature management after cardiac arrest. Epilepsy Behav 2015;49:173–7.
- 216. Hofmeijer J, Tjepkema-Cloostermans MC, Blans MJ, Beishuizen A, van Putten MJ. Unstandardized treatment of electroencephalographic status epilepticus does not improve outcome of comatose patients after cardiac arrest. Front Neurol 2014;5:39.
- 217. Rossetti AO, Oddo M, Liaudet L, Kaplan PW. Predictors of awakening from postanoxic status epilepticus after therapeutic hypothermia. Neurology 2009;72(8):744–9.
- 218. Solanki P, Coppler PJ, Kvaloy JT, et al. Association of antiepileptic drugs with resolution of epileptiform activity after cardiac arrest. Resuscitation 2019;142:82–90.
- Dijk JM, Tijssen MA. Management of patients with myoclonus: available therapies and the need for an evidence-based approach. Lancet Neurol 2010;9(10):1028–36.
- 220. Zaccara G, Giorgi FS, Amantini A, et al. Why we prefer levetiracetam over phenytoin for treatment of status epilepticus. Acta Neurol Scand 2018;137(6):618–22.
- Brain Resuscitation Clinical Trial ISG. Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. N Engl J Med 1986;314(7):397–403.
- 222. Longstreth Jr WT, Fahrenbruch CE, Olsufka M, Walsh TR, Copass MK, Cobb LA. Randomized clinical trial of magnesium, diazepam, or both after out-of-hospital cardiac arrest. Neurology 2002;59 (4):506–14.
- 223. Dragancea I, Horn J, Kuiper M, et al. Neurological prognostication after cardiac arrest and targeted temperature management 33 °C

- versus 36 °C: results from a randomised controlled clinical trial. Resuscitation 2015;93:164–70.
- 224. Barbella G, Lee JW, Alvarez V, et al. Prediction of regaining consciousness despite an early epileptiform EEG after cardiac arrest. Neurology 2020;94(16):e1675–83.
- 225. van Putten M, Ruijter BJ, Horn J, et al. Quantitative characterization of rhythmic and periodic EEG patterns in patients in a coma after cardiac arrest and association with outcome. Neurology 2024;103 (3)e209608.
- 226. Rey A, Rossetti AO, Miroz JP, Eckert P, Oddo M. Late awakening in survivors of postanoxic coma: early neurophysiologic predictors and association with ICU and long-term neurologic recovery. Crit Care Med 2019;47(1):85–92.
- 227. Granfeldt A, Holmberg MJ, Nolan JP, Soar J, Andersen LW. International Liaison Committee on Resuscitation Advanced Life Support Task F. Targeted temperature management in adult cardiac arrest: systematic review and meta-analysis. Resuscitation 2021;167:160–72.
- 228. Granfeldt A, Holmberg MJ, Nolan JP, Soar J, Andersen LW. International Liaison Committee on Resuscitation IALSTF. Temperature control after adult cardiac arrest: an updated systematic review and meta-analysis. Resuscitation 2023;191:109928.
- Arrich J, Schutz N, Oppenauer J, et al. Hypothermia for neuroprotection in adults after cardiac arrest. Cochrane Database Syst Rev 2023;5(5)CD004128.
- 230. Behringer W, Bottiger BW, Biasucci DG, et al. Temperature control after successful resuscitation from cardiac arrest in adults: a joint statement from the European Society for Emergency Medicine (EUSEM) and the European Society of Anaesthesiology and Intensive Care (ESAIC). Eur J Emerg Med 2024;31(2):86–9.
- 231. Andersen LW, Holmberg MJ, Nolan JP, Soar J, Granfeldt A. Conflicting guidelines: a commentary on the recent European Society for Emergency Medicine and European Society of Anaesthesiology and Intensive Care guidelines on temperature control after cardiac arrest. Eur J Anaesthesiol 2024;41(7):468–72.
- Lascarrou JB, Merdji H, Le Gouge A, et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. N Engl J Med 2019;381(24):2327–37.
- 233. Taccone FS, Dankiewicz J, Cariou A, et al. Hypothermia vs normothermia in patients with cardiac arrest and nonshockable rhythm: a meta-analysis. JAMA Neurol 2024;81(2):126–33.
- 234. Arrich J, Herkner H, Mullner D, Behringer W. Targeted temperature management after cardiac arrest. A systematic review and metaanalysis of animal studies. Resuscitation 2021;162:47–55.
- 235. Dillenbeck E, Hollenberg J, Holzer M, et al. The design of the PRINCESS 2 trial: a randomized trial to study the impact of ultrafast hypothermia on complete neurologic recovery after out-of-hospital cardiac arrest with initial shockable rhythm. Am Heart J 2024;271:97–108.
- Tissier R, Taccone FS, Lamhaut L, et al. Design of the overcool study: lung-conservative liquid ventilation for the induction of ultrarapid cooling after cardiac arrest (OverCool). Resusc Plus 2025;23:100926.
- 237. Bartlett ES, Valenzuela T, Idris A, et al. Systematic review and meta-analysis of intravascular temperature management vs. surface cooling in comatose patients resuscitated from cardiac arrest. Resuscitation 2020;146:82–95.
- 238. Kim JG, Ahn C, Shin H, et al. Efficacy of the cooling method for targeted temperature management in post-cardiac arrest patients: a systematic review and meta-analysis. Resuscitation 2020;148:14–24.
- 239. Ramadanov N, Arrich J, Klein R, Herkner H, Behringer W. Intravascular versus surface cooling in patients resuscitated from cardiac arrest: a systematic review and network meta-analysis with

- focus on temperature feedback. Crit Care Med 2022;50 (6):999-1009
- Sandroni C, Delamarre L, Nolan JP. From surface to core: does better cooling make a difference after cardiac arrest? Intensive Care Med 2025;51(5):957–9.
- 241. Awad A, Jonsson M, Holgersson J, et al. Intravascular vs. surface cooling in out-of-hospital cardiac arrest patients receiving hypothermia after hospital arrival: a post hoc analysis of the TTM2 trial. Intensive Care Med 2025;51(4):721–30.
- 242. Greer DM, Helbok R, Badjatia N, et al. Fever prevention in patients with acute vascular brain injury: the INTREPID randomized clinical trial. JAMA 2024;332(18):1525–34.
- 243. Kirkegaard H, Soreide E, de Haas I, et al. Targeted temperature management for 48 vs 24 hours and neurologic outcome after outof-hospital cardiac arrest: a randomized clinical trial. JAMA 2017;318(4):341–50.
- 244. Tahara Y, Noguchi T, Yonemoto N, et al. Cluster randomized trial of duration of cooling in targeted temperature management after resuscitation for cardiac arrest. Circ Rep 2021;3(7):368–74.
- 245. Hassager C, Schmidt H, Moller JE, et al. Duration of device-based fever prevention after cardiac arrest. N Engl J Med 2023;388 (10):888–97
- 246. Arola OJ, Laitio RM, Roine RO, et al. Feasibility and cardiac safety of inhaled xenon in combination with therapeutic hypothermia following out-of-hospital cardiac arrest. Crit Care Med 2013;41 (9):2116–24.
- Berg KM, Grossestreuer AV, Balaji L, et al. Thiamine as a metabolic resuscitator after in-hospital cardiac arrest. Resuscitation 2024;198:110160.
- 248. Bjelland TW, Dale O, Kaisen K, et al. Propofol and remifentanil versus midazolam and fentanyl for sedation during therapeutic hypothermia after cardiac arrest: a randomised trial. Intensive Care Med 2012;38(6):959–67.
- 249. Brain Resuscitation Clinical Trial IISG. A randomized clinical study of a calcium-entry blocker (lidoflazine) in the treatment of comatose survivors of cardiac arrest. N Engl J Med 1991;324(18):1225–31.
- 250. Cariou A, Deye N, Vivien B, et al. Early high-dose erythropoietin therapy after out-of-hospital cardiac arrest: a multicenter, randomized controlled trial. J Am Coll Cardiol 2016;68(1):40–9.
- 251. Coppler PJ, Gagnon DJ, Flickinger KL, et al. A multicenter, randomized, doubleblind, placebo-controlled trial of amantadine to stimulate awakening in comatose patients resuscitated from cardiac arrest. Clin Exp Emerg Med 2024;11(2):205–12.
- 252. Damian MS, Ellenberg D, Gildemeister R, et al. Coenzyme Q10 combined with mild hypothermia after cardiac arrest: a preliminary study. Circulation 2004;110(19):3011–6.
- 253. Dezfulian C, Olsufka M, Fly D, et al. Hemodynamic effects of IV sodium nitrite in hospitalized comatose survivors of out of hospital cardiac arrest. Resuscitation 2018;122:106–12.
- Donnino MW, Berg KM, Vine J, et al. Thiamine as a metabolic resuscitator after out-of-hospital cardiac arrest. Resuscitation 2024;198:110158.
- 255. Forsman M, Aarseth HP, Nordby HK, Skulberg A, Steen PA. Effects of nimodipine on cerebral blood flow and cerebrospinal fluid pressure after cardiac arrest: correlation with neurologic outcome. Anesth Analg 1989;68(4):436–43.
- Francois B, Cariou A, Clere-Jehl R, et al. Prevention of early ventilator-associated pneumonia after cardiac arrest. N Engl J Med 2019;381(19):1831–42.
- 257. Gando S, Tedo I. Increased neutrophil elastase release in patients with cardiopulmonary arrest: role of elastase inhibitor. Intensive Care Med 1995;21(8):636–40.
- 258. Gueugniaud PY, Gaussorgues P, Garcia-Darennes F, et al. Early effects of nimodipine on intracranial and cerebral perfusion

- pressures in cerebral anoxia after out-of-hospital cardiac arrest. Resuscitation 1990;20(3):203–12.
- 259. Holmberg MJ, Andersen LW, Moskowitz A, et al. Ubiquinol (reduced coenzyme Q10) as a metabolic resuscitator in postcardiac arrest: a randomized, double-blind, placebo-controlled trial. Resuscitation 2021;162:388–95.
- Kordis P, Bozic Mijovski M, Berden J, Steblovnik K, Blinc A, Noc M. Cangrelor for comatose survivors of out-of-hospital cardiac arrest undergoing percutaneous coronary intervention: the CANGRELOR-OHCA study. EuroIntervention 2023;18(15):1269–71.
- 261. Laitio R, Hynninen M, Arola O, et al. Effect of inhaled xenon on cerebral white matter damage in comatose survivors of out-ofhospital cardiac arrest: a randomized clinical trial. JAMA 2016;315 (11):1120–8.
- 262. Lee BK, Cho IS, Oh JS, et al. Continuous neuromuscular blockade infusion for out-of-hospital cardiac arrest patients treated with targeted temperature management: a multicenter randomized controlled trial. PLoS One 2018;13(12)e0209327.
- Llitjos JF, Sideris G, Voicu S, et al. Impaired biological response to aspirin in therapeutic hypothermia comatose patients resuscitated from out-of-hospital cardiac arrest. Resuscitation 2016;105:16–21.
- 264. Meyer ASP, Johansson PI, Kjaergaard J, et al. Endothelial Dysfunction in Resuscitated Cardiac Arrest (ENDO-RCA): safety and efficacy of low-dose lloprost, a prostacyclin analogue, in addition to standard therapy, as compared to standard therapy alone, in post-cardiac-arrest-syndrome patients. Am Heart J 2020;219:9–20.
- 265. Meyer MAS, Wiberg S, Grand J, et al. Treatment effects of Interleukin-6 receptor antibodies for modulating the systemic inflammatory response after out-of-hospital cardiac arrest (the IMICA trial): a double-blinded, placebo-controlled, single-center, randomized, clinical trial. Circulation 2021;143(19):1841–51.
- 266. Moskowitz A, Andersen LW, Rittenberger JC, et al. Continuous neuromuscular blockade following successful resuscitation from cardiac arrest: a randomized trial. J Am Heart Assoc 2020;9(17) e017171.
- Nutma S, Beishuizen A, van den Bergh WM, et al. Ghrelin for neuroprotection in post-cardiac arrest coma: a randomized clinical trial. JAMA Neurol 2024;81(6):603–10.
- 268. Obling LER, Beske RP, Meyer MAS, et al. Prehospital high-dose methylprednisolone in resuscitated out-of-hospital cardiac arrest patients (STEROHCA): a randomized clinical trial. Intensive Care Med 2023;49(12):1467–78.
- Pakdaman H, Gharagozli K, Karamiani F, et al. MLC901 in hypoxicischemic brain injury patients: a double-blind, randomized placebocontrolled pilot study. Medicine (Baltimore) 2023;102(23)e33914.
- Pradita-Ukrit S, Vattanavanit V. Efficacy of thiamine in the treatment of postcardiac arrest patients: a randomized controlled study. Crit Care Res Pract 2020;2020:2981079.
- 271. Privsek M, Strnad M, Markota A. Addition of vitamin C does not decrease neuron-specific enolase levels in adult survivors of cardiac arrest-results of a randomized trial. Medicina (Kaunas) 2024;60(1).
- 272. Ribaric SF, Turel M, Knafelj R, et al. Prophylactic versus clinically-driven antibiotics in comatose survivors of out-of-hospital cardiac arrest-a randomized pilot study. Resuscitation 2017;111:103–9.
- 273. Roine RO, Kaste M, Kinnunen A, Nikki P, Sarna S, Kajaste S. Nimodipine after resuscitation from out-of-hospital ventricular fibrillation. A placebo-controlled, double-blind, randomized trial. JAMA 1990;264(24):3171–7.
- 274. Steblovnik K, Blinc A, Mijovski MB, Fister M, Mikuz U, Noc M. Ticagrelor versus clopidogrel in comatose survivors of out-of-hospital cardiac arrest undergoing percutaneous coronary intervention and hypothermia: a randomized study. Circulation 2016;134(25):2128–30.
- 275. Stockl M, Testori C, Sterz F, et al. Continuous versus intermittent neuromuscular blockade in patients during targeted temperature management after resuscitation from cardiac arrest-a randomized,

- double blinded, double dummy, clinical trial. Resuscitation 2017:120:14–9.
- 276. Tamura T, Suzuki M, Homma K, Sano M, Group HIS. Efficacy of inhaled hydrogen on neurological outcome following brain ischaemia during post-cardiac arrest care (HYBRID II): a multicentre, randomised, double-blind, placebo-controlled trial. EClinicalMedicine 2023;58:101907.
- 277. Thel MC, Armstrong AL, McNulty SE, Califf RM, O'Connor CM. Randomised trial of magnesium in in-hospital cardiac arrest. Duke Internal Medicine Housestaff. Lancet 1997;350(9087):1272–6.
- 278. Wang D, Jiang Q, Du X. Protective effects of scopolamine and penehyclidine hydrochloride on acute cerebral ischemiareperfusion injury after cardiopulmonary resuscitation and effects on cytokines. Exp Ther Med 2018;15(2):2027–31.
- 279. Wiberg S, Hassager C, Schmidt H, et al. Neuroprotective effects of the glucagon-like peptide-1 analog exenatide after out-of-hospital cardiac arrest: a randomized controlled trial. Circulation 2016;134 (25):2115–24.
- 280. Zhang Q, Li C, Shao F, Zhao L, Wang M, Fang Y. Efficacy and safety of combination therapy of shenfu injection and postresuscitation bundle in patients with return of spontaneous circulation after in-hospital cardiac arrest: a randomized, assessorblinded, controlled trial. Crit Care Med 2017;45(10):1587–95.
- 281. Cocchi MN, Giberson B, Berg K, et al. Coenzyme Q10 levels are low and associated with increased mortality in post-cardiac arrest patients. Resuscitation 2012;83(8):991–5.
- 282. Thoresen M, Hobbs CE, Wood T, Chakkarapani E, Dingley J. Cooling combined with immediate or delayed xenon inhalation provides equivalent long-term neuroprotection after neonatal hypoxia-ischemia. J Cereb Blood Flow Metab 2009;29(4):707–14.
- 283. Arola O, Saraste A, Laitio R, et al. Inhaled xenon attenuates myocardial damage in comatose survivors of out-of-hospital cardiac arrest: the Xe-Hypotheca trial. J Am Coll Cardiol 2017;70 (21):2652–60.
- 284. Knapp J, Bergmann G, Bruckner T, Russ N, Bottiger BW, Popp E. Pre- and postconditioning effect of Sevoflurane on myocardial dysfunction after cardiopulmonary resuscitation in rats. Resuscitation 2013;84(10):1450–5.
- 285. Krannich A, Leithner C, Engels M, et al. Isoflurane sedation on the ICU in cardiac arrest patients treated with targeted temperature management: an observational propensity-matched study. Crit Care Med 2017;45(4):e384–90.
- 286. Hellstrom J, Owall A, Martling CR, Sackey PV. Inhaled isoflurane sedation during therapeutic hypothermia after cardiac arrest: a case series. Crit Care Med 2014;42(2):e161–6.
- 287. Parlow S, Lepage-Ratte MF, Jung RG, et al. Inhaled anaesthesia compared with conventional sedation in post cardiac arrest patients undergoing temperature control: a systematic review and metaanalysis. Resuscitation 2022;176:74–9.
- 288. Soukup J, Michel P, Christel A, Schittek GA, Wagner NM, Kellner P. Prolonged sedation with sevoflurane in comparison to intravenous sedation in critically ill patients a randomized controlled trial. J Crit Care 2023;74:154251.
- 289. Teiten C, Bailly P, Tonnelier JM, Bodenes L, de Longeaux K, L'Her E. Impact of inhaled sedation on delirium incidence and neurological outcome after cardiac arrest a propensity-matched control study (Isocare). Resuscitation 2024;203:110358.
- 290. Paul M, Bougouin W, Geri G, et al. Delayed awakening after cardiac arrest: prevalence and risk factors in the Parisian registry. Intensive Care Med 2016;42(7):1128–36.
- 291. Perbet S, Mongardon N, Dumas F, et al. Early-onset pneumonia after cardiac arrest: characteristics, risk factors and influence on prognosis. Am J Respir Crit Care Med 2011;184(9):1048–54.
- 292. Baekgaard JS, Triba MN, Brandeis M, et al. Early-onset pneumonia following bag-mask ventilation versus endotracheal intubation during cardiopulmonary resuscitation: a substudy of the CAAM trial. Resuscitation 2020;154:12–8.

- 293. Couper K, Laloo R, Field R, Perkins GD, Thomas M, Yeung J. Prophylactic antibiotic use following cardiac arrest: a systematic review and meta-analysis. Resuscitation 2019;141:166–73.
- 294. Geller BJ, Maciel CB, May TL, Jentzer JC. Sedation and shivering management after cardiac arrest. Eur Heart J Acute Cardiovasc Care 2023;12(8):518–24.
- 295. Olsen MH, Jensen AKG, Dankiewicz J, et al. Interactions in the 2x2x2 factorial randomised clinical STEPCARE trial and the potential effects on conclusions: a protocol for a simulation study. Trials 2022;23(1):889.
- 296. Stollings JL, Kotfis K, Chanques G, Pun BT, Pandharipande PP, Ely EW. Delirium in critical illness: clinical manifestations, outcomes, and management. Intensive Care Med 2021;47(10):1089–103.
- 297. Paul M, Bougouin W, Dumas F, et al. Comparison of two sedation regimens during targeted temperature management after cardiac arrest. Resuscitation 2018;128:204–10.
- Jabaudon M, Quenot JP, Badie J, et al. Inhaled sedation in acute respiratory distress syndrome: the SESAR randomized clinical trial. JAMA 2025;333(18):1608–17.
- 299. Lin T, Yao Y, Xu Y, Huang HB. Neuromuscular blockade for cardiac arrest patients treated with targeted temperature management: a systematic review and meta-analysis. Front Pharmacol 2022;13:780370.
- Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 2010;363 (12):1107–16.
- 301. Alhazzani W, Alshahrani M, Jaeschke R, et al. Neuromuscular blocking agents in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. Crit Care 2013;17(2):R43.
- National Heart L, Blood Institute PCTN, Moss M, et al. Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome. N Engl J Med 2019;380(21):1997–2008.
- Williams ML, Nolan JP. Is enteral feeding tolerated during therapeutic hypothermia? Resuscitation 2014;85(11):1469–72.
- 304. Martin M, Reignier J, Le Thuaut A, et al. Nutrition during targeted temperature management after cardiac arrest: observational study of neurological outcomes and nutrition tolerance. JPEN J Parenter Enteral Nutr 2020;44(1):138–45.
- Duan J, Ren J, Li X, Du L, Duan B, Ma Q. Early enteral nutrition could be associated with improved survival outcome in cardiac arrest. Emerg Med Int 2024;2024:9372015.
- 306. Tsai YC, Yin CH, Chen JS, Chen YS, Huang SC, Chen JK. Early enteral nutrition in patients with out-of-hospital cardiac arrest under target temperature management was associated with a lower 7-day bacteremia rate: a post-hoc analysis of a retrospective cohort study. J Microbiol Immunol Infect 2024;57(2):309–19.
- 307. Gutierrez A, Carlson C, Kalra R, Elliott AM, Yannopoulos D, Bartos JA. Outcomes associated with delayed enteral feeding after cardiac arrest treated with veno-arterial extracorporeal membrane oxygenation and targeted temperature management. Resuscitation 2021;164:20–6.
- 308. Reignier J, Rice TW, Arabi YM, Casaer M. Nutritional support in the ICU. BMJ 2025;388:e077979.
- Krag M, Marker S, Perner A, et al. Pantoprazole in patients at Risk for gastrointestinal bleeding in the ICU. N Engl J Med 2018;379 (23):2199–208.
- Cook D, Guyatt G. Prophylaxis against upper gastrointestinal bleeding in hospitalized patients. N Engl J Med 2018;378 (26):2506–16.
- 311. Wang Y, Ge L, Ye Z, et al. Efficacy and safety of gastrointestinal bleeding prophylaxis in critically ill patients: an updated systematic review and network meta-analysis of randomized trials. Intensive Care Med 2020;46(11):1987–2000.
- Cook D, Deane A, Lauzier F, et al. Stress ulcer prophylaxis during invasive mechanical ventilation. N Engl J Med 2024;391(1):9–20.

- Paul M, Bougouin W, Legriel S, et al. Frequency, risk factors, and outcomes of non-occlusive mesenteric ischaemia after cardiac arrest. Resuscitation 2020:157:211–8.
- 314. Grimaldi D, Legriel S, Pichon N, et al. Ischemic injury of the upper gastrointestinal tract after out-of-hospital cardiac arrest: a prospective, multicenter study. Crit Care 2022;26(1):59.
- 315. Gianforcaro A, Kurz M, Guyette FX, et al. Association of antiplatelet therapy with patient outcomes after out-of-hospital cardiac arrest. Resuscitation 2017;121:98–103.
- 316. Adrie C, Monchi M, Laurent I, et al. Coagulopathy after successful cardiopulmonary resuscitation following cardiac arrest: implication of the protein C anticoagulant pathway. J Am Coll Cardiol 2005;46 (1):21–8.
- 317. Schunemann HJ, Cushman M, Burnett AE, et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv 2018;2(22):3198–225.
- Duranteau J, Taccone FS, Verhamme P, Ageno W, Force EVGT.
 European guidelines on perioperative venous thromboembolism prophylaxis: intensive care. Eur J Anaesthesiol 2018;35(2):142–6.
- Fernando SM, Tran A, Cheng W, et al. VTE prophylaxis in critically Ill adults: a systematic review and network meta-analysis. Chest 2022;161(2):418–28.
- 320. Llau JV, Kamphuisen P, Albaladejo P, Force EVGT. European guidelines on perioperative venous thromboembolism prophylaxis: chronic treatments with antiplatelet agents. Eur J Anaesthesiol 2018;35(2):139–141.
- Van Poucke S, Stevens K, Marcus AE, Lance M. Hypothermia: effects on platelet function and hemostasis. Thromb J 2014;12 (1):31.
- 322. Andremont O, du Cheyron D, Terzi N, et al. Endovascular cooling versus standard femoral catheters and intravascular complications: a propensity-matched cohort study. Resuscitation 2018;124:1–6.
- 323. American Diabetes Association Professional Practice C. 16. Diabetes care in the hospital: standards of care in diabetes-2024. Diabetes Care 2024;47(Suppl 1):S295–S306.
- Gunst J, Debaveye Y, Guiza F, et al. Tight blood-glucose control without early parenteral nutrition in the ICU. N Engl J Med 2023;389 (13):1180–90.
- Oksanen T, Skrifvars MB, Varpula T, et al. Strict versus moderate glucose control after resuscitation from ventricular fibrillation. Intensive Care Med 2007;33(12):2093–100.
- Investigators N-S-S, Finfer S, Liu B, et al. Hypoglycemia and risk of death in critically ill patients. N Engl J Med 2012;367(12):1108–18.
- Oddo M, Poole D, Helbok R, et al. Fluid therapy in neurointensive care patients: ESICM consensus and clinical practice recommendations. Intensive Care Med 2018;44(4):449–63.
- 328. Laver S, Farrow C, Turner D, Nolan J. Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med 2004;30(11):2126–8.
- 329. Lemiale V, Dumas F, Mongardon N, et al. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med 2013;39 (11):1972–80.
- 330. Sandroni C, D'Arrigo S, Callaway CW, et al. The rate of brain death and organ donation in patients resuscitated from cardiac arrest: a systematic review and meta-analysis. Intensive Care Med 2016;42 (11):1661–71.
- Dragancea I, Rundgren M, Englund E, Friberg H, Cronberg T. The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation 2013;84 (3):337–42.
- 332. Sandroni C, Cariou A, Cavallaro F, et al. Prognostication in comatose survivors of cardiac arrest: an advisory statement from the European Resuscitation Council and the European Society of

- Intensive Care Medicine. Intensive Care Med 2014;40 (12):1816–31.
- 333. A randomized clinical study of cardiopulmonary-cerebral resuscitation: design, methods, and patient characteristics. Brain Resuscitation Clinical Trial I Study Group. Am J Emerg Med 1986;4 (1):72–86.
- Rankin J. Cerebral vascular accidents in patients over the age of 60. II. Prognosis. Scott Med J 1957;2(5):200–15.
- 335. Haywood K, Whitehead L, Nadkarni VM, et al. COSCA (Core Outcome Set for Cardiac Arrest) in adults: an advisory statement from the international liaison committee on resuscitation. Resuscitation 2018;127:147–63.
- 336. Banks JL, Marotta CA. Outcomes validity and reliability of the modified Rankin scale: implications for stroke clinical trials: a literature review and synthesis. Stroke 2007;38(3):1091–6.
- Raina KD, Callaway C, Rittenberger JC, Holm MB. Neurological and functional status following cardiac arrest: method and tool utility. Resuscitation 2008;79(2):249–56.
- Quinn TJ, Dawson J, Walters MR, Lees KR. Reliability of the modified Rankin Scale. Stroke 2007;38(11):e144 [author reply e145].
- **339.** Sandroni C, Nolan JP. Neuroprognostication after cardiac arrest in Europe: new timings and standards. Resuscitation 2015;90:A4–5.
- 340. Sandroni C, D'Arrigo S, Cacciola S, et al. Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med 2020;46(10):1803–51.
- Steinberg A, Callaway CW, Arnold RM, et al. Prognostication after cardiac arrest: results of an international, multi-professional survey. Resuscitation 2019;138:190–7.
- 342. Moseby-Knappe M, Westhall E, Backman S, et al. Performance of a guideline-recommended algorithm for prognostication of poor neurological outcome after cardiac arrest. Intensive Care Med 2020;46(10):1852–62.
- 343. Youn CS, Park KN, Kim SH, et al. External validation of the 2020 ERC/ESICM prognostication strategy algorithm after cardiac arrest. Crit Care 2022;26(1):95.
- 344. Sandroni C, Cavallaro F, Callaway CW, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 2: patients treated with therapeutic hypothermia. Resuscitation 2013;84(10):1324–38.
- 345. Sandroni C, Cavallaro F, Callaway CW, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 1: patients not treated with therapeutic hypothermia. Resuscitation 2013;84(10):1310–23.
- 346. Stammet P, Collignon O, Hassager C, et al. Neuron-specific enolase as a predictor of death or poor neurological outcome after out-of-hospital cardiac arrest and targeted temperature management at 33 °C and 36 °C. J Am Coll Cardiol 2015;65 (19):2104–14.
- 347. Wihersaari L, Ashton NJ, Reinikainen M, et al. Neurofilament light as an outcome predictor after cardiac arrest: a post hoc analysis of the COMACARE trial. Intensive Care Med 2021;47(1):39–48.
- 348. Moseby-Knappe M, Mattsson-Carlgren N, Stammet P, et al. Serum markers of brain injury can predict good neurological outcome after out-of-hospital cardiac arrest. Intensive Care Med 2021;47 (9):984–94.
- 349. Scarpino M, Carrai R, Lolli F, et al. Neurophysiology for predicting good and poor neurological outcome at 12 and 72 h after cardiac arrest: the ProNeCA multicentre prospective study. Resuscitation 2020;147:95–103.
- Scarpino M, Lanzo G, Lolli F, et al. Neurophysiological and neuroradiological multimodal approach for early poor outcome prediction after cardiac arrest. Resuscitation 2018;129:114–20.
- Zhou SE, Maciel CB, Ormseth CH, Beekman R, Gilmore EJ, Greer DM. Distinct predictive values of current neuroprognostic guidelines in post-cardiac arrest patients. Resuscitation 2019;139:343–50.
- Geocadin RG, Callaway CW, Fink EL, et al. Standards for studies of neurological prognostication in comatose survivors of cardiac

- arrest: a scientific statement from the American Heart Association. Circulation 2019:140(9):e517–42.
- 353. Dragancea I, Wise MP, Al-Subaie N, et al. Protocol-driven neurological prognostication and withdrawal of life-sustaining therapy after cardiac arrest and targeted temperature management. Resuscitation 2017;117:50–7.
- 354. Nobile L, Taccone FS, Szakmany T, et al. The impact of extracerebral organ failure on outcome of patients after cardiac arrest: an observational study from the ICON database. Crit Care 2016;20(1):368.
- Taccone FS, Horn J, Storm C, et al. Death after awakening from post-anoxic coma: the "Best CPC" project. Crit Care 2019;23 (1):107.
- 356. Nakstad ER, Staer-Jensen H, Wimmer H, et al. Late awakening, prognostic factors and long-term outcome in out-of-hospital cardiac arrest results of the prospective Norwegian Cardio-Respiratory Arrest Study (NORCAST). Resuscitation 2020;149:170–9.
- Olson DM, Stutzman S, Saju C, Wilson M, Zhao W, Aiyagari V. Interrater reliability of pupillary assessments. Neurocrit Care 2016;24(2):251–7.
- 358. Nyholm B, Obling LER, Hassager C, et al. Specific thresholds of quantitative pupillometry parameters predict unfavorable outcome in comatose survivors early after cardiac arrest. Resusc Plus 2023;14:100399.
- **359.** Macchini E, Bertelli A, Bogossian EG, et al. Pain pupillary index to prognosticate unfavorable outcome in comatose cardiac arrest patients. Resuscitation 2022;176:125–31.
- **360.** Paramanathan S, Grejs AM, Soreide E, et al. Quantitative pupillometry in comatose out-of-hospital cardiac arrest patients: a post-hoc analysis of the TTH48 trial. Acta Anaesthesiol Scand 2022;66(7):880–6.
- 361. Oddo M, Sandroni C, Citerio G, et al. Quantitative versus standard pupillary light reflex for early prognostication in comatose cardiac arrest patients: an international prospective multicenter doubleblinded study. Intensive Care Med 2018;44(12):2102–11.
- 362. Wijdicks EF, Bamlet WR, Maramattom BV, Manno EM, McClelland RL. Validation of a new coma scale: the FOUR score. Ann Neurol 2005;58(4):585–93.
- 363. Maciel CB, Barden MM, Youn TS, Dhakar MB, Greer DM. Neuroprognostication practices in postcardiac arrest patients: an international survey of critical care providers. Crit Care Med 2020;48(2):e107–14.
- 364. van Zijl JC, Beudel M, Vd Hoeven HJ, Lange F, Tijssen MAJ, Elting JWJ. Electroencephalographic findings in posthypoxic myoclonus. J Intensive Care Med 2016;31(4):270–5.
- 365. Benghanem S, Nguyen LS, Gavaret M, et al. SSEP N20 and P25 amplitudes predict poor and good neurologic outcomes after cardiac arrest. Ann Intensive Care 2022;12(1):25.
- 366. Caroyer S, Depondt C, Rikir E, et al. Assessment of a standardized EEG reactivity protocol after cardiac arrest. Clin Neurophysiol 2021;132(7):1687–93.
- Kongpolprom N, Cholkraisuwat J. Neurological prognostications for the therapeutic hypothermia among comatose survivors of cardiac arrest. Indian J Crit Care Med 2018;22(7):509–18.
- English WA, Giffin NJ, Nolan JP. Myoclonus after cardiac arrest: pitfalls in diagnosis and prognosis. Anaesthesia 2009;64 (8):908–11.
- 369. Ruknuddeen MI, Ramadoss R, Rajajee V, Grzeskowiak LE, Rajagopalan RE. Early clinical prediction of neurological outcome following out of hospital cardiac arrest managed with therapeutic hypothermia. Indian J Crit Care Med 2015;19(6):304–10.
- Friberg H, Cronberg T, Dunser MW, Duranteau J, Horn J, Oddo M. Survey on current practices for neurological prognostication after cardiac arrest. Resuscitation 2015;90:158–62.
- 371. Westhall E, Rosen I, Rundgren M, et al. Time to epileptiform activity and EEG background recovery are independent predictors after cardiac arrest. Clin Neurophysiol 2018;129(8):1660–8.

- 372. Cloostermans MC, van Meulen FB, Eertman CJ, Hom HW, van Putten MJ. Continuous electroencephalography monitoring for early prediction of neurological outcome in postanoxic patients after cardiac arrest: a prospective cohort study. Crit Care Med 2012;40 (10):2867–75.
- Rundgren M, Westhall E, Cronberg T, Rosen I, Friberg H.
 Continuous amplitude-integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit Care Med 2010;38(9):1838–44.
- 374. Oh SH, Park KN, Shon YM, et al. Continuous amplitude-integrated electroencephalographic monitoring is a useful prognostic tool for hypothermia-treated cardiac arrest patients. Circulation 2015;132 (12):1094–103.
- Jorgensen EO, Holm S. The natural course of neurological recovery following cardiopulmonary resuscitation. Resuscitation 1998;36 (2):111–22.
- Drohan CM, Cardi Al, Rittenberger JC, et al. Effect of sedation on quantitative electroencephalography after cardiac arrest. Resuscitation 2018;124:132–7.
- 377. Ruijter BJ, van Putten M, van den Bergh WM, Tromp SC, Hofmeijer J. Propofol does not affect the reliability of early EEG for outcome prediction of comatose patients after cardiac arrest. Clin Neurophysiol 2019;130(8):1263–70.
- 378. Westhall E, Rossetti AO, van Rootselaar AF, et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology 2016;86(16):1482–90.
- 379. Backman S, Cronberg T, Friberg H, et al. Highly malignant routine EEG predicts poor prognosis after cardiac arrest in the Target Temperature Management trial. Resuscitation 2018;131:24–8.
- 380. Benarous L, Gavaret M, Soda Diop M, et al. Sources of interrater variability and prognostic value of standardized EEG features in post-anoxic coma after resuscitated cardiac arrest. Clin Neurophysiol Pract 2019;4:20–6.
- Caporro M, Rossetti AO, Seiler A, et al. Electromyographic reactivity measured with scalp-EEG contributes to prognostication after cardiac arrest. Resuscitation 2019;138:146–52.
- 382. Lamartine Monteiro M, Taccone FS, Depondt C, et al. The prognostic value of 48-h continuous EEG during therapeutic hypothermia after cardiac arrest. Neurocrit Care 2016;24 (2):153–62.
- 383. Ruijter BJ, Tjepkema-Cloostermans MC, Tromp SC, et al. Early electroencephalography for outcome prediction of postanoxic coma: a prospective cohort study. Ann Neurol 2019;86(2):203–14.
- **384.** Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33(1):159–74.
- Hofmeijer J, Tjepkema-Cloostermans MC, van Putten MJ. Burstsuppression with identical bursts: a distinct EEG pattern with poor outcome in postanoxic coma. Clin Neurophysiol 2014;125 (5):947–54.
- Amorim E, Rittenberger JC, Zheng JJ, et al. Continuous EEG monitoring enhances multimodal outcome prediction in hypoxicischemic brain injury. Resuscitation 2016;109:121–6.
- Leao RN, Avila P, Cavaco R, Germano N, Bento L. Therapeutic hypothermia after cardiac arrest: outcome predictors. Revista Brasileira de terapia intensiva 2015;27(4):322–32.
- 388. Duez CHV, Johnsen B, Ebbesen MQ, et al. Post resuscitation prognostication by EEG in 24 vs 48 h of targeted temperature management. Resuscitation 2019;135:145–52.
- **389.** Misirocchi F, Bernabe G, Zinno L, et al. Epileptiform patterns predicting unfavorable outcome in postanoxic patients: a matter of time? Neurophysiol Clin 2023;53(1)102860.
- 390. Scarpino M, Lolli F, Lanzo G, et al. Neurophysiology and neuroimaging accurately predict poor neurological outcome within 24 hours after cardiac arrest: the ProNeCA prospective multicentre prognostication study. Resuscitation 2019;143:115–23.
- 391. Turella S, Dankiewicz J, Friberg H, et al. The predictive value of highly malignant EEG patterns after cardiac arrest: evaluation of the

- ERC-ESICM recommendations. Intensive Care Med 2024;50 (1):90–102.
- **392.** Sandroni C, Grippo A, Westhall E. The role of the electroencephalogram and evoked potentials after cardiac arrest. Curr Opin Crit Care 2023;29(3):199–207.
- 393. Fong MWK, Pu K, Beekman R, et al. Retrospective visual and quantitative assessment of burst suppression with and without identical bursts in patients after cardiac arrest. Neurocrit Care 2025.
- 394. Shivdat S, Zhan T, De Palma A, et al. Early burst suppression similarity association with structural brain injury severity on MRI after cardiac arrest. Neurocrit Care 2025;42(1):175–84.
- 395. Tjepkema-Cloostermans MC, Hofmeijer J, Trof RJ, Blans MJ, Beishuizen A, van Putten MJ. Electroencephalogram predicts outcome in patients with postanoxic coma during mild therapeutic hypothermia. Crit Care Med 2015;43(1):159–67.
- van Putten MJ, van Putten MH. Uncommon EEG burst-suppression in severe postanoxic encephalopathy. Clin Neurophysiol 2010;121 (8):1213–9.
- Westhall E, Rosen I, Rossetti AO, et al. Interrater variability of EEG interpretation in comatose cardiac arrest patients. Clin Neurophysiol 2015;126(12):2397–404.
- 398. Admiraal MM, van Rootselaar AF, Horn J. International consensus on EEG reactivity testing after cardiac arrest: towards standardization. Resuscitation 2018;131:36–41.
- Admiraal MM, van Rootselaar AF, Horn J. Electroencephalographic reactivity testing in unconscious patients: a systematic review of methods and definitions. Eur J Neurol 2017;24(2):245–54.
- 400. Admiraal MM, van Rootselaar AF, Hofmeijer J, et al. Electroencephalographic reactivity as predictor of neurological outcome in postanoxic coma: a multicenter prospective cohort study. Ann Neurol 2019;86(1):17–27.
- 401. Alvarez V, Reinsberger C, Scirica B, et al. Continuous electrodermal activity as a potential novel neurophysiological biomarker of prognosis after cardiac arrest–a pilot study. Resuscitation 2015;93:128–35.
- 402. Grippo A, Carrai R, Scarpino M, et al. Neurophysiological prediction of neurological good and poor outcome in post-anoxic coma. Acta Neurol Scand 2017;135(6):641–8.
- 403. Fatuzzo D, Beuchat I, Alvarez V, Novy J, Oddo M, Rossetti AO. Does continuous EEG influence prognosis in patients after cardiac arrest? Resuscitation 2018;132:29–32.
- 404. Liu G, Su Y, Liu Y, et al. Predicting outcome in comatose patients: the role of EEG reactivity to quantifiable electrical stimuli. Evid Based Complement Alternat Med 2016;2016:8273716.
- 405. Sivaraju A, Gilmore EJ, Wira CR, et al. Prognostication of postcardiac arrest coma: early clinical and electroencephalographic predictors of outcome. Intensive Care Med 2015;41(7):1264–72.
- 406. Sadaka F, Doerr D, Hindia J, Lee KP, Logan W. Continuous electroencephalogram in comatose postcardiac arrest syndrome patients treated with therapeutic hypothermia: outcome prediction study. J Intensive Care Med 2015;30(5):292–6.
- Ruijter BJ, van Putten MJ, Hofmeijer J. Generalized epileptiform discharges in postanoxic encephalopathy: quantitative characterization in relation to outcome. Epilepsia 2015;56 (11):1845–54.
- 408. Amorim E, van der Stoel M, Nagaraj SB, et al. Quantitative EEG reactivity and machine learning for prognostication in hypoxic-ischemic brain injury. Clin Neurophysiol 2019;130(10):1908–16.
- 409. Ruijter BJ, Hofmeijer J, Tjepkema-Cloostermans MC, van Putten M. The prognostic value of discontinuous EEG patterns in postanoxic coma. Clin Neurophysiol 2018;129(8):1534–43.
- 410. Nagaraj SB, Tjepkema-Cloostermans MC, Ruijter BJ, Hofmeijer J, van Putten M. The revised Cerebral Recovery Index improves predictions of neurological outcome after cardiac arrest. Clin Neurophysiol 2018;129(12):2557–66.
- 411. Eertmans W, Genbrugge C, Haesevoets G, et al. Recorded time periods of bispectral index values equal to zero predict neurological

- outcome after out-of-hospital cardiac arrest. Crit Care 2017;21 (1):221.
- 412. Park JH, Oh JH, Choi SP, Wee JH. Neurologic outcome after outof-hospital cardiac arrest could be predicted with the help of bispectral-index during early targeted temperature management. Scand J Trauma Resusc Emerg Med 2018;26(1):59.
- 413. Stammet P, Collignon O, Werer C, Sertznig C, Devaux Y. Bispectral index to predict neurological outcome early after cardiac arrest. Resuscitation 2014;85(12):1674–80.
- **414.** Horn J, Tjepkema-Cloostermans MC. Somatosensory evoked potentials in patients with hypoxic-ischemic brain injury. Semin Neurol 2017;37(1):60–5.
- 415. Noirhomme Q, Lehembre R, Lugo Zdel R, et al. Automated analysis of background EEG and reactivity during therapeutic hypothermia in comatose patients after cardiac arrest. Clin EEG Neurosci 2014;45 (1):6–13.
- 416. Rossetti AO, Tovar Quiroga DF, Juan E, et al. Electroencephalography predicts poor and good outcomes after cardiac arrest: a two-center study. Crit Care Med 2017;45(7): e674–82.
- 417. De Santis P, Lamanna I, Mavroudakis N, et al. The potential role of auditory evoked potentials to assess prognosis in comatose survivors from cardiac arrest. Resuscitation 2017;120:119–24.
- 418. Choi SP, Park KN, Wee JH, et al. Can somatosensory and visual evoked potentials predict neurological outcome during targeted temperature management in post cardiac arrest patients? Resuscitation 2017;119:70–5.
- 419. Dhakal LP, Sen A, Stanko CM, et al. Early absent pupillary light reflexes after cardiac arrest in patients treated with therapeutic hypothermia. Ther Hypothermia Temp Manag 2016;6(3):116–21.
- 420. Hofmeijer J, Beernink TM, Bosch FH, Beishuizen A, Tjepkema-Cloostermans MC, van Putten MJ. Early EEG contributes to multimodal outcome prediction of postanoxic coma. Neurology 2015;85(2):137–43.
- 421. Huntgeburth M, Adler C, Rosenkranz S, et al. Changes in neuron-specific enolase are more suitable than its absolute serum levels for the prediction of neurologic outcome in hypothermia-treated patients with out-of-hospital cardiac arrest. Neurocrit Care 2014;20 (3):358–66.
- 422. Kim SW, Oh JS, Park J, et al. Short-latency positive peak following N20 somatosensory evoked potential is superior to N20 in predicting neurologic outcome after out-of-hospital cardiac arrest. Crit Care Med 2018;46(6):e545–51.
- **423.** Maciel CB, Morawo AO, Tsao CY, et al. SSEP in therapeutic hypothermia era. J Clin Neurophysiol 2017;34(5):469–75.
- 424. Maia B, Roque R, Amaral-Silva A, Lourenco S, Bento L, Alcantara J. Predicting outcome after cardiopulmonary arrest in therapeutic hypothermia patients: clinical, electrophysiological and imaging prognosticators. Acta Med Port 2013;26(2):93–7.
- 425. Oddo M, Rossetti AO. Early multimodal outcome prediction after cardiac arrest in patients treated with hypothermia. Crit Care Med 2014;42(6):1340–7.
- 426. Tsetsou S, Novy J, Pfeiffer C, Oddo M, Rossetti AO. Multimodal outcome prognostication after cardiac arrest and targeted temperature management: analysis at 36 °C. Neurocrit Care 2018:28(1):104–9.
- 427. Amorim E, Ghassemi MM, Lee JW, et al. Estimating the false positive rate of absent somatosensory evoked potentials in cardiac arrest prognostication. Crit Care Med 2018;46(12):e1213–21.
- 428. Pfeifer R, Weitzel S, Gunther A, et al. Investigation of the interobserver variability effect on the prognostic value of somatosensory evoked potentials of the median nerve (SSEP) in cardiac arrest survivors using an SSEP classification. Resuscitation 2013;84 (10):1375–81.
- Zandbergen EG, Hijdra A, de Haan RJ, et al. Interobserver variation in the interpretation of SSEPs in anoxic-ischaemic coma. Clin Neurophysiol 2006;117(7):1529–35.

- 430. Aalberts N, Westhall E, Johnsen B, et al. Cortical somatosensory evoked potential amplitudes and clinical outcome after cardiac arrest: a retrospective multicenter study. J Neurol 2023;270 (12):5999–6009.
- **431.** Carrai R, Scarpino M, Lolli F, et al. Early-SEPs' amplitude reduction is reliable for poor-outcome prediction after cardiac arrest? Acta Neurol Scand 2019;139(2):158–65.
- 432. Glimmerveen AB, Keijzer HM, Ruijter BJ, Tjepkema-Cloostermans MC, van Putten M, Hofmeijer J. Relevance of somatosensory evoked potential amplitude after cardiac arrest. Front Neurol 2020:11:335.
- **433.** Scarpino M, Lolli F, Lanzo G, et al. SSEP amplitude accurately predicts both good and poor neurological outcome early after cardiac arrest; a post-hoc analysis of the ProNeCA multicentre study. Resuscitation 2021;163:162–71.
- 434. van Soest TM, van Rootselaar AF, Admiraal MM, Potters WV, Koelman J, Horn J. SSEP amplitudes add information for prognostication in postanoxic coma. Resuscitation 2021;163:172–5.
- 435. Berg KM, Bray JE, Ng KC, et al. 2023 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations: summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces. Resuscitation 2024;195:109992.
- 436. Arctaedius I, Levin H, Thorgeirsdottir B, et al. Plasma glial fibrillary acidic protein and tau: predictors of neurological outcome after cardiac arrest. Crit Care 2024;28(1):116.
- 437. Wihersaari L, Reinikainen M, Tiainen M, et al. Ubiquitin C-terminal hydrolase L1 after out-of-hospital cardiac arrest. Acta Anaesthesiol Scand 2023;67(7):964–71.
- 438. Levin H, Lybeck A, Frigyesi A, et al. Plasma neurofilament light is a predictor of neurological outcome 12 h after cardiac arrest. Crit Care 2023;27(1):74.
- 439. Klitholm M, Jeppesen AN, Christensen S, et al. Neurofilament light chain and glial fibrillary acidic protein as early prognostic biomarkers after out-of-hospital cardiac arrest. Resuscitation 2023;193:109983.
- 440. Wihersaari L, Reinikainen M, Furlan R, et al. Neurofilament light compared to neuron-specific enolase as a predictor of unfavourable outcome after out-of-hospital cardiac arrest. Resuscitation 2022:174:1–8.
- 441. Humaloja J, Lahde M, Ashton NJ, et al. GFAp and tau protein as predictors of neurological outcome after out-of-hospital cardiac arrest: a post hoc analysis of the COMACARE trial. Resuscitation 2022;170:141–9.
- 442. Yuan A, Nixon RA. Neurofilament proteins as biomarkers to monitor neurological diseases and the efficacy of therapies. Front Neurosci 2021;15:689938.
- 443. Martinez-Losas P, Lopez de Sa E, Armada E, et al. Neuron-specific enolase kinetics: an additional tool for neurological prognostication after cardiac arrest. Rev Esp Cardiol (Engl Ed) 2020;73(2):123–30.
- 444. Ryczek R, Kwasiborski PJ, Dymus J, et al. Neuron-specific enolase concentrations for the prediction of poor prognosis of comatose patients after out-of-hospital cardiac arrest: an observational cohort study. Kardiol Pol 2021;79(5):546–53.
- 445. Kim HB, Yang JH, Lee YH. Are serial neuron-specific enolase levels associated with neurologic outcome of ECPR patients: a retrospective multicenter observational study. Am J Emerg Med 2023;69:58–64.
- 446. Pouplet C, Colin G, Guichard E, et al. The accuracy of various neuro-prognostication algorithms and the added value of neurofilament light chain dosage for patients resuscitated from shockable cardiac arrest: an ancillary analysis of the ISOCRATE study. Resuscitation 2022;171:1–7.
- 447. Ryoo SM, Kim YJ, Sohn CH, Ahn S, Seo DW, Kim WY. Prognostic abilities of serial neuron-specific enolase and lactate and their

- combination in cardiac arrest survivors during targeted temperature management. J Clin Med 2020;9(1):159.
- 448. Lee JH, Kim YH, Lee JH, et al. Combination of neuron-specific enolase measurement and initial neurological examination for the prediction of neurological outcomes after cardiac arrest. Sci Rep 2021;11(1):15067.
- 449. Vondrakova D, Kruger A, Janotka M, et al. Association of neuron-specific enolase values with outcomes in cardiac arrest survivors is dependent on the time of sample collection. Crit Care 2017;21 (1):172.
- 450. Streitberger KJ, Leithner C, Wattenberg M, et al. Neuron-specific enolase predicts poor outcome after cardiac arrest and targeted temperature management: a multicenter study on 1,053 patients. Crit Care Med 2017;45(7):1145–51.
- 451. Chung-Esaki HM, Mui G, Mlynash M, Eyngorn I, Catabay K, Hirsch KG. The neuron specific enolase (NSE) ratio offers benefits over absolute value thresholds in post-cardiac arrest coma prognosis. J Clin Neurosci 2018;57:99–104.
- 452. Duez CHV, Grejs AM, Jeppesen AN, et al. Neuron-specific enolase and S-100b in prolonged targeted temperature management after cardiac arrest: a randomised study. Resuscitation 2018;122:79–86.
- 453. Jang JH, Park WB, Lim YS, et al. Combination of S100B and procalcitonin improves prognostic performance compared to either alone in patients with cardiac arrest: a prospective observational study. Medicine (Baltimore) 2019;98(6)e14496.
- 454. Pfeifer R, Franz M, Figulla HR. Hypothermia after cardiac arrest does not affect serum levels of neuron-specific enolase and protein S-100b. Acta Anaesthesiol Scand 2014;58(9):1093–100.
- 455. Wiberg S, Hassager C, Stammet P, et al. Single versus serial measurements of neuron-specific enolase and prediction of poor neurological outcome in persistently unconscious patients after outof-hospital cardiac arrest - A TTM-trial substudy. PLoS One 2017;12(1)e0168894.
- Rundgren M, Cronberg T, Friberg H, Isaksson A. Serum neuron specific enolase - impact of storage and measuring method. BMC Res Notes 2014;7:726.
- 457. Adler C, Onur OA, Braumann S, et al. Absolute serum neurofilament light chain levels and its early kinetics predict brain injury after out-of-hospital cardiac arrest. J Neurol 2022;269 (3):1530–7.
- 458. Song H, Bang HJ, You Y, et al. Novel serum biomarkers for predicting neurological outcomes in postcardiac arrest patients treated with targeted temperature management. Crit Care 2023;27 (1):113
- **459.** Moseby-Knappe M, Mattsson N, Nielsen N, et al. Serum neurofilament light chain for prognosis of outcome after cardiac arrest. JAMA Neurol 2019;76(1):64–71.
- 460. Rana OR, Schroder JW, Baukloh JK, et al. Neurofilament light chain as an early and sensitive predictor of long-term neurological outcome in patients after cardiac arrest. Int J Cardiol 2013;168 (2):1322–7.
- 461. Studahl M, Rosengren L, Gunther G, Hagberg L. Difference in pathogenesis between herpes simplex virus type 1 encephalitis and tick-borne encephalitis demonstrated by means of cerebrospinal fluid markers of glial and neuronal destruction. J Neurol 2000;247 (8):636–42.
- 462. Andreasson U, Gobom J, Delatour V, et al. Assessing the commutability of candidate reference materials for the harmonization of neurofilament light measurements in blood. Clin Chem Lab Med 2023;61(7):1245–54.
- 463. Stammet P, Dankiewicz J, Nielsen N, et al. Protein S100 as outcome predictor after out-of-hospital cardiac arrest and targeted temperature management at 33 °C and 36 °C. Crit Care 2017;21 (1):153.
- 464. Ebner F, Moseby-Knappe M, Mattsson-Carlgren N, et al. Serum GFAP and UCH-L1 for the prediction of neurological outcome in comatose cardiac arrest patients. Resuscitation 2020;154:61–8.

- 465. Gul SS, Huesgen KW, Wang KK, Mark K, Tyndall JA. Prognostic utility of neuroinjury biomarkers in post out-of-hospital cardiac arrest (OHCA) patient management. Med Hypotheses 2017;105:34–47.
- 466. Keijzer HM, Hoedemaekers CWE, Meijer FJA, Tonino BAR, Klijn CJM, Hofmeijer J. Brain imaging in comatose survivors of cardiac arrest: pathophysiological correlates and prognostic properties. Resuscitation 2018;133:124–36.
- 467. Case N, Coppler PJ, Mettenburg J, et al. Time-dependent association of grey-white ratio on early brain CT predicting outcomes after cardiac arrest at hospital discharge. Resuscitation 2025;206:110440.
- 468. Moseby-Knappe M, Pellis T, Dragancea I, et al. Head computed tomography for prognostication of poor outcome in comatose patients after cardiac arrest and targeted temperature management. Resuscitation 2017;119:89–94.
- 469. Wang GN, Zhang ZM, Chen W, Xu XQ, Zhang JS. Timing of brain computed tomography for predicting neurological prognosis in comatose cardiac arrest survivors: a retrospective observational study. World J Emerg Med 2022;13(5):349–54.
- 470. In YN, Lee IH, Park JS, et al. Delayed head CT in out-of-hospital cardiac arrest survivors: does this improve predictive performance of neurological outcome? Resuscitation 2022;172:1–8.
- 471. Pereira S, Lee DH, Park JS, et al. Grey-to-white matter ratio values in early head Computed Tomography (CT) as a predictor of neurologic outcomes in survivors of out-of-hospital cardiac arrest based on severity of hypoxic-ischemic brain injury. J Emerg Med 2024;67(2):e177–87.
- 472. Yeh HF, Ong HN, Lee BC, et al. The use of gray-white-matter ratios may help predict survival and neurological outcomes in patients resuscitated from out-of-hospital cardiac arrest. J Acute Med 2020;10(2):77–89.
- 473. Yoon JA, Kang C, Park JS, et al. Quantitative analysis of apparent diffusion coefficients to predict neurological prognosis in cardiac arrest survivors: an observational derivation and internal-external validation study. Crit Care 2024;28(1):138.
- 474. Kim JH, Kim MJ, You JS, et al. Multimodal approach for neurologic prognostication of out-of-hospital cardiac arrest patients undergoing targeted temperature management. Resuscitation 2019;134:33–40.
- 475. Lee BK, Kim WY, Shin J, et al. Prognostic value of gray matter to white matter ratio in hypoxic and non-hypoxic cardiac arrest with non-cardiac etiology. Am J Emerg Med 2016;34(8):1583–8.
- 476. Lee KS, Lee SE, Choi JY, et al. Useful computed tomography score for estimation of early neurologic outcome in post-cardiac arrest patients with therapeutic hypothermia. Circ J 2017;81(11):1628–35.
- 477. Gentsch A, Storm C, Leithner C, et al. Outcome prediction in patients after cardiac arrest: a simplified method for determination of gray-white matter ratio in cranial computed tomography. Clin Neuroradiol 2015;25(1):49–54.
- 478. Kim SH, Kim HJ, Park KN, et al. Neuron-specific enolase and neuroimaging for prognostication after cardiac arrest treated with targeted temperature management. PLoS One 2020;15(10) e0239979.
- 479. Oh JH, Choi SP, Wee JH, Park JH. Inter-scanner variability in Hounsfield unit measured by CT of the brain and effect on gray-towhite matter ratio. Am J Emerg Med 2019;37(4):680–4.
- 480. Lang M, Kenda M, Scheel M, et al. Standardised and automated assessment of head computed tomography reliably predicts poor functional outcome after cardiac arrest: a prospective multicentre study. Intensive Care Med 2024;50(7):1096–107.
- **481.** Kenda M, Scheel M, Kemmling A, et al. Automated assessment of brain CT after cardiac arrest-an observational derivation/validation cohort study. Crit Care Med 2021;49(12):e1212–22.
- 482. Tsai H, Chi CY, Wang LW, et al. Outcome prediction of cardiac arrest with automatically computed gray-white matter ratio on computed tomography images. Crit Care 2024;28(1):118.
- 483. Sandroni C, D'Arrigo S, Nolan JP. Prognostication after cardiac arrest. Crit Care 2018;22(1):150.

- 484. Greer DM, Scripko PD, Wu O, et al. Hippocampal magnetic resonance imaging abnormalities in cardiac arrest are associated with poor outcome. J Stroke Cerebrovasc Dis 2013;22(7):899–905.
- 485. Jang J, Oh SH, Nam Y, et al. Prognostic value of phase information of 2D T2*-weighted gradient echo brain imaging in cardiac arrest survivors: a preliminary study. Resuscitation 2019;140:142–9.
- 486. Jeon CH, Park JS, Lee JH, et al. Comparison of brain computed tomography and diffusion-weighted magnetic resonance imaging to predict early neurologic outcome before target temperature management comatose cardiac arrest survivors. Resuscitation 2017:118:21–6.
- 487. Ryoo SM, Jeon SB, Sohn CH, et al. Predicting outcome with diffusion-weighted imaging in cardiac arrest patients receiving hypothermia therapy: multicenter retrospective cohort study. Crit Care Med 2015;43(11):2370–7.
- 488. Moon HK, Jang J, Park KN, et al. Quantitative analysis of relative volume of low apparent diffusion coefficient value can predict neurologic outcome after cardiac arrest. Resuscitation 2018;126:36–42.
- 489. Keijzer HM, Verhulst M, Meijer FJA, et al. Prognosis after cardiac arrest: the additional value of DWI and FLAIR to EEG. Neurocrit Care 2022;37(1):302–13.
- 490. Hirsch KG, Fischbein N, Mlynash M, et al. Prognostic value of diffusion-weighted MRI for post-cardiac arrest coma. Neurology 2020;94(16):e1684–92.
- **491.** Calabrese E, Gandhi S, Shih J, et al. Parieto-occipital injury on diffusion MRI correlates with poor neurologic outcome following cardiac arrest. AJNR Am J Neuroradiol 2023;44(3):254–60.
- 492. Wouters A, Scheldeman L, Plessers S, et al. Added value of quantitative apparent diffusion coefficient values for neuroprognostication after cardiac arrest. Neurology 2021;96(21): e2611–8.
- 493. Yoon JA, Kang C, Park JS, et al. Quantitative analysis of early apparent diffusion coefficient values from MRIs for predicting neurological prognosis in survivors of out-of-hospital cardiac arrest: an observational study. Crit Care 2023;27(1):407.
- 494. Arctaedius I, Levin H, Larsson M, et al. 2021 European Resuscitation Council/European Society of Intensive Care Medicine algorithm for prognostication of poor neurological outcome after cardiac arrest-can entry criteria be broadened? Crit Care Med 2024;52(4):531–41.
- 495. Bougouin W, Lascarrou JB, Chelly J, et al. Performance of the ERC/ESICM-recommendations for neuroprognostication after cardiac arrest: insights from a prospective multicenter cohort. Resuscitation 2024;202:110362.
- 496. Sandroni C, Grippo A, Nolan JP. ERC-ESICM guidelines for prognostication after cardiac arrest: time for an update. Intensive Care Med 2020;46(10):1901–3.
- Barbella G, Novy J, Marques-Vidal P, Oddo M, Rossetti AO. Added value of somato-sensory evoked potentials amplitude for prognostication after cardiac arrest. Resuscitation 2020;149:17–23.
- 498. Carrai R, Spalletti M, Scarpino M, et al. Are neurophysiologic tests reliable, ultra-early prognostic indices after cardiac arrest? Neurophysiol Clin 2021;51(2):133–44.
- 499. Sandroni C, D'Arrigo S, Cacciola S, et al. Prediction of good neurological outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med 2022;48(4):389–413.
- 500. Oh SH, Park KN, Choi SP, et al. Beyond dichotomy: patterns and amplitudes of SSEPs and neurological outcomes after cardiac arrest. Crit Care 2019;23(1):224.
- 501. Lagebrant A, Sandroni C, Nolan JP, et al. Prediction of good functional outcome decreases diagnostic uncertainty in unconscious survivors after out-of-hospital cardiac arrest. Resuscitation 2025;214:110686.
- 502. Bonizzoni MA, Scquizzato T, Pieri M, et al. Organ donation after extracorporeal cardiopulmonary resuscitation for refractory out-ofhospital cardiac arrest in a metropolitan cardiac arrest centre in Milan, Italy. Resuscitation 2024;200:110214.

- 503. Sharshar T, Citerio G, Andrews PJ, et al. Neurological examination of critically ill patients: a pragmatic approach. Report of an ESICM expert panel. Intensive Care Med 2014;40(4):484–95.
- 504. Greer DM, Shemie SD, Lewis A, et al. Determination of brain death/ death by neurologic criteria: the world brain death project. JAMA 2020;324(11):1078–97.
- 505. Scarpino M, Lolli F, Lanzo G, et al. Does a combination of >/=2 abnormal tests vs. the ERC-ESICM stepwise algorithm improve prediction of poor neurological outcome after cardiac arrest? A post-hoc analysis of the ProNeCA multicentre study. Resuscitation 2021:160:158–67
- Bouwes A, Binnekade JM, Kuiper MA, et al. Prognosis of coma after therapeutic hypothermia: a prospective cohort study. Ann Neurol 2012;71(2):206–12.
- Hakimi K, Kinney G, Kraft G, Micklesen P, Robinson L. Reliability in interpretation of median somatosensory evoked potentials in the setting of coma: factors and implications. Neurocrit Care 2009;11 (3):353–61.
- 508. Wijdicks EF, Hijdra A, Young GB, Bassetti CL, Wiebe S. Quality Standards Subcommittee of the American Academy of N. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review) [RETIRED]: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2006;67(2):203–10.
- Kirsch K, Heymel S, Gunther A, et al. Prognostication of neurologic outcome using gray-white-matter-ratio in comatose patients after cardiac arrest. BMC Neurol 2021;21(1):456.
- Streitberger KJ, Endisch C, Ploner CJ, et al. Timing of brain computed tomography and accuracy of outcome prediction after cardiac arrest. Resuscitation 2019;145:8–14.
- 511. Lybeck A, Cronberg T, Aneman A, et al. Time to awakening after cardiac arrest and the association with target temperature management. Resuscitation 2018;126:166–71.
- 512. Lee DH, Cho YS, Lee BK, et al. Late awakening is common in settings without withdrawal of life-sustaining therapy in out-ofhospital cardiac arrest survivors who undergo targeted temperature management. Crit Care Med 2022;50(2):235–44.
- 513. Gold B, Puertas L, Davis SP, et al. Awakening after cardiac arrest and post resuscitation hypothermia: are we pulling the plug too early? Resuscitation 2014;85(2):211–4.
- 514. Bongiovanni F, Romagnosi F, Barbella G, et al. Standardized EEG analysis to reduce the uncertainty of outcome prognostication after cardiac arrest. Intensive Care Med 2020;46(5):963–72.
- 515. Migdady I, Rice C, Deshpande A, et al. Brain injury and neurologic outcome in patients undergoing extracorporeal cardiopulmonary resuscitation: a systematic review and meta-analysis. Crit Care Med 2020;48(7):e611–9.
- 516. Miroz JP, Ben-Hamouda N, Bernini A, et al. Neurological Pupil index for Early Prognostication After Venoarterial Extracorporeal Membrane Oxygenation. Chest 2020;157(5):1167–74.
- 517. Johnsson P, Blomquist S, Luhrs C, et al. Neuron-specific enolase increases in plasma during and immediately after extracorporeal circulation. Ann Thorac Surg 2000;69(3):750–4.
- 518. Schrage B, Rubsamen N, Becher PM, et al. Neuron-specificenolase as a predictor of the neurologic outcome after cardiopulmonary resuscitation in patients on ECMO. Resuscitation 2019;136:14–20.
- 519. Haertel F, Babst J, Bruening C, et al. Effect of Hemolysis Regarding the Characterization and Prognostic Relevance of Neuron Specific Enolase (NSE) after Cardiopulmonary Resuscitation with Extracorporeal Circulation (eCPR). J Clin Med 2023;12(8):3015.
- 520. Brodska H, Smalcova J, Kavalkova P, et al. Biomarkers for neuroprognostication after standard versus extracorporeal cardiopulmonary resuscitation - a sub-analysis of Prague-OHCA study. Resuscitation 2024;199:110219.
- **521.** Floerchinger B, Philipp A, Camboni D, et al. NSE serum levels in extracorporeal life support patients-Relevance for neurological outcome? Resuscitation 2017;121:166–71.

- 522. Peluso L, Rechichi S, Franchi F, et al. Electroencephalographic features in patients undergoing extracorporeal membrane oxygenation. Crit Care 2020;24(1):629.
- 523. Amorim E, Firme MS, Zheng WL, et al. High incidence of epileptiform activity in adults undergoing extracorporeal membrane oxygenation. Clin Neurophysiol 2022;140:4–11.
- 524. Cho SM, Choi CW, Whitman G, et al. Neurophysiological findings and brain injury pattern in patients on ECMO. Clin EEG Neurosci 2021;52(6):462–9.
- 525. Cho SM, Khanduja S, Wilcox C, et al. Clinical use of bedside portable ultra-low-field brain magnetic resonance imaging in patients on extracorporeal membrane oxygenation: results from the multicenter SAFE MRI ECMO study. Circulation 2024;150 (24):1955–65.
- 526. Lee YH, Oh YT, Ahn HC, et al. The prognostic value of the grey-to-white matter ratio in cardiac arrest patients treated with extracorporeal membrane oxygenation. Resuscitation 2016;99:50–5.
- 527. Hrdlicka J, Smalcova J, Bircakova B, Lambert L, Belohlavek J, Burgetova A. Both decreased and increased grey-to-white matter attenuation ratio in the putamen and caudate on early head computed tomography differentiate patients with favorable and unfavorable outcomes after prolonged cardiac arrest-secondary analysis of the Prague OHCA study. Quant Imaging Med Surg 2023;13(9):6205–14.
- 528. Witten L, Gardner R, Holmberg MJ, et al. Reasons for death in patients successfully resuscitated from out-of-hospital and inhospital cardiac arrest. Resuscitation 2019;136:93–9.
- Cronberg T, Kuiper M. Withdrawal of life-sustaining therapy after cardiac arrest. Semin Neurol 2017;37(1):81–7.
- 530. Levin PD, Sprung CL. Withdrawing and withholding life-sustaining therapies are not the same. Crit Care 2005;9(3):230–2.
- 531. Sprung CL, Woodcock T, Sjokvist P, et al. Reasons, considerations, difficulties and documentation of end-of-life decisions in European intensive care units: the ETHICUS Study. Intensive Care Med 2008;34(2):271–7.
- 532. Sprung CL, Ricou B, Hartog CS, et al. Changes in end-of-life practices in European intensive care units from 1999 to 2016. JAMA 2019;322(17):1692–704.
- 533. Elmer J, Torres C, Aufderheide TP, et al. Association of early withdrawal of life-sustaining therapy for perceived neurological prognosis with mortality after cardiac arrest. Resuscitation 2016;102:127–35.
- 534. May TL, Ruthazer R, Riker RR, et al. Early withdrawal of life support after resuscitation from cardiac arrest is common and may result in additional deaths. Resuscitation 2019;139:308–13.
- 535. Wahlster S, Danielson K, Craft L, et al. Factors associated with early withdrawal of life-sustaining treatments after out-of-hospital cardiac arrest: a subanalysis of a randomized trial of prehospital therapeutic hypothermia. Neurocrit Care 2023;38(3):676–87.
- 536. Cochrane TI. Unnecessary time pressure in refusal of lifesustaining therapies: fear of missing the opportunity to die. Am J Bioeth 2009;9(4):47–54.
- Kitzinger J, Kitzinger C. The 'window of opportunity' for death after severe brain injury: family experiences. Sociol Health Illn 2013;35 (7):1095–112.
- 538. Dale CM, Sinuff T, Morrison LJ, Golan E, Scales DC. Understanding early decisions to withdraw life-sustaining therapy in cardiac arrest survivors. A qualitative investigation. Ann Am Thorac Soc 2016;13(7):1115–22.
- Lazaridis C. Withdrawal of life-sustaining treatments in perceived devastating brain injury: the key role of uncertainty. Neurocrit Care 2019;30(1):33–41.
- Downar J, Delaney JW, Hawryluck L, Kenny L. Guidelines for the withdrawal of life-sustaining measures. Intensive Care Med 2016;42(6):1003–17.

- Matthews EA, Magid-Bernstein J, Presciutti A, et al. Categorization of survival and death after cardiac arrest. Resuscitation 2017;114:79–82.
- 542. Kesecioglu J, Rusinova K, Alampi D, et al. European Society of Intensive Care Medicine guidelines on end of life and palliative care in the intensive care unit. Intensive Care Med 2024;50 (11):1740–66.
- 543. Sandroni C, Scquizzato T, Cacciola S, et al. Does cardiopulmonary resuscitation before donor death affect solid organ transplant function? A systematic review and meta-analysis. Resuscitation 2025;213:110654.
- 544. Morrison LJ, Sandroni C, Grunau B, et al. Organ donation after outof-hospital cardiac arrest: a scientific statement from the international liaison committee on resuscitation. Resuscitation 2023:190:109864
- 545. Thuong M, Ruiz A, Evrard P, et al. New classification of donation after circulatory death donors definitions and terminology. Transpl Int 2016;29(7):749–59.
- 546. Raffay V, Wittig J, Bossaert L, et al. European Resuscitation Council guidelines 2025: ethics in resuscitation. Resuscitation 2025
- 547. Madelaine T, Cour M, Roy P, et al. Prediction of brain death after out-of-hospital cardiac arrest: development and validation of the brain death after cardiac arrest score. Chest 2021;160(1):139–47.
- 548. Kitlen E, Kim N, Rubenstein A, et al. Development and validation of a novel score to predict brain death after out-of-hospital cardiac arrest. Resuscitation 2023;192:109955.
- 549. Elmer J, Weisgerber AR, Wallace DJ, et al. Between-hospital variability in organ donation after resuscitation from out-of-hospital cardiac arrest. Resuscitation 2021;167:372–9.
- ANZDATA. Chapter 8: Kidney donation. Australia and New Zealand Dialysis and Transplant Registry. ANZDATA Registry. Adelaide, Australia; 2020.
- 551. Madan S, Diez-Lopez C, Patel SR, et al. Utilization rates and heart transplantation outcomes of donation after circulatory death donors with prior cardiopulmonary resuscitation. Int J Cardiol 2025;419:132727.
- 552. Philipoff A, Lin Y, Teixeira-Pinto A, et al. Antecedent cardiac arrest status of Donation After Circulatory Determination of Death (DCDD) kidney donors and the risk of delayed graft function after kidney transplantation: a cohort study. Transplantation 2024;108 (10):2117–26.
- 553. Smalcova J, Havranek S, Pokorna E, et al. Extracorporeal cardiopulmonary resuscitation-based approach to refractory out-ofhospital cardiac arrest: a focus on organ donation, a secondary analysis of a Prague OHCA randomized study. Resuscitation 2023;193:109993.
- 554. Rajsic S, Treml B, Rugg C, Innerhofer N, Eckhardt C, Breitkopf R. Organ utilization from donors following extracorporeal cardiopulmonary resuscitation: a systematic review of graft and recipient outcome. Transplantation 2025;109(2):e109–18.
- 555. Smalcova J, Krupickova P, Pokorna E, et al. Impact of routine extracorporeal cardiopulmonary resuscitation service on the availability of donor organs. J Heart Lung Transplant 2025;44 (6):872–9.
- 556. Koukousaki D, Kosmopoulos M, Mallow J, et al. Temporal trends in organ donation among cardiac arrest patients treated with extracorporeal cardiopulmonary resuscitation. Resuscitation 2024;203:110391.
- 557. Grasner JT, Bray JE, Nolan JP, et al. Cardiac arrest and cardiopulmonary resuscitation outcome reports: 2024 update of the Utstein Out-of-Hospital Cardiac Arrest Registry template. Resuscitation 2024;201:110288.
- 558. Cronberg T, Greer DM, Lilja G, Moulaert V, Swindell P, Rossetti AO. Brain injury after cardiac arrest: from prognostication of

- comatose patients to rehabilitation. Lancet Neurol 2020;19 (7):611-22.
- 559. Perkins GD, Callaway CW, Haywood K, et al. Brain injury after cardiac arrest. Lancet 2021;398(10307):1269–78.
- Chin YH, Yaow CYL, Teoh SE, et al. Long-term outcomes after outof-hospital cardiac arrest: a systematic review and meta-analysis. Resuscitation 2022;171:15–29.
- Whitehead L, Perkins GD, Clarey A, Haywood KL. A systematic review of the outcomes reported in cardiac arrest clinical trials: the need for a core outcome set. Resuscitation 2015:88:150–7.
- 562. Zook N, Voss S, Blennow Nordstrom E, et al. Neurocognitive function following out-of-hospital cardiac arrest: a systematic review. Resuscitation 2022;170:238–46.
- 563. Pek PP, Fan KC, Ong MEH, et al. Determinants of health-related quality of life after out-of-hospital cardiac arrest (OHCA): A systematic review. Resuscitation 2023;188:109794.
- 564. Chen X, Li D, He L, et al. The prevalence of anxiety and depression in cardiac arrest survivors: a systematic review and meta-analysis. Gen Hosp Psychiatry 2023;83:8–19.
- 565. Yaow CYL, Teoh SE, Lim WS, et al. Prevalence of anxiety, depression, and post-traumatic stress disorder after cardiac arrest: a systematic review and meta-analysis. Resuscitation 2022;170:82–91.
- 566. Hellstrom P, Arestedt K, Israelsson J. A comprehensive description of self-reported health and life satisfaction in cardiac arrest survivors. Scand J Trauma Resusc Emerg Med 2021;29(1):122.
- 567. Hellstrom P, Israelsson J, Hellstrom A, Hjelm C, Brostrom A, Arestedt K. Is insomnia associated with self-reported health and life satisfaction in cardiac arrest survivors? A cross-sectional survey. Resusc Plus 2023;15:100455.
- 568. Djarv T, Bremer A, Herlitz J, et al. Health-related quality of life after surviving an out-of-hospital compared to an in-hospital cardiac arrest: a Swedish population-based registry study. Resuscitation 2020:151:77–84.
- 569. Blennow Nordstrom E, Vestberg S, Evald L, et al. Neuropsychological outcome after cardiac arrest: results from a sub-study of the targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest (TTM2) trial. Crit Care 2023;27(1):328.
- Peskine A, Cariou A, Hajage D, et al. Long-term disabilities of survivors of out-of-hospital cardiac arrest: the Hanox study. Chest 2021;159(2):699–711.
- 571. Joshi VL, Tang LH, Mikkelsen TB, et al. Does time heal fatigue, psychological, cognitive and disability problems in people who experience an out-of-hospital cardiac arrest? Results from the DANCAS survey study. Resuscitation 2023;182:109639.
- 572. Heimburg K, Nordstrom EB, Friberg H, et al. Comparison of self-reported physical activity between survivors of out-of-hospital cardiac arrest and patients with myocardial infarction without cardiac arrest: a case-control study. Eur J Cardiovasc Nurs 2025.
- 573. Heimburg K, Cronberg T, Tornberg AB, et al. Self-reported limitations in physical function are common 6 months after out-of-hospital cardiac arrest. Resusc Plus 2022;11:100275.
- 574. Heimburg K, Blennow Nordstrom E, Dankiewicz J, et al. Low physical activity level in out-of-hospital cardiac arrest survivors with obesity, mobility problems and cognitive impairment: Results from the TTM2 trial. Resuscitation 2024;204:110407.
- 575. Alm-Kruse K, Gjerset GM, Tjelmeland IBM, Isern CB, Kramer-Johansen J, Garratt AM. How do survivors after out-of-hospital cardiac arrest perceive their health compared to the norm population? A nationwide registry study from Norway. Resusc Plus 2024;17:100549.
- 576. Bohm M, Lilja G, Finnbogadottir H, et al. Detailed analysis of health-related quality of life after out-of-hospital cardiac arrest. Resuscitation 2019;135:197–204.

- 577. Agarwal S, Wagner MK, Mion M. Psychological and behavioral dimensions in cardiac arrest survivors and their families: a state-ofthe-art review. Neurotherapeutics 2025;22(1)e00509.
- 578. Larsson K, Hjelm C, Lilja G, Stromberg A, Arestedt K. Differences in self-reported health between cardiac arrest survivors with good cerebral performance and survivors with moderate cerebral disability: a nationwide register study. BMJ Open 2022;12(7) e058945.
- 579. Schluep M, Endeman H, Gravesteijn BY, et al. In-depth assessment of health-related quality of life after in-hospital cardiac arrest. J Crit Care 2022;68:22–30.
- Lilja G, Nielsen N, Bro-Jeppesen J, et al. Return to work and participation in society after out-of-hospital cardiac arrest. Circ Cardiovasc Qual Outcomes 2018;11(1)e003566.
- 581. Lilja G, Ullen S, Dankiewicz J, et al. Effects of hypothermia vs normothermia on societal participation and cognitive function at 6 months in survivors after out-of-hospital cardiac arrest: a predefined analysis of the TTM2 randomized clinical trial. JAMA Neurol 2023;80(10):1070–9.
- 582. Christensen J, Winkel BG, Eskildsen SJ, Gottlieb R, Hassager C, Wagner MK. Return-to-work and rehabilitation needs in cardiac arrest survivors: an exploratory cross-sectional study. Eur J Cardiovasc Nurs 2023;22(3):328–31.
- 583. Descatha A, Dumas F, Bougouin W, Cariou A, Geri G. Work factors associated with return to work in out-of-hospital cardiac arrest survivors. Resuscitation 2018;128:170–4.
- 584. Flajoliet N, Bourenne J, Marin N, et al. Return to work after out of hospital cardiac arrest, insights from a prospective multicentric French cohort. Resuscitation 2024;199:110225.
- 585. Kearney J, Dyson K, Andrew E, Bernard S, Smith K. Factors associated with return to work among survivors of out-of-hospital cardiac arrest. Resuscitation 2020;146:203–12.
- 586. Rojas DA, DeForge CE, Abukhadra SL, Farrell L, George M, Agarwal S. Family experiences and health outcomes following a loved ones' hospital discharge or death after cardiac arrest: a scoping review. Resusc Plus 2023;14:100370.
- 587. Tincher IM, Rojas DA, Yuan M, et al. Disruptions in sleep health and independent associations with psychological distress in close family members of cardiac arrest survivors: a prospective study. J Card Fail 2025;31(7):1018–29.
- 588. Armand S, Wagner MK, Ozenne B, et al. Acute traumatic stress screening can identify patients and their partners at risk for posttraumatic stress disorder symptoms after a cardiac arrest: a multicenter prospective cohort study. J Cardiovasc Nurs 2022;37 (4):394–401.
- 589. Renner C, Jeitziner MM, Albert M, et al. Guideline on multimodal rehabilitation for patients with post-intensive care syndrome. Crit Care 2023;27(1):301.
- 590. Marra A, Ely EW, Pandharipande PP, Patel MB. The ABCDEF bundle in critical care. Crit Care Clin 2017;33(2):225–43.
- Investigators TS, the ACTG, Hodgson CL, et al. Early Active Mobilization during Mechanical Ventilation in the ICU. N Engl J Med 2022;387(19):1747–1758.
- 592. Paton M, Chan S, Serpa Neto A, et al. Association of active mobilisation variables with adverse events and mortality in patients requiring mechanical ventilation in the intensive care unit: a systematic review and meta-analysis. Lancet Respir Med 2024;12 (5):386–98.
- 593. Staudacher DL, Heine L, Maier A, et al. Delirium after cardiac arrest: incidence, risk factors, and association with neurologic outcome-insights from the Freiburg Delirium Registry. Clin Res Cardiol 2024.
- 594. Boncyk CS, Rengel KF, Pandharipande PP, Hughes CG. In the ICU delirium post cardiac arrest. Curr Opin Crit Care 2019;25 (3):218–25.
- 595. Wagner MK, Hirsch LF, Berg SK, et al. Clinical utility of the 'Impact of Event Scale-Revised' for identifying Acute Stress Disorder in

- survivors of sudden out-of-hospital cardiac arrest: results from the multicenter REVIVAL cohort. Resuscitation 2025;209:110558.
- 596. Blennow Nordstrom E, Birk JL, Rojas DA, et al. Prospective evaluation of the relationship between cognition and recovery outcomes after cardiac arrest. Resuscitation 2024;202:110343.
- 597. Agarwal S, Presciutti A, Cornelius T, et al. Cardiac arrest and subsequent hospitalization-induced posttraumatic stress is associated with 1-year risk of major adverse cardiovascular events and all-cause mortality. Crit Care Med 2019;47(6):e502–5.
- 598. Presciutti A, Meyers EE, Reichman M, Vranceanu AM. Associations between baseline total PTSD symptom severity, specific PTSD symptoms, and 3-month quality of life in neurologically intact neurocritical care patients and informal caregivers. Neurocrit Care 2021;34(1):54–63.
- 599. Glimmerveen A, Verhulst M, Verbunt J, Van Heugten C, Hofmeijer J. Predicting long-term cognitive impairments in survivors after cardiac arrest: a systematic review. J Rehabil Med 2023;55: irm00368.
- Jolliffe L, Lannin NA, Cadilhac DA, Hoffmann T. Systematic review of clinical practice guidelines to identify recommendations for rehabilitation after stroke and other acquired brain injuries. BMJ Open 2018;8(2)e018791.
- Lee SY, Amatya B, Judson R, et al. Clinical practice guidelines for rehabilitation in traumatic brain injury: a critical appraisal. Brain Inj 2019;33(10):1263–71.
- 602. Winstein CJ, Stein J, Arena R, et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2016;47(6):e98–e169.
- 603. Joshi VL, Christensen J, Lejsgaard E, Taylor RS, Zwisler AD, Tang LH. Effectiveness of rehabilitation interventions on the secondary consequences of surviving a cardiac arrest: a systematic review and meta-analysis. BMJ Open 2021;11(9)e047251.
- 604. Stock D, Jacob B, Chan V, Colantonio A, Cullen N. Change in function over inpatient rehabilitation after hypoxic ischemic brain injury: a population-wide cohort study. Arch Phys Med Rehabil 2019;100(9):1640–7.
- 605. Smania N, Avesani R, Roncari L, et al. Factors predicting functional and cognitive recovery following severe traumatic, anoxic, and cerebrovascular brain damage. J Head Trauma Rehabil 2013;28 (2):131–40.
- 606. Nanjayya VB, Doherty Z, Gupta N, et al. Rehabilitation outcomes of survivors of cardiac arrest admitted to ICUs in Australia and New Zealand (ROSC ANZ): a data linkage study. Resuscitation 2021;169:156–64.
- 607. Adiguzel E, Yasar E, Kesikburun S, et al. Are rehabilitation outcomes after severe anoxic brain injury different from severe traumatic brain injury? A matched case-control study. Int J Rehabil Res 2018;41(1):47–51.
- Howell K, Grill E, Klein AM, Straube A, Bender A. Rehabilitation outcome of anoxic-ischaemic encephalopathy survivors with prolonged disorders of consciousness. Resuscitation 2013;84 (10):1409–15.
- Heinz UE, Rollnik JD. Outcome and prognosis of hypoxic brain damage patients undergoing neurological early rehabilitation. BMC Res Notes 2015;8:243.
- Estraneo A, Moretta P, Loreto V, et al. Predictors of recovery of responsiveness in prolonged anoxic vegetative state. Neurology 2013;80(5):464–70.
- 611. Baldi E, Wnent J, Caputo ML, et al. European Resuscitation Council Guidelines 2025: epidemiology in resuscitation. Resuscitation 2025.
- **612.** Dibben GO, Faulkner J, Oldridge N, et al. Exercise-based cardiac rehabilitation for coronary heart disease: a meta-analysis. Eur Heart J 2023;44(6):452–69.
- 613. Boyce LW, Goossens PH. Rehabilitation after cardiac arrest: integration of neurologic and cardiac rehabilitation. Semin Neurol 2017;37(1):94–102.

- 614. Moulaert VR, Verbunt JA, Bakx WG, et al. 'Stand still, and move on', a new early intervention service for cardiac arrest survivors and their caregivers: rationale and description of the intervention. Clin Rehabil 2011;25(10):867–79.
- 615. Moulaert VR, van Haastregt JC, Wade DT, van Heugten CM, Verbunt JA. 'Stand still, and move on', an early neurologicallyfocused follow-up for cardiac arrest survivors and their caregivers: a process evaluation. BMC Health Serv Res 2014;14:34.
- 616. Moulaert VR, van Heugten CM, Winkens B, et al. Early neurologically-focused follow-up after cardiac arrest improves quality of life at one year: a randomised controlled trial. Int J Cardiol 2015;193:8–16.
- 617. Moulaert VR, Goossens M, Heijnders IL, Verbunt JA, Heugten CM. Early neurologically focused follow-up after cardiac arrest is costeffective: a trial-based economic evaluation. Resuscitation 2016;106:30–6.
- 618. Sawyer KN, Camp-Rogers TR, Kotini-Shah P, et al. Sudden cardiac arrest survivorship: a scientific statement from the American Heart Association. Circulation 2020:141(12):e654–85.
- 619. Israelsson J, Lilja G. Post cardiac arrest follow-up Swedish guidelines available. Lakartidningen 2019;116.
- 620. Bradfield M, Haywood KL, Mion M, Kayani A, Leckey S. Rcuk Quality Standards Group for Care RoCASKS. Not just surviving: towards a quality standard which meets the care and rehabilitation needs of cardiac arrest survivors and their key supporters. Resuscitation 2024;198:110182.
- 621. Blennow Nordstrom E, Evald L, Mion M, et al. Combined use of the Montreal Cognitive Assessment and Symbol Digit Modalities Test improves neurocognitive screening accuracy after cardiac arrest: a validation sub-study of the TTM2 trial. Resuscitation 2024;202:110361.
- 622. van Gils P, van Heugten C, Hofmeijer J, Keijzer H, Nutma S, Duits A. The Montreal Cognitive Assessment is a valid cognitive screening tool for cardiac arrest survivors. Resuscitation 2022;172:130–6.
- 623. Cicerone KD, Goldin Y, Ganci K, et al. Evidence-based cognitive rehabilitation: systematic review of the literature from 2009 through 2014. Arch Phys Med Rehabil 2019;100(8):1515–33.
- 624. Bayley MT, Janzen S, Harnett A, et al. INCOG 2.0 guidelines for cognitive rehabilitation following traumatic brain injury: methods, overview, and principles. J Head Trauma Rehabil 2023;38(1):7–23.
- 625. Velikonja D, Ponsford J, Janzen S, et al. INCOG 2.0 guidelines for cognitive rehabilitation following traumatic brain injury, part V: memory. J Head Trauma Rehabil 2023;38(1):83–102.
- 626. Jeffay E, Ponsford J, Harnett A, et al. INCOG 2.0 guidelines for cognitive rehabilitation following traumatic brain injury, part III: executive functions. J Head Trauma Rehabil 2023;38(1):52–64.
- 627. Ponsford J, Velikonja D, Janzen S, et al. INCOG 2.0 guidelines for cognitive rehabilitation following traumatic brain injury, part II: attention and information processing speed. J Head Trauma Rehabil 2023;38(1):38–51.
- 628. Mion M, Al-Janabi F, Islam S, et al. Care after resuscitation: implementation of the United Kingdom's first dedicated multidisciplinary follow-up program for survivors of out-of-hospital cardiac arrest. Ther Hypothermia Temp Manag 2020;10(1):53–9.
- Arestedt K, Israelsson J, Djukanovic I, et al. Symptom prevalence of anxiety and depression in older cardiac arrest survivors: a comparative nationwide register study. J Clin Med 2021;10 (18):4285.
- **630.** Berg SK, Herning M, Thygesen LC, et al. Do patients with ICD who report anxiety symptoms on Hospital Anxiety and Depression Scale suffer from anxiety? J Psychosom Res 2019;121:100–4.
- 631. Christensen AV, Dixon JK, Juel K, et al. Psychometric properties of the Danish Hospital Anxiety and Depression Scale in patients with cardiac disease: results from the DenHeart survey. Health Qual Life Outcomes 2020;18(1):9.

- 632. Dougherty CM, Thompson EA, Kudenchuk PJ. Patient plus partner trial: a randomized controlled trial of 2 interventions to improve outcomes after an initial implantable cardioverter-defibrillator. Heart Rhythm 2019;16(3):453–9.
- 633. Auld JP, Thompson EA, Dougherty CM. Profiles of partner health linked to a partner-focused intervention following patient initial implantable cardioverter defibrillator (ICD). J Behav Med 2021;44 (5):630–40.
- 634. Bergman M, Markowitz JC, Kronish IM, et al. Acceptance and mindfulness-based exposure therapy for PTSD after cardiac arrest: an open feasibility trial. J Clin Psychiatry 2023;85(1) 23m14883.
- 635. Joshi VL, Tang LH, Kim YJ, et al. Promising results from a residential rehabilitation intervention focused on fatigue and the secondary psychological and physical consequences of cardiac arrest: the SCARF feasibility study. Resuscitation 2022:173:12–22.
- 636. Kim YJ, Rogers JC, Raina KD, et al. An intervention for cardiac arrest survivors with chronic fatigue: a feasibility study with preliminary outcomes. Resuscitation 2016;105:109–15.
- 637. Kim YJ, Rogers JC, Raina KD, et al. Solving fatigue-related problems with cardiac arrest survivors living in the community. Resuscitation 2017;118:70–4.
- 638. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol 1989;46 (10):1121–3.
- 639. Amtmann D, Bamer AM, Noonan V, Lang N, Kim J, Cook KF. Comparison of the psychometric properties of two fatigue scales in multiple sclerosis. Rehabil Psychol 2012;57(2):159–66.
- 640. Mulligan K, Harris K, Rixon L, Burls A. A systematic mapping review of clinical guidelines for the management of fatigue in long-term physical health conditions. Disabil Rehabil 2025;47 (3):531–48.
- 641. Dures E, Farisogullari B, Santos EJF, et al. 2023 EULAR recommendations for the management of fatigue in people with inflammatory rheumatic and musculoskeletal diseases. Ann Rheum Dis 2024;83(10):1260–7.
- 642. Lilja G, Nielsen N, Ullen S, et al. Protocol for outcome reporting and follow-up in the Targeted Hypothermia versus Targeted Normothermia after Out-of-Hospital Cardiac Arrest trial (TTM2). Resuscitation 2020;150:104–12.
- 643. Heimburg K, Lilja G, Tornberg AB, et al. Physical activity after cardiac arrest; protocol of a sub-study in the Targeted Hypothermia versus Targeted Normothermia after Out-of-Hospital Cardiac Arrest trial (TTM2). Resusc Plus 2021;5:100076.
- **644.** Heimburg K, Lilja G, Blennow Nordstrom E, et al. Agreement between self-reported and objectively assessed physical activity among out-of-hospital cardiac arrest survivors. Clin Physiol Funct Imaging 2024;44(2):144–53.
- 645. Krahn AD, Healey JS, Chauhan V, et al. Systematic assessment of patients with unexplained cardiac arrest: Cardiac Arrest Survivors With Preserved Ejection Fraction Registry (CASPER). Circulation 2009;120(4):278–85.
- 646. Waldmann V, Bougouin W, Karam N, et al. Characteristics and clinical assessment of unexplained sudden cardiac arrest in the real-world setting: focus on idiopathic ventricular fibrillation. Eur Heart J 2018;39(21):1981–7.
- 647. Rucinski C, Winbo A, Marcondes L, et al. A population-based registry of patients with inherited cardiac conditions and resuscitated cardiac arrest. J Am Coll Cardiol 2020;75 (21):2698–707.
- 648. van der Werf C, Hofman N, Tan HL, et al. Diagnostic yield in sudden unexplained death and aborted cardiac arrest in the young: the experience of a tertiary referral center in The Netherlands. Heart Rhythm 2010;7(10):1383–9.
- 649. Stiles MK, Wilde AAM, Abrams DJ, et al. 2020 APHRS/HRS expert consensus statement on the investigation of decedents with sudden

- unexplained death and patients with sudden cardiac arrest, and of their families. Heart Rhythm 2021;18(1):e1–e50.
- 650. Yoneda ZT, Anderson KC, Quintana JA, et al. Early-onset atrial fibrillation and the prevalence of rare variants in cardiomyopathy and arrhythmia genes. JAMA Cardiol 2021;6(12):1371–9.
- 651. Giovachini L, Laghlam D, Geri G, et al. Prolonged follow-up after apparently unexplained sudden cardiac arrest: a retrospective study. Resuscitation 2024;194:110095.
- 652. Sinha SS, Chen LM, Nallamothu BK. Survival by the fittest: hospital-level variation in quality of resuscitation care. J Am Heart Assoc 2014;3(1)e000768.
- 653. Carr BG, Goyal M, Band RA, et al. A national analysis of the relationship between hospital factors and post-cardiac arrest mortality. Intensive Care Med 2009;35(3):505–11.
- 654. May TL, Lary CW, Riker RR, et al. Variability in functional outcome and treatment practices by treatment center after out-of-hospital cardiac arrest: analysis of International Cardiac Arrest Registry. Intensive Care Med 2019;45(5):637–46.
- 655. Sinning C, Ahrens I, Cariou A, et al. The cardiac arrest centre for the treatment of sudden cardiac arrest due to presumed cardiac cause aims, function and structure: position paper of the Association for Acute CardioVascular Care of the European Society of Cardiology (AVCV), European Association of Percutaneous Coronary Interventions (EAPCI), European Heart Rhythm Association (EHRA), European Resuscitation Council (ERC), European Society for Emergency Medicine (EUSEM) and European Society of Intensive Care Medicine (ESICM). Eur Heart J Acute Cardiovasc Care 2020;9(4_suppl):S193–202.
- 656. Boulton AJ, Abelairas-Gomez C, Olaussen A, et al. Cardiac arrest centres for patients with non-traumatic cardiac arrest: a systematic review. Resuscitation 2024;203:110387.
- 657. Patterson T, Perkins GD, Perkins A, et al. Expedited transfer to a cardiac arrest centre for non-ST-elevation out-of-hospital cardiac arrest (ARREST): a UK prospective, multicentre, parallel, randomised clinical trial. Lancet 2023;402(10410):1329–37.
- 658. Chien CY, Tsai SL, Tsai LH, et al. Impact of transport time and cardiac arrest centers on the neurological outcome after out-of-hospital cardiac arrest: a retrospective cohort study. J Am Heart Assoc 2020;9(11)e015544.
- 659. Chocron R, Bougouin W, Beganton F, et al. Are characteristics of hospitals associated with outcome after cardiac arrest? Insights from the Great Paris registry. Resuscitation 2017;118:63–9.
- 660. Cournoyer A, Notebaert E, de Montigny L, et al. Impact of the direct transfer to percutaneous coronary intervention-capable hospitals on survival to hospital discharge for patients with out-of-hospital cardiac arrest. Resuscitation 2018;125:28–33.
- Jung E, Ro YS, Park JH, Ryu HH, Shin SD. Direct transport to cardiac arrest center and survival outcomes after outof-hospital cardiac arrest by urbanization level. J Clin Med 2022;11 (4):1033.
- 662. Kim JY, Moon S, Park JH, et al. Effect of transported hospital resources on neurologic outcome after out-of-hospital cardiac arrest. Signa Vitae 2019;15(1):51–8.
- 663. Kragholm K, Malta Hansen C, Dupre ME, et al. Direct transport to a percutaneous cardiac intervention center and outcomes in patients with out-of-hospital cardiac arrest. Circ Cardiovasc Qual Outcomes 2017;10(6)e003414.
- 664. Matsuyama T, Kiyohara K, Kitamura T, et al. Hospital characteristics and favourable neurological outcome among patients with out-of-hospital cardiac arrest in Osaka, Japan. Resuscitation 2017;110:146–53.
- 665. McKenzie N, Williams TA, Ho KM, et al. Direct transport to a PCI-capable hospital is associated with improved survival after adult out-of-hospital cardiac arrest of medical aetiology. Resuscitation 2018:128:76–82.
- 666. Mumma BE, Diercks DB, Wilson MD, Holmes JF. Association between treatment at an ST-segment elevation myocardial

- infarction center and neurologic recovery after out-of-hospital cardiac arrest. Am Heart J 2015;170(3):516–23.
- 667. Soholm H, Kjaergaard J, Bro-Jeppesen J, et al. Prognostic implications of level-of-care at tertiary heart centers compared with other hospitals after resuscitation from out-of-hospital cardiac arrest. Circ Cardiovasc Qual Outcomes 2015;8(3):268–76.
- 668. Spaite DW, Bobrow BJ, Stolz U, et al. Statewide regionalization of postarrest care for out-of-hospital cardiac arrest: association with survival and neurologic outcome. Ann Emerg Med 2014;64 (5):496–506 e1.
- 669. Stub D, Smith K, Bray JE, Bernard S, Duffy SJ, Kaye DM. Hospital characteristics are associated with patient outcomes following out-of-hospital cardiac arrest. Heart 2011;97(18):1489–94.
- 670. Sunde K, Pytte M, Jacobsen D, et al. Implementation of a standardised treatment protocol for post resuscitation care after out-of-hospital cardiac arrest. Resuscitation 2007;73 (1):29–39.
- 671. Tagami T, Hirata K, Takeshige T, et al. Implementation of the fifth link of the chain of survival concept for out-of-hospital cardiac arrest. Circulation 2012;126(5):589–97.
- 672. Yeh CC, Chang CH, Seak CJ, et al. Survival analysis in out-of-hospital cardiac arrest patients with shockable rhythm directly transport to Heart Centers. Signa Vitae 2021;17 (5):95–102.
- 673. Semeraro F, Schnaubelt S, Olasveengen T, et al. European Resuscitation Council guidelines 2025: systems saving lives. Resuscitation 2025;215 (Suppl 1):110821.