

Available online at ScienceDirect

Resuscitation

Practice Guideline

European Resuscitation Council Guidelines 2025 Ethics in Resuscitation

Violetta Raffay^{a,b,1}, Johannes Wittig^{c,d,1}, Leo Bossaert^e, Jana Djakow^{f,g,h}, Therese Djärv^{i,j}, Ángel Estella^{k,l}, Ileana Lulic^m, Spyros D. Mentzelopoulosⁿ, Koenraad G. Monsieurs^o, Patrick Van de Voorde^p, Kasper G. Lauridsen^{c,q,*}, and the ERC Ethics in Resuscitation Collaborators

Abstract

These Guidelines of the European Resuscitation Council (ERC) on Ethics in Resuscitation provide evidence-informed recommendations on the ethical considerations of resuscitation, focusing on advance care planning, the involvement of bystanders and first responders, family presence during resuscitation, termination of resuscitation, and ethical considerations for systems, education, research, and low-resource settings. The recommendations in this chapter are informed by the Consensus on Science and Treatment Recommendations (CoSTR) by the International Liaison Committee on Resuscitation (ILCOR), focused reviews by the ERC Ethics Writing Group of the ERC Guidelines 2025 on Ethics in Resuscitation, and expert consensus within the writing group.

We have emphasised considerations for out-of-hospital cardiac arrest, in-hospital cardiac arrest, and paediatric cardiac arrest throughout the guide-lines. These guidelines aim to ensure that resuscitation decisions are made in alignment with patient values and preferences, and they emphasise the importance of a patient-centred approach to care. The Guidelines also address the balance between beneficence and autonomy, stakeholder involvement, transparency and the use of artificial intelligence in resuscitation research, and the multiple aspects for education in ethics in resuscitation. **Keywords:** Resuscitation, Cardiopulmonary resuscitation, Cardiac arrest, Ethics, Advance care planning, Termination of resuscitation, Organ donation, Bystander, Family involvement, Low-resource setting, Suicide, Education and systems, Research ethics

Introduction

The ethical dimensions of resuscitation have become increasingly important as the field evolves. Ethics as an integrated part of medical care involves the principles and decision-making frameworks that guide the management of patients in cardiac arrest, ensuring that interventions are aligned with the values and preferences of patients and their families. This section of the European Resuscitation Coun-

cil (ERC) Guidelines 2025 provides evidence-informed recommendations for the ethical aspects of resuscitation and end-of-life care of adults and children (Table 1).

We base these guidelines on the International Liaison Committee on Resuscitation (ILCOR) Consensus on Science and Treatment Recommendations (CoSTR), focused reviews undertaken by the Writing Group of the ERC Guidelines 2025 Ethics in Resuscitation, and expert consensus when no evidence was available. Considering the complexity of ethics, we included a patient representative and an

Abbreviations: ERC, European Resuscitation Council, EU, European Union, ILCOR, International Liaison Committee on Resuscitation, CoSTR, Consensus on Science and Treatment Recommendations, DNACPR, Do-not-attempt cardiopulmonary resuscitation, TOR, Termination of resuscitation, CPR, Cardiopulmonary resuscitation, OHCA, Out-of-hospital cardiac arrest, IHCA, In-hospital cardiac arrest, ETCO₂, End-tidal CO₂, ROSC, Return of spontaneous circulation, AI, Artificial Intelligence, RCT, Randomised controlled trial

^{*} Corresponding author at: Randers Regional Hospital, Skovlyvej 15, 8930 Randers, NE, Denmark. E-mail address: kglerup@clin.au.dk (K.G. Lauridsen).

¹ These authors contributed equally as first authors.

ethicist as collaborators for the writing group to provide perspectives for the included topics, the expert consensus, and guideline text. For these guidelines, we conducted focused literature reviews on the ethical aspects for each of the topics: (1) advance care planning, (2) the ethical involvement of bystanders and first responders, (3) family presence during resuscitation, (4) termination of resuscitation (TOR), (5) uncontrolled organ donation after circulatory death, (6) suicide attempts, (7) education and systems, (8) ethical challenges in low-resource settings, and (9) resuscitation research (Fig. 1). Additionally, we compiled key ethical considerations to strengthen visibility of selected core issues across topics. We did not review do-not-attempt cardiopulmonary resuscitation (DNACPR) orders as specific topic but rather considered DNACPR as a part of advance care planning. Likewise, we did not review shared decision-making as a specific topic but refer to other international guidelines on this including the 2021 ERC Ethics Guidelines. 1-4

These guidelines were drafted and agreed upon by the Ethics Writing Group and the Guidelines Steering Committee, before being posted for public comment. A total of 29 individuals submitted 32 comments, leading to four changes in the final version. The guidelines were presented to and approved by the ERC Board and the ERC General Assembly in June 2025. The methodology for the guideline development is outlined in the Executive Summary.⁵

We use 'CPR' in these ERC Guidelines 2025 Ethics in Resuscitation as the entire procedure of resuscitation and not just in the context of chest compressions and ventilation. We used the term 'family' to include all significant others, close friends, or co-survivors (Fig. 1).

Concise guidelines for clinical practice

Advance care planning

- Healthcare systems should offer advance care planning to all patients expressing wishes to discuss goals of care.
- Decisions of DNACPR are best made in the broader context of advance care planning.
- Anticipatory decisions, whether to attempt CPR or not, should be taken regardless of the time of the day in all patients with a significant risk of cardiac arrest. For patients not under imminent risk, it is appropriate to plan for the discussion and decisionmaking to take place at daytime.
- Document decisions of DNACPR and on which of the three different grounds the decision is based: (1) CPR will not be appropriate since death is expected; (2) CPR not in a beneficial balance between the medical assessment and the patient's values; (3) or the patient does not wish to receive CPR.
- For patients with cognitive impairment, invite a substitute decision maker to ensure concordance in goals of care over time.
- Offer patient-centred education about advance care planning to patients before discussions on this topic.

ETHICS IN RESUSCITATION KEY MESSAGES

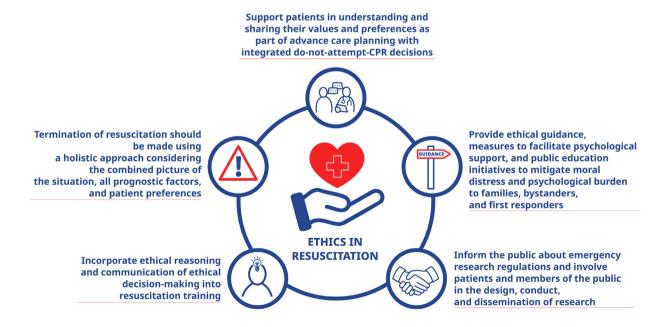


Fig. 1 - Ethics in resuscitation - key messages.

Table 1 - The major changes in the ERC Guidelines 2025 for Ethics in Resuscitation.

Topic	2021 Guidelines	2025 Guidelines
Advance care planning	Advance care planning recommended for patients at high risk of cardiac arrest or poor outcome.	Advance care planning is recommended for patients at risk; re-assess regularly, especially when situations change. Provide patient-centred advance care planning education before initiating advance care planning discussions.
Bystanders and first responders involvement	Bystander CPR is voluntary; no moral or legal obligation to perform. Dispatch-assisted CPR is recommended but is seen as a tool to increase bystander participation.	Maintains recommendations and adds that strategies to reduce biases in bystander CPR, such as cultural and gender sensitivity education should be introduced. Provide mental health resources and mechanisms to reach bystanders and first responders in need of further support.
Family presence	Offers the option for family members to be present during resuscitation, as long as it is safe, and a team member is available for support.	Recommends structured and culturally sensitive procedures for family presence during resuscitation. Recommends designating a team member to support family members during resuscitation.
Termination of resuscitation (TOR)	Systems should implement criteria for termination of CPR. TOR rules may be used for all cardiac arrest patients.	TOR is a team-based decision using a holistic approach. TOR rules should only be used for adult out- of-hospital cardiac arrest patients following local validation. Debriefing should be sought following termination.
Uncontrolled organ donation after circulatory death	Ethical guidance for organ donation in general	Healthcare systems should assess policies, education, communication, and strategies regarding organ donation to improve organ availability and ensure that TOR practices do not conflict with possible organ donation. Transparent procedures should be accessible for uncontrolled donation.
Ethics of education and systems	Not addressed.	Emphasises integration of ethical reasoning as a core competency in resuscitation education. Standardise institutional policies and develop formal education programs to address moral distress and ethical decision-making.
Cardiac arrest as a result of a suicide attempt	The decision to withhold or withdraw CPR in suicide attempts is based on the patient's values and wishes, including advance directives.	Provide individualised, context-sensitive approaches. Start resuscitation by default whilst assessing clinical and contextual information.
Ethical considerations in low-resource settings	Not addressed.	Stresses the particular importance of DNACPR in low-resource settings. Emphasises that TOR rules for OHCA may be a cost-effective strategy to minimise futile transports.
Resuscitation research ethics	Advocates for high-quality emergency research with emphasis on the necessity of pre-enrolment consent models. Recommends transparency and respect for patient dignity, with institutional ethical review committee involvement for all research.	Deferred consent model expanded to include non-drug investigational interventions, with safeguards for patient autonomy. Calls for education of the public on applicable regulations and the necessity of deferred consent for emergency research. Addresses benefits and risks related to the use of artificial intelligence in emergency research. n (CPR): return of spontaneous circulation (ROSC):

Abbreviations: Do-not-attempt-cardiopulmonary-resuscitation (DNACPR); cardiopulmonary resuscitation (CPR); return of spontaneous circulation (ROSC); termination of resuscitation (TOR); Out-of-hospital cardiac arrest (OHCA).

- Document advance care plans in a consistent manner that is available in emergency care settings (e.g. electronic registries, standardised documentation templates).
- Use advance care planning to identify treatments and interventions that should be avoided upon hospital admission at the end of life.
- Reassess advance care plans regularly and when a patient's situation changes.
- Facilitate patient and family caregivers' understanding of their preferences, as mutual understanding can optimise the decision-making process for all involved.
- Organise local educational hubs focusing on skills and competencies when undertaking goals of care discussions.
- Communication skill training should be part of the continuous professional development for healthcare providers involved in advance care planning and end-of-life care.

Ethics of bystander and first responder involvement

- Ensure that bystanders are not forced or unduly compelled into performing CPR, respecting their personal autonomy in resuscitation decision-making, while acknowledging the 'duty to help'.
- Mitigate moral distress among bystanders and first responders by offering ethical guidance for navigating situations involving difficult or distressing interventions.
- Health care systems should implement measures to facilitate psychological support for bystanders and first responders following out-of-hospital cardiac arrest (OHCA), e.g. through surveys or defusing to identify people in need of additional support and/or by providing contact information for further psychological support.
- Clarify legal and ethical protection for bystanders to reduce hesitation due to fear of liability or moral responsibility.
- Implement strategies to minimise the impact of biases in bystander intervention, ensuring that factors such as gender, cultural background, or the patient's social identity do not influence resuscitation decisions.
- Clearly articulate the ethical boundaries of bystander responsibility in OHCA response, carefully distinguishing between moral obligations and legal or medical duties and delineating how these distinctions can be navigated effectively within the context of the legal-moral duty to assist.
- Implement safeguards in bystander alert systems to protect patient autonomy and prevent unwanted or inappropriate resuscitation attempts, while also ensuring that the bystanders' autonomy is respected in their decision to intervene.

Family presence

- Resuscitation teams should offer the family of cardiac arrest patients the choice to be present during the resuscitation attempt.
- Healthcare systems should establish clear, contextualised, and culturally sensitive procedures for the involvement of family members.
- Healthcare systems should specifically train their teams to support family members during resuscitation.
- As far as reasonably practicable, healthcare systems should have a trained team member who can be designated to this task as part of the overall CPR strategy and choreography.

Termination of resuscitation

- Make a team-based decision to terminate resuscitation based on a holistic approach considering patient values and preferences and the combined picture of prognostic factors including duration of CPR, the absence of reversible causes, and the absence of response to advanced life support.
- TOR should be carried out in a planned manner and all team members should have the opportunity to weigh in before termination
- The team should conduct a debriefing immediately following termination.
- TOR may be considered when the patient has persistent asystole despite 20 minutes of advanced life support in the absence of any reversible cause when no other clinical factors suggest against.
- TOR rules may be used to aid decision-making for adult patients with OHCA following local validation and considering local values and preferences.
- TOR rules should not be used for in-hospital cardiac arrest (IHCA) and for paediatric patients in any setting due to insufficient evidence.
- Persistently low end-tidal CO₂ (ETCO₂) is a strong prognostic marker that may be used to aid decision making on top of other factors but should not be used in isolation.
- Other factors such as cardiac ultrasound, blood gases, and pupil reactiveness are not valid factors for termination of resuscitation.

Uncontrolled organ donation after circulatory death

- Healthcare systems should assess their current policies and strategies regarding organ donation to improve organ availability while considering their sociocultural and religious context.
- Healthcare systems should invest in education and communication for both citizens and healthcare professionals.
- In healthcare systems that offer uncontrolled donation after circulatory determination of death, transparent procedures should be accessible to all those involved. These procedures should cover aspects such as donor identification, consent, organ preservation, and procurement.
- Moreover, TOR practices within these systems should be reviewed and adjusted to ensure they do not conflict with the possibility of uncontrolled organ donation after circulatory death.

Ethics of education and systems

- Establish ethical reasoning as a core competency in resuscitation education to strengthen critical thinking, ethical judgment, and decision-making that respects patient autonomy, follows medical best practices, and aligns with societal values.
- Implement simulation-based ethics training to provide healthcare
 professionals with hands-on experience in ethically complex
 resuscitation scenarios, including cases involving communication
 and decision-making regarding advance care planning, DNACPR
 decisions and TOR decisions.
- Introduce ethical preparedness education for resuscitation providers to develop strategies for managing moral distress, addressing ethical dilemmas, and overcoming institutional constraints that impact decision-making in high-pressure situations.

- Standardise institutional policies on advance care planning, DNACPR decisions, and TOR by embedding structured ethical frameworks that provide clear, legally and professionally aligned guidance for resuscitation decisions.
- Develop formal education programs to equip healthcare professionals with the skills to navigate institutional constraints, legal uncertainties, and policy inconsistencies in ethically complex resuscitation cases.
- Establish ethical oversight mechanisms within resuscitation policies to promote patient-centred, transparent, and ethically sound decision-making at institutional levels.

Cardiac arrest as a result of a suicide attempt

- In making decisions about withholding or withdrawing resuscitation in patients after attempted suicide, teams should consider various factors, such as context, patient motivations, and competing rights.
- In the existence of an advance directive, we still suggest initiating resuscitation until the context and background-clinical and ethical-of that advance directive is fully known.
- The response to the clinical situation should be tailored to the individual patient and not be dogmatic.
- If resuscitation likely results in significantly more harm than benefit, then the cause (being suicide) becomes irrelevant.

Resuscitation research ethics

- Systems should support the delivery of high-quality emergency research, as an essential component of optimising patientcentred cardiac arrest outcomes.
- Regulatory and procedural barriers to high-quality emergency research related to consent models should be minimised by legal improvements. For example, clear legal support for deferred con-

- sent may be extended to non-drug investigational interventions to minimise any pertinent ambiguity, while still maintaining adequate safeguards for patient and family autonomy, dignity and privacy.
- For observational research (e.g. in the context of registry data collection and/or DNA biobank data sampling and analyses) we suggest consideration of a deferred consent model, with concurrent implementation of appropriate safeguards aimed at preventing data breaches and patient reidentification.
- Researchers should involve patients, and members of the public as community advisors, throughout the research process, including design, delivery and research dissemination.
- Systems should promote education of the public regarding applicable regulations and the necessity of using deferred consent for emergency research. This initiative may enhance willingness for research participation.
- The use of a core outcome set, along with standardised corresponding terminology, should be harmonised across trials investigating clinical effectiveness.
- Communities or populations in which research is undertaken and who bear the risk of research-related adverse events, should be given the opportunity to benefit from its results.
- Researchers should comply with best practice guidance to ensure integrity and transparency of research, including study protocol registration, prompt reporting of results, allocation of authorship according to international criteria for authorship, and data sharing.
- Policies of governments, public health bodies, international societies, and non-profit organisations should aim to ensure that funding for cardiac arrest research is sufficient to effectively address the high societal burden caused by cardiac arrest-associated morbidity and mortality.
- Health authorities should augment systems' resilience to pandemic-associated (or other calamity-induced) disruption of resuscitation research by cost-effective use of available computer

Table 2 - ERC Guidelines 2025 consensus definitions and statements, adapted from ERC Guidelines 2021.²

Definitions and statements related to advance directive(s)

Advance directive An instrument that relays information concerning an individual's preferences and goals regarding medical procedures and treatments, especially those used for end-of-life care. Advance directives are intended to extend the patient's autonomy to situations in which he/she is unable to express his/her preferences regarding treatment decisions. They reflect a patient's individual moral, cultural, and religious attitudes. They are represented in three formats: Living will (or instruction directive), appointment of a healthcare proxy (or proxy directive), and legal status of preferences.

Advance directives

Advance directives must fulfil three criteria: Existence, validity (partly realised through periodic review), and

Definitions and statements related to advance care planning

applicability.

Advance care planning

criteria

A process that enables individuals to define goals and preferences for future medical treatment and care, to thoroughly discuss these goals and preferences with family and healthcare professionals, and to record and review these preferences if appropriate. The main objective is to help ensure that people receive medical care consistent with their values, goals, and preferences during serious, chronic, and/or acute/life-threatening illness.

Advance care plans Plans that should be updated or re-reviewed, considering the availability of new and improved therapies that might affect patient preferences. Patient preferences may also evolve over time independently of available treatment options.

Definitions and statements related to shared decision-making

Shared decisionmaking

A collaborative process that enables patients, or their surrogates, and a multidisciplinary team of healthcare professionals to identify treatment strategies and interventions that align with the patient's values, goals, and preferences. This process includes life-support limitation and palliative care, taking the best available scientific evidence into account, and fostering trust and partnership between patient/surrogate(s) and clinician(s).

- and telecommunication/telemedicine technology and infrastructure, and other occasion-specific measures, such as personal protection and widespread/prompt vaccination.
- Use of artificial intelligence (AI) in research should be regulated according to rigorous ethical and scientific safeguards for beneficence, autonomy/privacy and justice. As an example, development of new AI algorithms should be based on broad datasets from the general population, rather than datasets from socioeconomically privileged groups.

The evidence informing the ethics in resuscitation guidelines

Advance care planning

An international consensus defined advance care planning as a process that supports adults at any age or stage of health in understanding and sharing their personal values, life goals, and preferences regarding future medical care. The goal of advance care planning is to help ensure that people receive medical care that is consistent with their values, goals and preferences during serious and chronic illness. For many people, this process may include choosing and preparing another trusted person or persons to make medical decisions in the event the person can no longer make his or her own decisions. The ERC Ethics in Resuscitation Writing Group recognises that the definition only considers adults but we reviewed evidence and provide recommendations for both adults and children (Table 2).

Advance care planning takes a holistic, patient-centred approach, incorporating clinician-led discussions about limitation in life-

sustaining treatment (Fig. 2). Healthcare professionals and patients are more likely to encounter a DNACPR decision than an IHCA, as observational studies show that only about 3-8 % of patients who die in the hospital actually receive CPR.7,8 Further, about one in ten of acutely admitted patients receives a DNACPR decision and among those dying, in-hospital death most often occurred after several days. 9,10 Yet, a recent scoping review has demonstrated more barriers than facilitators of good practice of DNACPR decisions, barriers relate to timing, time-pressure, communication and ethical uncertainty. 11 Studies have shown that inappropriate or absent documentation of DNACPR decisions can result in either unwanted attempts of CPR or moral trauma among staff, who may hesitate or delay resuscitation efforts due to uncertainty. 12,13 Findings from two 2024 scoping reviews^{11,13} align with a systematic review from 2014, 14 highlighting the need for education and attention to DNACPR in quidelines. The rationale for a DNACPR decision can be divided in three categories 15,16

- CPR is inappropriate because the patient is dying from an irreversible condition irrespective of the outcome of CPR,
- (2) CPR is not considered beneficial, weighing the prognosis against the patients' values and preferences.
- (3) CPR is not aligned with the patient's will even after a clarifying discussion of consequences including death if CPR is not performed.

The two latter grounds underline the integration of DNACPR decisions within advance care planning. Further, CPR can be conditioned. An example of a conditional decision is to initiate CPR and give up to three defibrillations in the case of a shockable initial

Fig. 2 - Step-by-step advance care planning for the patient.

rhythm, but not to prolong treatment if the arrhythmia is refractory and to withhold CPR in the case of a non-shockable initial rhythm. ^{17,18} This kind of conditional decision might be of relevance in the elderly in-hospital population, where survival differs between 3 % and 41 % based on the initial rhythm. ¹⁹

Advance care planning training can be provided as a single session delivered by healthcare professionals or trained facilitators using a physical booklet or computer assistance. 20,21 A meta-analysis showed that video decision aids reduce patient preferences for lifeprolonging care, CPR and intubation while increasing patients' willingness to discuss goals of care.²² Recent reviews emphasise that single consultations and repeated sessions might help family involvement²³ and underscore an active nurse role instead of serving as intermediaries between doctors, patients and family.²⁴ A systematic review suggested that communication training increases comfort, self-efficacy, and preparedness of healthcare professionals to deliver end-of-life care.²⁵ Likewise, systematic continuous professional development might reduce barriers to patient understanding. 24 Studies found that documentation of advance care planning in electronic health care records being available at the point of care improved completion of DNACPR orders and patient engagement.²⁶

Across multiple systematic reviews, advance care planning has been associated with more treatment consistent with patients' wishes,²⁷ decreased use of life-sustaining treatment,²⁸ prevention of hospitalisation, 27-29 higher likelihood of dying in nursing homes, 27 lower healthcare costs^{27,30} improved quality of life, and reduced symptom burden.30 Further, advance care planning is linked to increased palliative care use 29,30 resulting in increased patient and caregiver satisfaction. 30 Likewise, advance care planning increases the patient-preferred place of death, 29 while evidence for better dying experiences is lacking.21 There are conflicting results on the use of resources including hospices.^{27,28,30,31} One meta-analysis found that among older people in the community, advance care planning decreased the incidence of CPR, use of nasogastric lavage and inhospital mechanical ventilation but reported no difference for place of dying.32 In patients with cancer, advance care planning reduced chemotherapy, ICU admissions, hospital admissions, hospice use, and hospital deaths compared with cancer patients without advance care planning.33

Two systematic reviews on end-of-life care in children showed that parents try to protect children by avoiding discussions about death and medical personnel delay discussions until death is imminent. However, the patients themselves want to be informed about their prognosis, and siblings express a desire to be involved. An oreover, a systematic review has shown that children with heart disease benefit from involvement of paediatric palliative care specialists through increased documentation of advance care planning including resuscitation decisions while relieving parental stress.

Advance care planning is associated with increased caregiverpatient congruence in end-of-life care preferences, improved satisfaction with healthcare quality and communication and partly associated with improvements in caregivers' depressive symptoms. Among people living with dementia, advance care planning involving substitute decision makers is a method to maintain concordance of goals over time. However, there is no evidence supporting that people living with dementia make the decisions themselves or that decisions taken by a substitute align with the patient's own values. Further, there is a lack of evidence demonstrating a patient preference for making these decisions in earlier or later stages of dementia. The satisfactory of the satisfactory o A systematic review on palliative care showed that preferences and priorities for care between patients and family caregivers were aligned for pain and symptom management but not for other types of care. ³⁸ Family caregivers tended to favour more active treatments, while patients worried about burdening family caregivers. To optimise the decision-making process, the review advocated for strategies that increase patient and family caregiver understanding of each other's preferences.

Ethics of bystander and first responder involvement

The ethical complexities surrounding bystander, lay rescuer, and first responder decision-making during OHCA have been extensively examined in international resuscitation guidelines and systematic reviews. This topic has not been reviewed by ILCOR. Equity concerns persist, particularly in lower bystander CPR rates observed in women and socioeconomically disadvantaged individuals. Concerns over physical contact, social norms, and perceived appropriateness contribute to hesitancy in performing CPR, reinforcing implicit biases in emergency response. ^{39,40} The 2021 ERC Guidelines emphasised structured ethical frameworks that balance public health benefits with respect for individual autonomy in CPR decision-making.²

Dispatch-assisted CPR is recognised as an effective mechanism to increase intervention rates, yet ethical concerns exist regarding potential undue influence, particularly when bystanders' express reluctance to intervene.41 Ethical considerations related to bystander hesitation and willingness to intervene have been widely explored. Fear of causing harm, lack of confidence, and emotional distress in high-pressure situations are consistently reported as key psychological barriers.42 Cultural and legal contexts further influence bystander decision-making, with CPR being less socially accepted in certain regions or legally ambiguous, reinforcing disparities in interventions.⁴³ Concerns over physical contact, social norms, and perceived appropriateness contribute to hesitancy in performing CPR, particularly when the victim is female.40 Moral distress is commonly reported among bystanders who feel obligated to intervene despite personal hesitation, with the psychological burden of resuscitation efforts, particularly in ethically complex cases involving children or family members, contributing to long-term avoidance of future interventions. This underscores the importance of reducing moral distress through provision of mental health resources for both bystanders and first responders to mitigate the long-term psychological impact.⁴⁴ In addition, healthcare systems should seek to identify those in need for further psychological support through e.g. post-event defusing or surveys to first responders. 45,46

Legal considerations play a crucial role in CPR decision-making. While Good Samaritan laws are designed to protect bystanders, their impact is inconsistent, and uncertainty about these protections remains a deterrent in jurisdictions where legal frameworks are unclear. Scoping reviews emphasise that bystanders are more likely to intervene when legal protections are clearly communicated, underscoring the importance of effective public messaging about liability and protections. 41,48

First responders, particularly community-based volunteers, face additional ethical challenges. Role ambiguity and lack of institutional recognition contribute to moral distress, particularly when responders are pressured to continue resuscitation despite clear indicators of medical futility. ⁴⁹ The ethical dilemmas surrounding professional

recognition, expectations for prolonged intervention, and psychological distress underscore the need for structured support mechanisms for first responders. The recommendations emphasise ethical transparency in bystander intervention, ensuring individuals are not coerced into performing CPR but are supported in ethical decision-making. Legal and ethical clarity in public messaging, alongside cultural and gender-sensitive CPR training, is necessary to promote equitable resuscitation and ensure ethical consistency in prehospital emergency care. Description expert consensus, the Ethics in Resuscitation Writing Group recommends that safeguards should be implemented within bystander alert systems to protect patient autonomy

and prevent unnecessary or inappropriate resuscitation attempts, provided that the autonomy of bystanders in their decision to intervene is also respected.² Addressing these challenges is essential to fostering informed, confident, and ethically guided decision-making (Fig. 3).

Family presence

The sudden death of a person is a distressing event that can have a long-lasting impact on the biopsychosocial health of those close to the victim. The suddenness of the event increases the risk of compli-

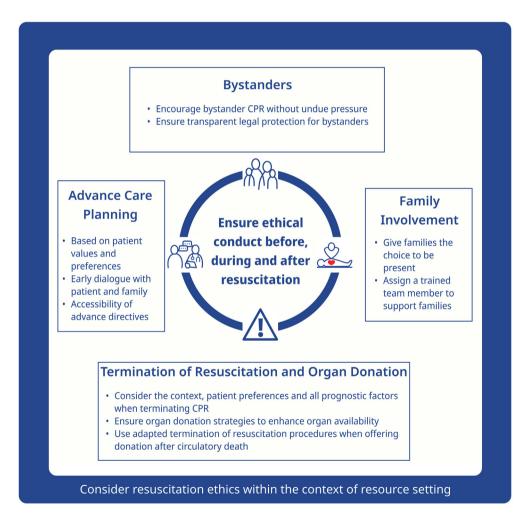


Fig. 3 - Ethical considerations before, during and after resuscitation.

cated grief and post-traumatic stress disorder symptoms, especially for parents losing a child.^{50,51} Allowing families to be present during resuscitation efforts can help alleviate these effects but is only a small part of a much-needed bereavement counselling strategy.

The concept of allowing families to be present during a resuscitation attempt has received significant attention in recent years. Following the literature search for the 2021 ERC Guidelines,² two ILCOR systematic reviews and one Cochrane review were published.^{50,52,53} Current guidance further integrate findings from by two umbrella reviews^{54,55} 11 additional reviews^{56–66} two simulation randomised controlled trials (RCTs) ^{67,68} and 32 recent observational studies, most of which were survey-based. ^{69–100} Eleven additional papers provided relevant background information, despite being outside the primary search criteria. ^{51,101–110}

Regardless of religious, cultural, or educational background, most patients and family members support the idea of family presence during resuscitation, even if they acknowledge potential risks. Many resuscitation experts and scientific societies strongly advocate for family presence during resuscitation based on ethical arguments, as part of a patient-centred healthcare paradigm shift. The evidence indicates no clear negative impact on patient resuscitation outcomes and suggests potential improvements in biopsychosocial outcomes of family members. However, concerns primarily revolve around healthcare professionals' well-being and the resuscitation team's performance.

A noticeable gap exists between expert advice in favour of family presence during resuscitation and actual daily practice in most hospitals worldwide, even when official policies are in place. The implementation of family presence during resuscitation is frequently hampered by medicolegal or safety concerns, fear of miscommunication, behavioural disturbances and complaints, a lack of resources or space in the resuscitation room, and most importantly, fear of patient harm due to impaired team performance and skewed clinical decision-making in the presence of families.

A significant worry is the role of the family member present as surrogate decision maker. Family members present during resuscitation may experience intense emotional distress, potentially impairing their ability to represent the patient's end-of-life preferences accurately. It is therefore crucial to emphasise that the withdrawal of life-sustaining treatments is a medical team's decision, based on assessing the individual patient's values and preferences and balancing the benefits and harms. Clear and unequivocal informed consent should be reached with the present families.

Effective implementation of family presence during resuscitation requires assigning a specifically trained team member to support family members during resuscitation, 50,66 to address the emotional, physical, and informational needs of families. Their role includes assessing the suitability of these families for safe observation, providing clear and appropriate explanations, responding to their questions, and offering comfort measures without giving false hope. Adequate education, which includes theoretical knowledge, communication skills training, and performance training through simulations, is essential to successfully fulfil this role. 73,103

Termination of resuscitation (TOR)

TOR is an ethical decision considering patient preferences and values, including considerations of harm outweighing potential benefits, safety for the healthcare professionals, and medical futility.² Disagreements regarding TOR are frequent during resuscitation,¹¹¹ and resuscitation attempts can affect healthcare professionals psychologically. 112 Therefore, TOR should be a team decision where the ongoing resuscitation effort should be summarised and all team members should be able to weigh in prior to termination. A 'hot debriefing' immediately after resuscitation attempts should be sought to identify providers in need of emotional support and address ethical concerns. 112

Various methods have been proposed to determine medical futility, including TOR rules, \$^{113,114}\$ different physiologic markers, \$^{115-117}\$ and several other unvalidated factors that healthcare professionals sometimes use. \$^{118}\$ The use of physiologic markers and TOR rules should be weighed in terms of potential benefits and harms. No single factor can accurately predict futility in cardiac arrest patients including TOR rules. \$^{2,113-116}\$ However, physicians are also unable to predict survival outcomes \$^{119}\$ and there is a large heterogeneity between physicians in terms of TOR practices, \$^{120}\$ reports of unvalidated factors used in decision-making, \$^{118}\$ and possibly premature TOR by clinicians in some cases. \$^{121}\$ Thus, TOR rules and physiologic markers may be serve as aids to support clinicians and ensure that all patients get a fair chance prior to TOR.

An ILCOR review on TOR rules for IHCA identified no sufficiently reliable TOR rule for IHCA which resulted in a strong recommendation against the use of TOR rules for IHCA. 114 In contrast, for OHCA, ILCOR identified numerous TOR rules derived from historical cohort studies of which several performed well - although none perfectly - in avoiding TOR of patients who could survive. 113,122 Accordingly, ILCOR made a conditional recommendation for the use of TOR rules in adult OHCA. 113,122

Notably, different TOR rules have variable performance across different cohorts and decreasing performance with improving survival rates and therefore they should be validated locally prior to being used. 113,123 A major limitation of some TOR rules is the challenge of applying them prospectively. Many rely on factors such as absence of shock delivery and lack of prehospital return of spontaneous circulation (ROSC), which perform well in retrospective analyses but are dependent on the duration of prehospital CPR—making them difficult to apply in real-time decision-making. 124

Moreover, it should be noted that in places where TOR rules have been applied, patients have often been transported in spite of the TOR rule recommending to stop 125 and some of these patients may survive, particularly patients with pulseless electrical activity, shorter transport time, and younger age, in spite of a TOR rule suggesting futility. 126

Recent studies have evaluated existing TOR rules for paediatric patients as well as deriving new TOR rules for paediatric patients. 127-131 Overall, performance varied and ILCOR found that the evidence seems yet insufficient to recommend application of any TOR rule in paediatric patients. To be consistent with previous guidelines, we nevertheless suggest that the ERC rule of 20 minutes of asystole in spite of advanced life support and no reversible causes to correct may be considered for termination across all age groups.

End-tidal CO $_2$ (ETCO $_2$) may correlate with CPR quality and survival outcomes during adult CPR. 115 Various cut-offs, durations, and trends for ETCO $_2$ and medical futility have been proposed. 115,132,133 Single measurements of ETCO $_2$ are likely an insufficient marker of mortality in both adults and children, 132,134 but persistently low ETCO $_2$ measurements over at least 20 minutes is a marker of very low chance of survival in adult cardiac arrest. 115,133 The ILCOR review identified that an ETCO $_2$ <10 mmHg (<1.33 kPa) after 20 min of CPR is associated with a 0.5 % likelihood of ROSC for adult cardiac arrest. 115

Reviews by ILCOR and others on cardiac standstill during CPR found that cardiac standstill is a snapshot of the heart being associated with worse survival outcomes but remains a poor predictor of no chance of survival. The studies used various timings of ultrasound with various definitions of wall motion. The furthermore, the interrater reliability for identifying cardiac standstill is poor.

Other non-validated factors have been considered to determine futility during CPR, e.g. neuron specific enolase measurements, regional cerebral oxygen saturation, pupillometry, blood gas measurements, patient age, and certain comorbidities. 117,118,137 Due to insufficient evidence and/ or data suggesting the inability to predict survival, these factors should not be used for TOR.

Uncontrolled organ donation after circulatory death

Despite a general societal acceptance of organ donation as a concept, provided it is conducted in a trustworthy manner, there remains a significant shortage of donor organs. The reasons for that are varied and complex.¹³⁸

ILCOR has published a scientific statement on organ donation, recommending that all health systems should develop, implement, and evaluate protocols designed to optimise organ donation opportunities for patients who have an OHCA and failed attempts at resuscitation. 139 The primary aim of resuscitation is to benefit the individual victim. However, there may be value in prolonging resuscitation to allow for organ perfusion and subsequent organ donation. Organ donation following sudden cardiac arrest - provided short no-flow times and adequate CPR - will significantly increase the number of available organs and thus improve outcomes for patients currently on the transplant waiting list. Despite an elevated risk of primary non-function of the transplanted organs, outcomes of uncontrolled organ donation after circulatory death have proven to be acceptable. This is also the case for extracorporeal CPR that likewise provides an opportunity for uncontrolled organ donation for non-survivors. 140,141 Importantly, while withdrawing resuscitation prehospitally may appear ethically justified for various reasons, this practice may keep deceased patients from becoming organ donors. Although the actual organ donation process cannot be initiated prehospitally, the resuscitation team is responsible for allow it to happen subsequently.

Since conducting the literature search for the 2021 ERC Guidelines, 2 we have identified three additional narrative reviews 138,142,143 , an ILCOR scientific statement 139 , and three observational studies. $^{144-146}$ To further inform current guidelines, we also considered 17 background papers – not strictly on topic or other publication type – that offered valuable supplementary information and insights. $^{147-163}$

These Guidelines focus specifically on uncontrolled organ donation after circulatory death Maastricht category II (unsuccessful CPR: witnessed OHCA with unsuccessful CPR), 164 acknowledging that there are obviously other pathways to organ donation, each with their own, sometimes overlapping, procedural and ethical issues.

Various strategies such as communication programs or 'opt out' legislation have been implemented in different countries to expand the pool of potential deceased donors. However, uncontrolled organ donation after circulatory death is a recent approach and is not permitted in all jurisdictions. Even where permitted, uptake remain low due to sociocultural, religious, logistical, and legal barriers. Many misconceptions and concerns persist among both public and health-care professionals. Enhanced education and transparent communi-

cation about uncontrolled organ donation after circulatory death may help address these changes.

One ethical concern is that clinicians may be perceived as prioritising organ retrieval over patient resuscitation. To prevent such perception, the resuscitation team should be distinct from the team responsible for decisions regarding uncontrolled organ donation after circulatory death. At every stage, regardless of a country's opt-in or opt-out policy, families must retain the freedom to make fully informed and independent decisions. Importantly, healthcare professionals should always approach the family of a potential donor. While many families may decline uncontrolled organ donation after circulatory death, failing to engage families removes their opportunity to make an autonomous decision and potential benefits from the experience of honouring the patient's wish or finding meaning in the loss. The timing of this conversations is crucial, as premature discussions may cause distress.

A second concern involves the concept of death. For non-living donations, the donor must be legally and ethically dead - a principle known as the 'dead donor rule'. With the advent of intensive care medicine, death has been defined as the irreversible cessation of brain functions, although this definition can yield false positives and negatives. Given the potential benefit for both organ recipients and the donor's family, and considering ethical principles such as justice, equity and autonomy (beyond the traditional beneficencenonmaleficence framework), several countries have moved to permit donation after circulatory determination of death. After a specific period of circulatory arrest (which varies by country), death is considered permanent and thereby meets the medical, ethical, and legal criteria for declaring death. If no further resuscitative measures are undertaken - aligned with the known values and preferences of the patient and their family - 'permanent' is ethically equivalent with 'irreversible.' Once death is declared, resuscitation may be restarted to preserve organ viability, a practice that remains ethically debated.

Restarting resuscitation after death can raise additional concerns, including physical trauma to the body (which may distress the family), theoretical risk of regained consciousness due to resumed brain perfusion, or confusion and renewed grief when observable signs such as a heartbeat return. These issues are further complicated by the increasing use of extracorporeal CPR and post-mortem organ perfusion.

Importantly, if it is clear that the deceased would have wished to donate their organs, and this is supported by their family, then Kantian objections – such as the claim that individuals should not be used merely as a means to an end–are not applicable. In that context, the donation also serves the interest if the deceased and their family. At this stage, the clinical team should make every reasonable effort to facilitate the donation. Families should be informed in advance that organ procurement may not succeed, and the entire process should be explained transparently, including any steps of the process that may improve the likelihood of a successful uncontrolled organ donation after circulatory death outcome.

Ethics of education and systems

Ethical preparedness in resuscitation is essential to ensure that healthcare professionals can navigate complex decisions related to advance care planning, DNACPR, TOR, and shared decision-making with clarity and consistency. However, current evidence reveals significant gaps in ethical education and institutional policies, resulting in variability in decision-making and increased moral distress among professionals. ^{165–167}

The 2021 ERC Guidelines highlight the importance of embedding structured ethical reasoning within resuscitation education to equip providers to apply ethical principles in high-pressure scenarios.² Institutional structures and legal frameworks exert a strong influence on ethical decision-making in resuscitation. However, the absence of standardised policies contributes to uncertainty, reinforcing the need for ethical reasoning to be systematically integrated into resuscitation curricula. Systematic reviews and observational studies indicate that structured ethical education enhances ethical decision-making and reduces variability in practices. RCTs showed that healthcare professionals who received formal ethical education report greater confidence in decision-making, better alignment with patient values, and reduced moral distress in ethically challenging situations. 108

Ethical reasoning is not an inherent skill, it requires structured learning and experiential practice to ensure consistent application in resuscitation settings. 108,167,168 Simulation-based training has proven effective in providing controlled exposure to ethical dilemmas, enabling providers to refine their approach before facing real-world encounters. 167 Evidence suggests that simulation improves the ability to handle DNACPR discussions and TOR decisions, decreasing hesitancy and promoting ethically sound interventions. 168 Additionally, embedding standardised frameworks into resuscitation curricula enhances clarity during advance care planning conversations and ensure greater consistency in end-of-life decision-making. 165

Ethical challenges extend beyond individual education into broader institutional policy domains. Variability in advance care planning, DNACPR, and TOR policies contributes to ethical ambiguity and inconsistencies in resuscitation practices. ^{165,166,169} In the absence of clear, enforceable ethical guidelines, resuscitation decision-making is often influenced by subjective judgment rather than established ethical principles. ^{165,166,169} Observational studies highlight that institutional inconsistencies in advance care planning and DNACPR protocols generate uncertainty and leave providers without a standardised framework for addressing ethically complex cases. ¹⁶⁶ This inconsistency increases moral distress and undermines patient-centred care. ¹⁶⁹

System-wide ethical oversight and standardised policies are essential to ensure ethical consistent DNACPR and TOR decision-making. 165–167 Moreover, disparities in access to structured ethics education further affect ethical preparedness. Evidence indicates substantial variation in the availability of education across healthcare settings. 108,167,170 Universal access to ethics education and harmonising institutional policies is critical to ensure fairness and transparency in resuscitation care. 165,167,170

Education in the ethics of resuscitation must be both standardised and adaptable to diverse healthcare contexts, enabling all providers to make ethically sound decisions regardless of institutional or systemic constraints. 167 These recommendations support the 2021 ERC Guidelines, which advocate for the integration of ethical decision-making as core component of resuscitation education and system policies, rather than treating it as an optional or secondary consideration. 2 Ethical preparedness training, institutional standardisation, and equitable access to ethical education are fundamental to reducing uncertainty, enhancing provider confidence, and aligning resuscitation practices with patient rights and ethical best practices (Table 3). 171–174

Cardiac arrest as a result of a suicide attempt

Cardiac arrest resulting from a suicide attempt presents an ethical conundrum, challenging the boundaries of autonomy and the concept of having mental capacity. The duties and principles that typically guide clinicians in their role as caregivers may become more complex in cases of attempted suicide, where the patient autonomy may conflict with the principle of beneficence. Perspectives among healthcare professionals and society vary widely and are often influenced by the legal, religious and sociocultural context in which care is provided.

Only two recent observational studies have added to the evidence base summarised in the 2021 ERC Guidelines. ^{2,175,176} Another six publications were reviewed that discuss ethical reflections and philosophical issues in suicide. ^{177–184} We strictly focused on the withholding or withdrawal of life-sustaining treatment in the context of sudden cardiac arrest due to suicide, explicitly excluding physician-assisted suicide and euthanasia.

In cardiac arrest after attempted suicide, healthcare professionals' beliefs about the moral permissibility of honouring refusals of life-sustaining treatment are central. 175,178 These beliefs are shaped by their assessment of the patient's decision-making capacity – regardless of motive – but are not neutral; they are influenced by personal values, preferences, and perceptions of the treatment's worth.

The ERC recommends that advance directives should be honoured, those made in the context of suicide require additional scrutiny. If a suicide attempt is understood as a clear expression of the patient's wish not to receive resuscitation-and if the patient possesses medical decision-making capacity and autonomy at the time—then, from a patient-centred perspective, such a wish should be respected. However, many argue that suicidal ideation is often transient and closely associated with mental disorders that may impair decision-making capacity. In these circumstances, the principle of beneficence-protecting individuals suffering from potentially treatable conditions-may take precedence over autonomy to prevent harm from impulsive actions. This may apply even if the suicide attempt is supported by an advance directive, which may or may not have been created when the patient was fully mentally capable. Until the context and background of any possible advance directive is known, it is therefore advisable to start or continue resuscitation in this situation.

A further ethical dilemma arises when we consider that with-drawal of life-sustaining therapy is often viewed as acceptable—or even advisable—in cases of severe physical suffering or poor quality of life, where the burden of treatment clearly outweighs its potential benefit. It is then questionable what the position should be when the source of suffering is mental illness. Some authors argue that most psychiatric illnesses can be managed and quality of life improved, why it is very difficult to predict terminal outcomes and justify withdrawal of life-sustaining therapy. 177,178 However, expert opinion remains divided. For some individuals, existing treatments may be ineffective, leading to a persistently unacceptable quality of life. 178

Decisions about withholding or withdrawing life-sustaining treatment are typically made by the treating team in collaboration with surrogate decision-makers. Yet, in the context of attempted suicide, surrogates may be particularly influenced by their own experiences and values. They might have suffered significant emotional distress from previous suicide attempts, substance use, or prolonged mental or physical illness of their relative. As a result, they may feel

Table 3 - Structured approach to ethics education in resuscitation: key components and methods.

What to train	Definition	Distinctive focus or contribution	Examples for how to train
Ethics education (foundational knowledge & application) ¹⁷¹	Provides baseline knowledge of ethical principles in resuscitation, including advance care planning, shared decision-making, do-not-attempt cardiopulmonary resuscitation, and termination of resuscitation	Focuses on teaching core ethical concepts and frameworks so providers understand ethical principles before applying them in clinical settings.	Lectures & online modules covering ethical frameworks in resuscitation, case-based discussions exploring advance care planning, shared decision-making, do-not-attempt cardiopulmonary resuscitation, and termination of resuscitation scenarios.
Ethical reasoning (critical thinking & judgment in ethical dilemmas) ¹⁷²	Strengthens decision-making skills by helping providers analyse ethically complex resuscitation cases and apply ethical reasoning to align with patient values, medical best practices, and societal considerations while professionals can reflect on their own values and motives.	Goes beyond ethical education by focusing on critical thinking and problem-solving when making ethical resuscitation decisions and focuses on healthcare professionals' own values and motives that may affect decision-making.	Ethical dilemma discussions (e.g., weighing patient autonomy vs. medical futility in termination of resuscitation cases) Role-play scenarios on leading shared decision-making conversations with families in emergency settings.
Ethical preparedness (resilience, coping with moral distress & systemic challenges) ¹⁷³	Develops strategies to manage moral distress, ethical dilemmas, and institutional constraints that affect ethically sound resuscitation decision-making in high-pressure situations.	Unlike ethics education and reasoning, this focuses on managing ethical stress and systemic barriers that impact decision-making (e.g., legal uncertainties, policy constraints).	Simulation-based training: high- pressure resuscitation scenarios where providers must make real- time ethical decisions under institutional constraints. Workshops on managing moral distress and ethical conflicts in termination of resuscitation cases. Ethical rounds.
Institutional & policy education (standardising ethical decision-making across healthcare settings) ¹⁷⁴	Ensures healthcare professionals understand and navigate institutional policies, legal constraints, and ethical frameworks related to advance care planning, do-not-attempt cardiopulmonary resuscitation, termination of resuscitation, and shared decision-making.	Focuses on system-level understanding of ethical policies, ensuring consistency in how ethics is applied across different healthcare settings.	Policy education workshops on institutional do-not-attempt cardiopulmonary resuscitation and termination of resuscitation policies. Case reviews of real-world resuscitation policies in emergency medical services, intensive care units, and emergency departments.

resentment or a pessimistic view of the patient's potential for recovery. Conversely, others may respond to stigma surrounding suicide by insisting on prolonged life-support, even when this may conflict with patient's known or presumed wishes.

Ethical considerations in low-resource settings

Ethical decision-making in resuscitation within low-resource settings may differ from that in high-resource settings due to scarce resources, different health care priorities, and different psychological, sociocultural, and religious considerations on resuscitation and end-of-life care. Allocation of limited resources in any context should be non-discriminatory, ethical, considering equity and with maximal efficiency.

Ethical considerations for resuscitation in low-resource settings have been addressed in ILCOR statements and consensus-based reviews, which highlight challenges related to inconsistent policies, limited resources, and the absence of structured frameworks for advance care planning , shared decision-making, DNACPR orders, and TOR criteria. 40,122,185,186 The 2021 ERC Guidelines highlight variability in legal frameworks, ethical complexities, and disparities in the application of DNACPR and TOR across different healthcare settings. 2

Use of advance care planning and DNACPR may be considered of particular importance in low-resource settings to enable fair allocation of resources. ¹⁸⁷ However, there are multiple barriers and facilitators to proper implementation of DNACPR discussions. Barriers may include sociocultural norms, lack of legal clarity, organisational policies, societal and family views, religious and ethical beliefs, and diverging views among healthcare professionals. ¹⁸⁷ Moreover, patient preferences are often undocumented, unacknowledged, or overridden in DNACPR discussions, resulting in clinician-driven DNACPR decisions made without formal input from patients or their families. ^{9,14,186,188,189} In contrast, education in DNACPR and clear legislation including local protocols may be important facilitators for efficient implementation. ¹⁸⁷

In some countries, a very large proportion of patients with OHCA may be transported to hospitals in spite of many cases being considered futile, potentially leading to large healthcare expenditures. 125,190 In such cases, TOR rules may be a cost-effective solution to reduce the number of transports to hospitals with ongoing resuscitation where the chance of survival is extremely low. 125,191,192 This may be an important consideration for low-resource settings as ethical challenges may arise during prolonged resuscitation attempts when survival is unlikely but resuscitative efforts persist due to systemic

pressures or societal expectations. ^{193,194} Evidence from prehospital emergency medical services systems in low-resource settings indicates that workforce shortages, limited equipment and medications, and a lack of consistent ethical guidance contribute to significant variability in how resuscitation decisions are made. ^{125,189,190,195,196}

When considering patient prognosis during resuscitation as part of the TOR decision, the options for treating the reversible causes are important. Limitations to e.g. medication or access to cardiac laboratory or extracorporeal life support may change what is perceived reversible causes in the situation. Thus, the situation (incl. location), the available resources, and the safety of the providers should always be considered as part of the holistic, team-based process of TOR.

Resuscitation research ethics

The current Guidelines are supported by evidence from five systematic reviews, five scoping reviews, 23 narrative reviews, one randomised controlled trial and 33 observational, descriptive or survey studies. These were identified through systematic searches corresponding to eight population-concept-context frameworks. The recommendations are further supported by a 2018 ILCOR advisory statement on core cardiac arrest outcome, ¹⁹⁷ as well as additional published evidence sourced from the reference lists of the 2021 ERC Guidelines.²

In addition to this main text, a more detailed and structured presentation of the evidence underpinning the research ethics guidelines is provided in the accompanying Supplement A.

The critical balance between patient/family autonomy and emergency research

In cardiac arrest research, immediate treatment is essential, leaving no opportunity to obtain valid informed consent at the time of enrolment. 198,199 According to the Helsinki Declaration, low-risk RCTs or studies evaluating resuscitation interventions may proceed without prior informed consent, provided that consent is sought afterwards from the patient or their legally representative or decision-maker. 2,198,200 This approach is consistent with the deferred consent model. 198,201,202 Deferred consent is widely regarded as an acceptable safeguard of patient and family autonomy until the emergency research participant regains decisional capacity. 198 This consent model is endorsed by international ethics guidelines and reflected in Article 35 of the currently European Union (EU) Clinical Trials Regulation No. 536/2014. 200,203,204 This regulation supports and harmonises low-risk, multicentre and multinational emergency research that has the potential to provide clinical benefit. 2,198

Patient and public involvement in research is increasingly used and can be considered in all phases, including the design, delivery, and dissemination^{205,206} while variations remain in its implementation across countries and medical fields.²⁰⁷ Researchers should define clear and collaborative roles for patient and public advisors and provide adequate support. Patient and public involvement in research is considered important as it can enhance the focus on patient-relevant outcomes and the acceptability of research for all.²⁰⁸ Additionally, including patients and the public fosters equality between researchers and patients, allowing them to engage in research that is meaningful to them.²⁰⁸ Moreover, patient and public involvement may improve the quality of other research aspects, including enrolment, funding acquisition, study design, implementation, and dissemination.²⁰⁹

Methodologically robust development of core outcome sets may enhance the clinical and societal value of future RCTs by enabling harmonised and consistent reporting of patient outcomes. 197,210 Core outcome sets may include in-hospital survival, functional outcome at 30 days or discharge and health-related quality of life at 90 days or at intervals up to 1 year. 197

The inclusion of core patient-centred outcome sets in large registries - such as the European Registry of Cardiac Arrest, 211,212 the Cardiac Arrest Registry to Enhance Survival, 213,214 and Get With The Guidelines 8212,215 may (1) facilitate identification of relevant predictor variables and assess the relative effectiveness of different treatments used in clinical practice; and (2) provide insights into the impact of evidence-based guideline implementation on key outcomes.²

In the context of big data observational research, ^{2,216,217} a panel of 29 European experts in cardiac arrest research, medical ethics, and health law recently recommended that deferred consent should be the preferred model, with data placed on hold until the patient regains decisional capacity. ²¹⁸ A broad consent model was also considered ethically acceptable, ²¹⁹²¹⁹ though requiring specific consent for each study was seen as potentially burdensome. ²¹⁸ Ethical oversight of data, harmonisation of governance requirements across Europe, and the development of a code of conduct created by interdisciplinary experts in collaboration with patient representatives were also recommended. ²¹⁸

Artificial intelligence and emergency research

Current and emerging applications of AI in emergency and resuscitation care are summarised in Supplement A. With AI performance expected to continue improving and its integration into resuscitation practice expanding, ²²⁰ several important ethical concerns arise. These include:

- (1) Beneficence vs privacy and autonomy while Al-driven preemptive advice, warnings, or interventions may offer lifesaving potential, they must be balanced against possible infringements on patients' personal or mental privacy and their right to self-determination. Such interventions could become paternalistic, potentially compromising the integrity of an individual's personal life;²²⁰
- (2) Justice disparities in access to advanced healthcare technologies may widen based on socioeconomic status, particularly in low-resource settings. Moreover, Al algorithms trained on population- or group-specific datasets may be ineffective—or even harmful—when applied to populations with different characteristics, especially if those groups lack the capacity to generate representative datasets.²²¹

To address these concerns, EU Regulation 2024/168921 has been introduced with the following aims:

- (1) to classify and manage AI risk and impact levels;²²⁰
- (2) to prohibit misuse of AI, such as unauthorised use of facial images or exploitation of individual vulnerabilities; ²²⁰
- (3) to promote responsible AI use by requiring scientific safeguards, transparency, and ethical precautions;²²⁰
- (4) to support innovation and ensure the free movement of Albased goods and services across EU member states.²²²

Despite these regulatory efforts, there remains a need for a comprehensive ethical and scientific framework, concurrently addressing ethical concerns and ensuring the rigorous evaluation of technological advancements. Achieving this requires ongoing cooperation among technology experts, healthcare professionals, researchers,

ethicists, and legal authorities to prevent potential harm to patient autonomy, privacy, or safety. $^{220}\,$

Collaborators

The following individuals contributed as collaborators to the 2025 version of these Guidelines: Professor Ulrik Kihlbom, an academic ethicist, Karolinska Institutet, Stockholm, Sweden and Paul Swindell, Essex, United Kingdom, cardiac arrest survivor and founder of Sudden Cardiac Arrest UK.

Declaration of competing interest

Declarations of competing interests for all ERC Guidelines authors are displayed in a COI table which can be found online at https://doi.org/10.1016/j.resuscitation.2025.110734.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.resuscitation.2025.110734.

Author details

^aDepartment of Medicine, School of Medicine, European University Cyprus, Nicosia, Cyprus bSerbian Resuscitation Council, Novi Sad, Serbia ^cResearch Center for Emergency Medicine, Department of Clinical Medicine, Aarhus University, Denmark ^dDepartment of Medicine, Randers Regional Hospital, Randers, Denmark eUniversity of Antwerp, Antwerp, Belgium Paediatric Intensive Care Unit, NH Hospital Inc, Hořovice, Czech Republic ^gDepartment of Paediatric Anaesthesiology and Intensive Care Medicine, University Hospital Brno and Medical Faculty of Masaryk University, Brno, ^hDepartment of Simulation Medicine, Medical Czech Republic Faculty of Masaryk University, Brno, Czech Republic Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden ^jDepartment of Emergency Medicine, Karolinska University Hospital, Stockholm, Sweden Intensive Care Unit, University Hospital of Jerez, Jerez, Spain ¹Medicine Department, University of Cádiz, INIBiCA, Cádiz, Spain ^mDepartment of Anaesthesiology, Intensive Care and Pain Medicine, Clinical Hospital Merkur, Zagreb, Croatia ⁿFirst Department of Intensive Care Medicine, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece ^oDepartment of Emergency Medicine, Antwerp University Hospital and University of Antwerp, Edegem, Belgium PDepartment of Emergency Medicine and Faculty of Medicine, Ghent University Hospital, Ghent, Belgium ^qDepartment of Anesthesiology and Intensive Care, Randers Regional Hospital, Denmark

REFERENCES

1. Kon AA, Davidson JE, Morrison W, et al. Shared decision making in ICUs: an American College of Critical Care Medicine and

- Mentzelopoulos SD, Couper K, Voorde PV, Guidelines ERC, et al. Ethics of resuscitation and end of life decisions. Resuscitation 2021;2021(161):408–32. https://doi.org/10.1016/j. resuscitation.2021.02.017.
- NICE. Shared decision making. NICE. https://www.nice.org.uk/ guidance/ng197. last accessed 21.8.2025.
- Europe Co. Guide on the decision-making process regarding medical treatment in end-of-life situations. Council of Europe. https://www.coe.int/el/web/human-rights-and-biomedicine/guide-on-the-decision-making-process-regarding-medical-treatment-in-end-of-life-situations.
- Greif RL, Djärv T, Ek JE, et al. European Resuscitation Council guidelines 2025: executive summary. Resuscitation 2025;215 (Suppl 1):110770.
- Sudore RL, Lum HD, You JJ, et al. Defining advance care planning for adults: a consensus definition from a multidisciplinary Delphi panel. J Pain Symptom Manag 2017;53(5):821–832 e1. https://doi.org/10.1016/j.jpainsymman.2016.12.331.
- Aune S, Herlitz J, Bang A. Characteristics of patients who die in hospital with no attempt at resuscitation. Resuscitation 2005;65 (3):291–9. https://doi.org/10.1016/j.resuscitation.2004.11.028.
- Ten DT. years of incident reports on in-hospital cardiac arrest are they useful for improvements? Resusc Plus 2024;17:100525. https://doi.org/10.1016/j.resplu.2023.100525.
- Piscator E, Goransson K, Forsberg S, Herlitz J, Djarv T. Do-Not-Attempt-Cardiopulmonary-Resuscitation (DNACPR) decisions in patients admitted through the emergency department in a Swedish University Hospital – an observational study of outcome, patient characteristics and changes in DNACPR decisions. Resusc Plus 2022;9:10020. https://doi.org/10.1016/j.resplu.2022.100209.
- Coulden A, Cairns H. Do early DNACPR decisions prevent inappropriate CPR attempts. Resuscitation 2024;195:110102. https://doi.org/10.1016/j.resuscitation.2023.110102.
- Doody O, Davidson H, Lombard J. Do not attempt cardiopulmonary resuscitation decision-making process: scoping review. BMJ Support Palliat Care 2024. https://doi.org/10.1136/spcare-2023-004573.
- Alarik L, Nelson M, Terling L, Thoren A, Djarv T. Hesitate to resuscitate? A cohort study of hesitation to initiate resuscitation for in-hospital cardiac arrests. Resuscitation 2025110572. https://doi.org/10.1016/j.resuscitation.2025.110572.
- Armour D, Boyiazis D, Delardes B. Perspectives on cardiopulmonary resuscitation in the frail population: a scoping review. Monash Bioeth Rev 2024. https://doi.org/10.1007/s40592-024-00220-3.
- Mockford C, Fritz Z, George R, et al. Do not attempt cardiopulmonary resuscitation (DNACPR) orders: a systematic review of the barriers and facilitators of decision-making and implementation. Resuscitation 2015;88:99–113. https://doi.org/10.1016/j.resuscitation.2014.11.016.
- Piscator E, Djarv T. To withhold resuscitation the Swedish system's rules and challenges. Resusc Plus 2023;16:100501. https://doi.org/10.1016/j.resplu.2023.100501.
- BMA R, RCN. Publication: Decisions relating to cardiopulmonary resuscitation (3rd edition - 1st revision) | Resuscitation Council UK https://www.resus.org.uk/library/publications/publication-decisionsrelating-cardiopulmonary – last accessed 21.8.2025 - Search.
- Grasner JT, Herlitz J, Tjelmeland IBM, et al. European Resuscitation Council guidelines 2021: epidemiology of cardiac arrest in Europe. Resuscitation 2021;161:61–79. https://doi.org/10.1016/j.resuscitation.2021.02.007.
- Lauridsen KG, Saraiva J, Lofgren B, Djarv T. Full resuscitation or no resuscitation attempt: Should we have a third option? Resuscitation 2022;181:68–9. https://doi.org/10.1016/j.resuscitation.2022.10.018.

- Hirlekar G, Karlsson T, Aune S, et al. Survival and neurological outcome in the elderly after in-hospital cardiac arrest. Resuscitation 2017;118:101–6. https://doi.org/10.1016/j.resuscitation.2017.07.013.
- Malhotra C, Huynh VA, Shafiq M, Batcagan-Abueg APM. Advance care planning and caregiver outcomes: intervention efficacy systematic review. BMJ Support Palliat Care 2024;13(e3):e537–46. https://doi.org/10.1136/spcare-2021-003488.
- Weathers E, O'Caoimh R, Cornally N, et al. Advance care planning: a systematic review of randomised controlled trials conducted with older adults. Maturitas 2016;91:101–9. https://doi.org/10.1016/ i.maturitas.2016.06.016.
- Shu X, Chen Q, Zhou Y, Yang Z, Zhang Q. The effectiveness of video decision aid on advance care planning with adult patients: a systematic review and meta-analysis of randomized controlled trials. J Hosp Palliat Nurs 2023;25(1):E8–E13. https://doi.org/10.1097/NJH.0000000000000919.
- Kishino M, Ellis-Smith C, Afolabi O, Koffman J. Family involvement in advance care planning for people living with advanced cancer: a systematic mixed-methods review. Palliat Med 2022;36(3):462–77. https://doi.org/10.1177/02692163211068282.
- Gross J, Koffman J. Examining how goals of care communication are conducted between doctors and patients with severe acute illness in hospital settings: a realist systematic review. PLoS One 2024;19(3)e0299933. https://doi.org/10.1371/journal.pone.0299933.
- Walczak A, Butow PN, Bu S, Clayton JM. A systematic review of evidence for end-of-life communication interventions: who do they target, how are they structured and do they work? Patient Educ Couns 2016;99(1):3–16. https://doi.org/10.1016/j.pec.2015.08.017.
- Huber MT, Highland JD, Krishnamoorthi VR, Tang JW. Utilizing the electronic health record to improve advance care planning: a systematic review. Am J Hosp Palliat Care 2018;35(3):532–41. https://doi.org/10.1177/1049909117715217.
- Martin RS, Hayes B, Gregorevic K, Lim WK. The effects of advance care planning interventions on nursing home residents: a systematic review. J Am Med Dir Assoc 2016;17(4):284–93. https://doi.org/10.1016/i.jamda.2015.12.017.
- Brinkman-Stoppelenburg A, Rietjens JA, van der Heide A. The effects of advance care planning on end-of-life care: a systematic review. Palliat Med 2014;28(8):1000–25. https://doi.org/10.1177/ 0269216314526272.
- Kernick LA, Hogg KJ, Millerick Y, Murtagh FEM, Djahit A, Johnson M. Does advance care planning in addition to usual care reduce hospitalisation for patients with advanced heart failure: a systematic review and narrative synthesis. Palliat Med 2018;32(10):1539–51. https://doi.org/10.1177/0269216318801162.
- Kavalieratos D, Corbelli J, Zhang D, et al. Association between palliative care and patient and caregiver outcomes: a systematic review and meta-analysis. JAMA 2016;316(20):2104–14. https://doi.org/10.1001/jama.2016.16840.
- MacKenzie MA, Smith-Howell E, Bomba PA, Meghani SH.
 Respecting choices and related models of advance care planning: a
 systematic review of published evidence. Am J Hosp Palliat Care
 2018;35(6):897–907. https://doi.org/10.1177/1049909117745789.
- Wang J, Zhou A, Peng H, et al. Effects of advance care planning on end-of-life decisions among community-dwelling elderly people and their relatives: a systematic review and meta-analysis. Ann Palliat Med 2023;12(3):571–83. https://doi.org/10.21037/apm-23-367.
- Levoy K, Sullivan SS, Chittams J, Myers RL, Hickman SE, Meghani SH. Don't throw the baby out with the bathwater: meta-analysis of advance care planning and end-of-life cancer care. J Pain Symptom Manage 2023;65(6):e715–43. https://doi.org/10.1016/j.jpainsymman.2023.02.003.
- 34. Weaver MS, Mooney-Doyle K, Kelly KP, et al. The benefits and burdens of pediatric palliative care and end-of-life research: a

- systematic review. J Palliat Med 2019;22(8):915–26. https://doi.org/10.1089/jpm.2018.0483.
- Marsac ML, Kindler C, Weiss D, Ragsdale L. Let's talk about it: supporting family communication during end-of-life care of pediatric patients. J Palliat Med 2018;21(6):862–78. https://doi.org/10.1089/jpm.2017.0307.
- Ting J, Songer K, Bailey V, et al. Impact of subspecialty pediatric palliative care on children with heart disease; a systematic review and meta-analysis. Pediatr Cardiol 2024. https://doi.org/10.1007/s00246-024-03535-4.
- Geddis-Regan A, Errington L, Abley C, Wassall R, Exley C, Thomson R. Enhancing shared and surrogate decision making for people living with dementia: a systematic review of the effectiveness of interventions. Health Expect 2021;24(1):19–32. https://doi.org/10.1111/hex.13167.
- Mulcahy Symmons S, Ryan K, Aoun SM, et al. Decision-making in palliative care: patient and family caregiver concordance and discordance-systematic review and narrative synthesis. BMJ Support Palliat Care 2023;13(4):374–85. https://doi.org/10.1136/bmjspcare-2022-003525.
- Matsuyama T, Scapigliati A, Pellis T, Greif R, Iwami T. Willingness to perform bystander cardiopulmonary resuscitation: a scoping review. Resusc Plus 2020;4:100043. https://doi.org/10.1016/i.resplu.2020.100043.
- 40. Greif R, Bray JE, Djarv T, et al. International consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations: summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces. Resuscitation 2024;2024:110414. https://doi.org/10.1016/j.resuscitation.2024.110414.
- 41 Chien CY, Chien WC, Tsai LH, et al. Impact of the caller's emotional state and cooperation on out-of-hospital cardiac arrest recognition and dispatcher-assisted cardiopulmonary resuscitation. Emerg Med J 2019;36(10):595–600. https://doi.org/10.1136/emermed-2018-208353.
- Dobbie F, Uny I, Eadie D, et al. Barriers to bystander CPR in deprived communities: findings from a qualitative study. PLoS One 2020;15(6)e0233675. https://doi.org/10.1371/journal.pone.0233675.
- Barry T, Guerin S, Bury G. Motivation, challenges and realities of volunteer community cardiac arrest response: a qualitative study of 'lay' community first responders. BMJ Open 2019;9(8)e029015. https://doi.org/10.1136/bmjopen-2019-029015.
- 44. Siriwardena AN, Patel G, Botan V, et al. Community First Responders' role in the current and future rural health and care workforce: a mixed-methods study. Health Soc Care Deliv Res 2024;12(18):1–101. https://doi.org/10.3310/JYRT8674.
- Kragh AR, Andelius L, Gregers MT, et al. Immediate psychological impact on citizen responders dispatched through a mobile application to out-of-hospital cardiac arrests. Resusc Plus 2021;7:100155. https://doi.org/10.1016/i.resplu.2021.100155.
- Schnaubelt S, Orlob S, Veigl C, et al. Out of sight Out of mind? The need for a professional and standardized peri-mission first responder support model. Resusc Plus 2023;15:100449. https://doi.org/10.1016/j.resplu.2023.100449.
- Stewart PH, Agin WS, Douglas SP. What does the law say to Good Samaritans? A review of Good Samaritan statutes in 50 states and on US airlines. Chest 2013;143(6):1774–83. https://doi.org/10.1378/chest.12-2161.
- Rankin T, Holmes L, Vance L, Crehan T, Mills B. Recent high school graduates support mandatory cardiopulmonary resuscitation education in Australian high schools. Aust N Z J Public Health 2020;44(3):215–8. https://doi.org/10.1111/1753-6405.12990.

- 49. Patel G, Phung VH, Trueman I, et al. "It's like a swan, all nice and serene on top, and paddling like hell underneath": community first responders' practices in attending patients and contributions to rapid emergency response in rural England, United Kingdom-a qualitative interview study. Scand J Trauma Resusc Emerg Med 2023;31(1):7. https://doi.org/10.1186/s13049-023-01071-3.
- Considine J, Eastwood K, Webster H, et al. Family presence during adult resuscitation from cardiac arrest: a systematic review. Resuscitation 2022;180:11–23. https://doi.org/10.1016/j. resuscitation.2022.08.021.
- Suttle M, Hall MW, Pollack MM, et al. Complicated grief, depression and post-traumatic stress symptoms among bereaved parents following their child's death in the pediatric intensive care unit: a follow-up study. Am J Hosp Palliat Care 2022;39(2):228–36. https://doi.org/10.1177/10499091211015913.
- Afzali Rubin M, Svensson TL, Herling SF, Jabre P, Moller AM. Family presence during resuscitation. Cochrane Database Syst Rev 2023;5(5)CD013619. https://doi.org/10.1002/14651858.CD013619.
 pub2.
- Dainty KN, Atkins DL, Breckwoldt J, et al. Family presence during resuscitation in paediatric and neonatal cardiac arrest: a systematic review. Resuscitation 2021;162:20–34. https://doi.org/10.1016/j.resuscitation.2021.01.017.
- Tiscar-Gonzalez V, Gea-Sanchez M, Blanco-Blanco J, Pastells-Peiro R, De Rios-Briz N, Moreno-Casbas MT. Witnessed resuscitation of adult and paediatric hospital patients: an umbrella review of the evidence. Int J Nurs Stud 2021;113:103740. https://doi.org/10.1016/j.ijnurstu.2020.103740.
- Vardanjani AE, Golitaleb M, Abdi K, et al. The effect of family presence during resuscitation and invasive procedures on patients and families: an umbrella review. J Emerg Nurs 2021;47(5):752–60. https://doi.org/10.1016/j.jen.2021.04.007.
- Bradford JY, Camarda A, Gilmore L, et al. ENA clinical practice guideline synopsis: family presence during resuscitation and invasive procedures. J Emerg Nurs 2024;50(3):463–8. https://doi.org/10.1016/j.jen.2023.09.004.
- Toy J. Family-Witnessed cardiopulmonary resuscitation during emergency department cardiac arrest care: a resident perspective. Ann Emerg Med 2023;82(2):207–15. https://doi.org/10.1016/j.annemergmed.2023.01.027.
- Mark K. Family presence during paediatric resuscitation and invasive procedures: the parental experience: an integrative review: an integrative review. Scand J Caring Sci 2021;35(1):20–36. https://doi.org/10.1111/scs.12829.
- Tennyson CD. Family presence during resuscitation: updated review and clinical pearls. Geriatr Nurs 2019;40(6):645–7. https://doi.org/10.1016/j.gerinurse.2019.11.004.
- Walker W, Gavin C. Family presence during resuscitation: a narrative review of the practices and views of critical care nurses. Intensive Crit Care Nurs 2019;53:15–22. https://doi.org/10.1016/j.iccn.2019.04.007.
- Meghani S. Witnessed resuscitation: a concept analysis. Intensive Crit Care Nurs 2021;64:103003. https://doi.org/10.1016/j.jccn.2020.103003.
- Deacon A, O'Neill TA, Gilfoyle E. A scoping review of the impact of family presence on pediatric resuscitation team members. Pediatr Crit Care Med 2020;21(12):e1140–7. https://doi.org/10.1097/PCC.00000000000002471.
- Banda P, Carter C, Notter J. Family-witnessed resuscitation in the emergency department in a low-income country. Br J Nurs 2024;33 (1):28–32. https://doi.org/10.12968/bjon.2024.33.1.28.
- Park KH, Lee-Jayaram JJ, Kahili-Heede MK, Berg BW. Simulation intervention related to family presence during resuscitation for physicians and medical students: a scoping review. Clin Exp Emerg Med 2024. https://doi.org/10.15441/ceem.24.224.
- 65. Barreto MDS, Peruzzo HE, Garcia-Vivar C, Marcon SS. Family presence during cardiopulmonary resuscitation and invasive

- procedures: a meta-synthesis. Rev Esc Enferm USP 2019;53: e03435. https://doi.org/10.1590/S1980-220X2018001303435.
- Douma MJ, Myhre C, Ali S, et al. What are the care needs of families experiencing sudden cardiac arrest? A survivor- and familyperformed systematic review, qualitative meta-synthesis, and clinical practice recommendations. J Emerg Nurs 2023;49 (6):912–50. https://doi.org/10.1016/j.jen.2023.07.001.
- Sellmann T, Oendorf A, Wetzchewald D, Schwager H, Thal SC, Marsch S. The impact of withdrawn vs. agitated relatives during resuscitation on team workload: a single-center randomised simulation-based study. J Clin Med 2022;11(11). https://doi.org/10.3390/icm11113163.
- Willmes M, Sellmann T, Semmer N, et al. Impact of family presence during cardiopulmonary resuscitation on team performance and perceived task load: a prospective randomised simulator-based trial. BMJ Open 2022;12(4)e056798. https://doi.org/10.1136/bmiopen-2021-056798.
- Waldemar A, Thylen I. Healthcare professionals' experiences and attitudes towards family-witnessed resuscitation: a cross-sectional study. Int Emerg Nurs 2019;42:36–43. https://doi.org/10.1016/j.ienj.2018.05.009.
- Waldemar A, Bremer A, Stromberg A, Thylen I. Family presence during in-hospital cardiopulmonary resuscitation: effects of an educational online intervention on self-confidence and attitudes of healthcare professionals. Eur J Cardiovasc Nurs 2024;23 (5):486–96. https://doi.org/10.1093/euricn/zvad111.
- Waldemar A, Stromberg A, Thylen I, Bremer A. Experiences of family-witnessed cardiopulmonary resuscitation in hospital and its impact on life: an interview study with cardiac arrest survivors and their family members. J Clin Nurs 2023;32(19–20):7412–24. https://doi.org/10.1111/jocn.16788.
- Waldemar A, Bremer A, Holm A, Stromberg A, Thylen I. In-hospital family-witnessed resuscitation with a focus on the prevalence, processes, and outcomes of resuscitation: a retrospective observational cohort study. Resuscitation 2021;165:23–30. https://doi.org/10.1016/j.resuscitation.2021.05.031.
- Ghavi A, Hassankhani H, Powers K, Sawyer A, Karimi B, Kharidar M. Parental supporter during pediatric resuscitation: qualitative exploration of caregivers' and healthcare professionals' experiences and perceptions. Int Emerg Nurs 2024;72. https://doi.org/10.1016/j.ienj.2023.101381.
- Ghavi A, Hassankhani H, Powers K, Arshadi-Bostanabad M, Namdar Areshtanab H, Heidarzadeh M. Parents' and healthcare professionals' experiences and perceptions of parental readiness for resuscitation in Iranian paediatric hospitals: a qualitative study. BMJ Open 2022;12(5)e055599. https://doi.org/10.1136/bmjopen-2021-055599.
- Manguy AM, Oakley E, Gordon R, Joubert L. Acute psychosocial care of families in paediatric resuscitation settings: variables associated with parent emotional response. Australas Emerg Care 2021;24(3):224–9. https://doi.org/10.1016/j.auec.2020.11.001.
- Amiri MM, Nukpezah RN, Yıldırım M, Marznaki ZH, Khani MR, Eghbali M. Attitudes and barriers of emergency nurses and physicians toward family presence during resuscitation in Iran: a cross-sectional study. J Emerg Nurs 2025;51(1):124–34. https://doi.org/10.1016/j.jen.2024.07.004.
- Porter DJE. Family presence during resuscitation (FPDR): a qualitative descriptive study exploring the experiences of emergency personnel post resuscitation. Heart Lung 2019;48 (4):268–72. https://doi.org/10.1016/j.hrtlng.2018.09.016.
- Saifan AR, Elshatarat RA, Saleh ZT, et al. Health professionals and family members during cardiopulmonary resuscitation: a qualitative study on the experience of witnessing resuscitation in Jordanian critical care units. Heart Lung 2023;62:101–7. https://doi.org/10.1016/j.hrtlng.2023.06.020.
- Erogul M, Likourezos A, Meddy J, et al. Post-traumatic stress disorder in family-witnessed resuscitation of emergency department

- patients. West J Emerg Med 2020;21(5):1182–7. https://doi.org/10.5811/westjem.2020.6.46300.
- Akman U, Koyuncu A. Family opinions on resuscitation and participation in end-of-life care in the emergency department: a cross-sectional study. Turk J Emerg Med 2024;24(1):48–54. https://doi.org/10.4103/tjem.tjem 164 23.
- Deacon A, O'Neill TA, Gilfoyle E. Family presence during resuscitation: a needs assessment of education, policy, and opinion in Canada. Can J Anaesth 2021;68(7):1008–17. https://doi.org/10.1007/s12630-021-01972-w.
- Tanabe Y, Ishikawa E, Yamada T, Shime N, Maeda S. Family presence during resuscitation: a survey of Japanese physicians' views. J Public Health 2024. https://doi.org/10.1007/s10389-024-02333-9.
- Stewart SA. Parents' experience during a child's resuscitation: getting through it. J Pediatr Nurs 2019;47:58–67. https://doi.org/10.1016/j.pedn.2019.04.019.
- 84. Sak-Dankosky N, Andruszkiewicz P, Sherwood PR, Kvist T. Preferences of patients' family regarding family-witnessed cardiopulmonary resuscitation: a qualitative perspective of intensive care patients' family members. Intensive Crit Care Nurs 2019;50:95–102. https://doi.org/10.1016/j.iccn.2018.04.001.
- Bordessoule A, Felice-Civitillo C, Grazioli S, et al. In situ simulation training for parental presence during critical situations in PICU: an observational study. Eur J Pediatr 2022;181(6):2409–14. https://doi.org/10.1007/s00431-022-04425-8.
- Abuzeyad FH, Elhobi A, Kamkoum W, et al. Healthcare providers' perspectives on family presence during resuscitation in the emergency departments of the Kingdom of Bahrain.
 BMC Emerg Med 2020;20(1):69. https://doi.org/10.1186/s12873-020-00365-4.
- Huxley C, Reeves E, Kearney J, et al. Relatives' experiences of unsuccessful out-of-hospital cardiopulmonary resuscitation attempts: a qualitative analysis. BMC Emerg Med 2024;24(1):208. https://doi.org/10.1186/s12873-024-01117-4.
- Hosseini Marznaki Z, Karkhah S, Mohammadian Amiri M, Kallmen H, Moradi A, Najjarboura M. Attitudes of emergency nurses and patients' family members towards the presence of family members during cardiopulmonary resuscitation; a cross-sectional study. Arch Acad Emerg Med 2022;10(1):e73. https://doi.org/10.22037/aaem.y10i1.1679.
- Kinsarah IS, AlZahrani NA, Gaafar AM, Hamam AF. Family presence during resuscitation: perspectives of saudi emergency medicine providers. Cureus 2024;16(8)e68218. https://doi.org/10.7759/cureus.68218.
- Akhlaq S, Kazmi N, Kazmi SMH, et al. Somatization symptomology and its association with stress in patients with irritable bowel syndrome. PLoS One 2025;20(1)e0312506. https://doi.org/10.1371/journal.pone.0312506.
- Niemczyk E, Ozga D, Przybylski A. Experiences and opinions of patients and their relatives to family presence during adult resuscitation in Poland: quantitative research. Patient Prefer Adher 2020;14:227–34. https://doi.org/10.2147/PPA.S229618.
- de Mingo-Fernández E, Belzunegui-Eraso Á, Jiménez-Herrera M. Family presence during resuscitation: adaptation and validation into Spanish of the family presence risk-benefit scale and the self-confidence scale instrument. BMC Health Serv Res 2021;21(1):221. https://doi.org/10.1186/s12913-021-06180-2.
- Deacon A, O'Neill T, Delaloye N, Gilfoyle E. A qualitative exploration of the impact of a distressed family member on pediatric resuscitation teams. Hosp Pediatr 2020;10(9):758–66. https://doi.org/10.1542/hpeds.2020-0173.
- Alhofaian A, Almuntashiri SM, Bamufleh MH, et al. Nurses' perception and self-confidence of family presence during cardiopulmonary resuscitation in Saudi Arabia. J Educ Health Promot 2023;12:320. https://doi.org/10.4103/jehp.iehp 1845 22.

- 95. Powers K, Duncan JM, Renee TK. Family support person role during resuscitation: a qualitative exploration. J Clin Nurs 2023;32 (3–4):409–21. https://doi.org/10.1111/jocn.16248.
- Park JY, Ha J. Predicting nurses' intentions in allowing family presence during resuscitation: a cross-sectional survey. J Clin Nurs 2021;30(7–8):1018–25. https://doi.org/10.1111/jocn.15647.
- Angute A, Gachathi DM, Ramani R. Association between nurses' perceived self-confidence in performing family witnessed resuscitation and implementation of the practice at Siaya County Referral Hospital in Kenya. Int J Nurs Sci 2023;10(1):117–20. https://doi.org/10.1016/j.ijnss.2022.12.016.
- Botes M, Mabetshe L. Family presence during patient acute deterioration: a survey of nurses' attitudes and reflection on COVID-19 in an African setting. Afr J Emerg Med 2022;12(3):259–63. https://doi.org/10.1016/j.afjem.2022.04.012.
- Fridh I, Akerman E. Family-centred end-of-life care and bereavement services in Swedish intensive care units: a crosssectional study. Nurs Crit Care 2020;25(5):291–8. https://doi.org/10.1111/nicc.12480.
- 100. Gronlund IR, Gydesen C, Thomsen T, Relatives' MAM. influence on the treatment of acutely critically ill patients in prehospital emergency medicine: a qualitative study of healthcare professionals' experiences and attitudes. Br J Anaesth 2023;131(6):1014–21. https://doi.org/10.1016/ji.bja.2023.08.002.
- 101. Auerbach M, Butler L, Myers SR, Donoghue A, Kassam-Adams N. Implementing family presence during pediatric resuscitations in the emergency department: family-centered care and trauma-informed care best practices. J Emerg Nurs 2021;47(5):689–92. https://doi.org/10.1016/j.jen.2021.07.003.
- Halm MA, Ruppel H, Sexton JR, Guzzetta CE. Facilitating family presence during resuscitation and invasive procedures throughout the life span. Crit Care Nurse 2024;44(2):e1–e13. https://doi.org/10.4037/ccn2023733.
- Duncan E, Agnant J, Napoli K, Sagalowsky ST. Development and implementation of a family presence facilitator curriculum for interprofessional use in pediatric medical resuscitations.
 MedEdPORTAL 2024;20:11445. https://doi.org/10.15766/mep_2374-8265.11445.
- 104. Ghavi A, Hassankhani H, Meert KL. Parental supporter in pediatric resuscitation: a mixed-method study with Delphi and analytic hierarchy process. J Nurs Scholarsh 2024;56(3):392–404. https://doi.org/10.1111/jnu.12947.
- 105. O'Connell KJ, Carter EA, Fritzeen JL, Waterhouse LJ, Burd RS. Effect of family presence on advanced trauma life support task performance during pediatric trauma team evaluation. Pediatr Emerg Care 2021;37(12):e905–9. https://doi.org/10.1097/PEC.0000000000001164.
- Zaidi D. Family presence in the trauma setting: a case study. Indian J Med Ethics 2019;4(3):221–4. https://doi.org/10.20529/ IJME.2019.049.
- 107. Cole R, Stone M, Ruck Keene A, Fritz Z. Family members, ambulance clinicians and attempting CPR in the community: the ethical and legal imperative to reach collaborative consensus at speed. J Med Ethics 2021;47(10):650–3. https://doi.org/10.1136/medethics-2020-106490.
- Michelson KN, Frader J, Charleston E, et al. A randomized comparative trial to evaluate a PICU navigator-based parent support intervention. Pediatr Crit Care Med 2020;21(9):e617–27. https://doi.org/10.1097/pcc.000000000002378.
- Ito Y, Tsubaki M, Kobayashi M. Families' experiences of grief and bereavement in the emergency department: a scoping review. Jpn J Nurs Sci 2022;19(1)e12451. https://doi.org/10.1111/jjns.12451.
- 110. Wang CH, Chang WT, Huang CH, et al. Factors associated with the decision to terminate resuscitation early for adult in-hospital cardiac arrest: influence of family in an East Asian society. PLoS One 2019;14(3)e0213168. https://doi.org/10.1371/journal.pone.0213168.

- Lauridsen KG, Krogh K, Müller SD, et al. Barriers and facilitators for in-hospital resuscitation: a prospective clinical study.
 Resuscitation 2021;164:70–8. https://doi.org/10.1016/j_resuscitation.2021.05.007.
- 112. Chan PS, Greif R, Anderson T, et al. Ten steps toward improving inhospital cardiac arrest quality of care and outcomes. Resuscitation 2023;193:109996. https://doi.org/10.1016/j.resuscitation.2023.109996.
- 113. Smyth MA, Gunson I, Coppola A, et al. Termination of resuscitation rules and survival among patients with out-of-hospital cardiac arrest: a systematic review and meta-analysis. JAMA Netw Open 2024;7(7)e2420040. https://doi.org/ 10.1001/jamanetworkopen.2024.20040.
- 114. Lauridsen KG, Baldi E, Smyth M, Perkins GD, Greif R. Clinical decision rules for termination of resuscitation during in-hospital cardiac arrest: a systematic review of diagnostic test accuracy studies. Resuscitation 2021;158:23–9. https://doi.org/10.1016/j.resuscitation.2020.10.036.
- 115. Paiva EF, Paxton JH, O'Neil BJ. The use of end-tidal carbon dioxide (ETCO(2)) measurement to guide management of cardiac arrest: a systematic review. Resuscitation 2018;123:1–7. https://doi.org/10.1016/j.resuscitation.2017.12.003.
- Reynolds JC, Issa MS, Nicholson TC, et al. Prognostication with point-of-care echocardiography during cardiac arrest: a systematic review. Resuscitation 2020;152:56–68. https://doi.org/10.1016/j.resuscitation.2020.05.004.
- 117. Jang JH, Lim YS, Choi WS, et al. Initial five and ten-minute regional cerebral oxygen saturation as a predictor of the futility of resuscitation for out-of-hospital cardiac arrest. Signa Vitae 2023;19 (2):12–9. https://doi.org/10.22514/sv.2022.027.
- 118. Hansen C, Lauridsen KG, Schmidt AS, Lofgren B. Decision-making in cardiac arrest: physicians' and nurses' knowledge and views on terminating resuscitation. Open Access Emerg Med 2019;11:1–8. https://doi.org/10.2147/OAEM.S183248.
- Ebell MH, Bergus GR, Warbasse L, Bloomer R. The inability of physicians to predict the outcome of in-hospital resuscitation. J Gen Intern Med 1996;11(1):16–22. https://doi.org/10.1007/BF02603480.
- Laurenceau T, Marcou Q, Agostinucci JM, et al. Quantifying physician's bias to terminate resuscitation. The TERMINATOR study. Resuscitation 2023;188:109818. https://doi.org/10.1016/j.resuscitation.2023.109818.
- Goldberger ZD, Chan PS, Berg RA, et al. Duration of resuscitation efforts and survival after in-hospital cardiac arrest: an observational study. Lancet 2012;380(9852):1473–81. https://doi.org/10.1016/s0140-6736(12)60862-9.
- 122. Greif R, Bhanji F, Bigham BL, et al. Education, implementation, and teams: 2020 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation 2020;156:A188–239. https://doi.org/10.1016/j.resuscitation.2020.09.014.
- 123. Kudu E, Danış F, Karaca MA, Erbil B. Usability of EtCO(2) values in the decision to terminate resuscitation by integrating them into the TOR rule (an extended TOR rule): a preliminary analysis. Heliyon 2023;9(9)e19982. https://doi.org/10.1016/j.heliyon.2023.e19982.
- 124. Morrison LJ, Verbeek PR, Zhan C, Kiss A, Allan KS. Validation of a universal prehospital termination of resuscitation clinical prediction rule for advanced and basic life support providers. Resuscitation 2009;80(3):324–8. https://doi.org/10.1016/j.gesuscitation.2008.11.014.
- Nazeha N, Mao DR, Hong D, et al. Cost-effectiveness analysis of a 'Termination of Resuscitation' protocol for the management of outof-hospital cardiac arrest. Resuscitation 2024;202:110323. https://doi.org/10.1016/j.resuscitation.2024.110323.
- Shibahashi K, Kato T, Hikone M, Sugiyama K. Identifying individuals satisfying the termination of resuscitation rule but having potential to achieve favourable neurological outcome following outof-hospital cardiac arrest. Resuscitation 2023;190:109860. https://doi.org/10.1016/i.resuscitation.2023.109860.

- 127. Harris MI, Crowe RP, Anders J, D'Acunto S, Adelgais KM, Fishe J. Applying a set of termination of resuscitation criteria to paediatric out-of-hospital cardiac arrest. Resuscitation 2021;169:175–81. https://doi.org/10.1016/j.resuscitation.2021.09.015.
- Matsui S, Kitamura T, Kurosawa H, et al. Application of adult prehospital resuscitation rules to pediatric out of hospital cardiac arrest. Resuscitation 2023;184:109684. https://doi.org/10.1016/j.resuscitation.2022.109684.
- 129. Shibahashi K, Sugiyama K, Hamabe Y. Pediatric out-of-hospital traumatic cardiopulmonary arrest after traffic accidents and termination of resuscitation. Ann Emerg Med 2020;75(1):57–65. https://doi.org/10.1016/i.annemergmed.2019.05.036.
- Shetty P, Ren Y, Dillon D, McLeod A, Nishijima D, Taylor SL.
 Derivation of a clinical decision rule for termination of resuscitation in non-traumatic pediatric out-of-hospital cardiac arrest.
 Resuscitation 2024;204:110400. https://doi.org/10.1016/j.resuscitation.2024.110400.
- Minami S, Toida C, Shinohara M, Abe T, Takeuchi I. Verification of the termination of resuscitation rules in pediatric out-of-hospital cardiac arrest cases. Resusc Plus 2024;19:100686. https://doi.org/10.1016/j.resplu.2024.100686.
- 132. Smida T, Menegazzi JJ, Crowe RP, Salcido DD, Bardes J, Myers B. The association of prehospital end-tidal carbon dioxide with survival following out-of-hospital cardiac arrest. Prehosp Emerg Care 2024;28(3):478–84. https://doi.org/10.1080/10903127.2023.2262566.
- Hambelton C, Wu L, Smith J, et al. Utility of end-tidal carbon dioxide to guide resuscitation termination in prolonged out-of-hospital cardiac arrest. Am J Emerg Med 2024;77:77–80. https://doi.org/10.1016/j.ajem.2023.11.030.
- 134. Yates AR, Naim MY, Reeder RW, et al. Early cardiac arrest hemodynamics, end-tidal CO₂, and outcome in pediatric extracorporeal cardiopulmonary resuscitation: secondary analysis of the ICU-RESUScitation project dataset (2016–2021). Pediatr Crit Care Med 2024;25(4):312–22. https://doi.org/10.1097/PCC.0000000000003423.
- 135. Albaroudi O, Albaroudi B, Haddad M, et al. Can absence of cardiac activity on point-of-care echocardiography predict death in out-of-hospital cardiac arrest? A systematic review and meta-analysis. Ultrasound J 2024;16(1):10. https://doi.org/10.1186/s13089-024-00360-x.
- Hu K, Gupta N, Teran F, Saul T, Nelson BP, Andrus P. Variability in interpretation of cardiac standstill among physician sonographers. Ann Emerg Med 2018;71(2):193–8. https://doi.org/10.1016/j.annemergmed.2017.07.476.
- Djarv T. High lactate is common, not alone a reason to stop resuscitation in IHCA. Resuscitation 2021;160:176–7. https://doi.org/10.1016/j.resuscitation.2021.01.032.
- Lim WH, Dominguez-Gil B. Ethical issues related to donation and transplantation of donation after circulatory determination of death donors. Semin Nephrol 2022;42(4)151269. https://doi.org/10.1016/j.semnephrol.2022.07.003.
- Morrison LJ, Sandroni C, Grunau B, et al. Organ donation after outof-hospital cardiac arrest: a scientific statement from the International Liaison Committee on Resuscitation. Circulation 2023;148(10):e120–46. https://doi.org/10.1161/ CIR.0000000000001125.
- 140. Bonizzoni MA, Scquizzato T, Pieri M, et al. Organ donation after extracorporeal cardiopulmonary resuscitation for refractory out-ofhospital cardiac arrest in a metropolitan cardiac arrest centre in Milan, Italy. Resuscitation 2024;200:110214. https://doi.org/ 10.1016/j.resuscitation.2024.110214.
- 141. Koukousaki D, Kosmopoulos M, Mallow J, et al. Temporal trends in organ donation among cardiac arrest patients treated with extracorporeal cardiopulmonary resuscitation. Resuscitation 2024;203. https://doi.org/10.1016/ji.resuscitation.2024.110391.
- 142. Weiss MJ, Sherry W, Hornby L. Pediatric donation after circulatory determination of death (pDCD): a narrative review.

- Paediatr Respir Rev 2019;29:3–8. https://doi.org/10.1016/j.prrv.2018.03.006.
- Schou A, Molgaard J, Andersen LW, Holm S, Sorensen M. Ethics in extracorporeal life support: a narrative review. Crit Care 2021;25 (1):256. https://doi.org/10.1186/s13054-021-03689-0.
- 144. Rasmussen MA, Moen HS, Milling L, et al. An increased potential for organ donors may be found among patients with out-of-hospital cardiac arrest. Scand J Trauma Resusc Emerg Med 2022;30(1):50. https://doi.org/10.1186/s13049-022-01037-x.
- 145. Mutlu V, Utku T. Knowledge and attitude toward brain death and organ donation among anesthesiology and reanimation professionals. Transplant Proc 2019;51(7):2163–6. https://doi.org/10.1016/j.transproceed.2019.01.168.
- 146. Le Dorze M, Barthélémy R, Lesieur O, et al. Tensions between endof-life care and organ donation in controlled donation after circulatory death: ICU healthcare professionals experiences. BMC Med Ethics 2024;25(1):110. https://doi.org/10.1186/s12910-024-01093-1.
- 147. Egan TM, Wall S, Goldfrank L, Requard 3rd JJ. The real number of organs from uncontrolled donation after circulatory determination of death donors. Am J Transplant 2021;21(6):2301–2. https://doi.org/10.1111/ajt.16443.
- 148. Bernat JL, Khush KK, Shemie SD, et al. Knowledge gaps in heart and lung donation after the circulatory determination of death: report of a workshop of the National Heart, Lung, and Blood Institute. J Heart Lung Transplant 2024;43(6):1021–9. https://doi. org/10.1016/j.healun.2024.02.1455.
- Lennon C, Harvey D, Goldstein PA. Ethical considerations for theatre teams in organ donation after circulatory determination of death. Br J Anaesth 2023;130(5):502–7. https://doi.org/10.1016/j.bja.2023.01.018.
- Parent B, Caplan A, Angel L, et al. The unique moral permissibility of uncontrolled lung donation after circulatory death. Am J Transplant 2020;20(2):382–8. https://doi.org/10.1111/ajt.15603.
- Truog RD. Defining death: lessons from the case of Jahi McMath. Pediatrics 2020;146(Suppl 1):S75–80. https://doi.org/10.1542/peds.2020-08180.
- 152. Perez Castro P, Salas SP. Ethical issues of organ donation after circulatory death: considerations for a successful implementation in Chile. Dev World Bioeth 2022;22(4):259–66. https://doi.org/10.1111/dewb.12338.
- 153. Schiff T, Koziatek C, Pomerantz E, et al. Extracorporeal cardiopulmonary resuscitation dissemination and integration with organ preservation in the USA: ethical and logistical considerations. Crit Care 2023;27(1):144. https://doi.org/10.1186/s13054-023-04432-7.
- Lazaridis C. Resuscitation for donation after brain death: respecting autonomy and maximizing utility. Crit Care Med 2024;52(9):1472–5. https://doi.org/10.1097/CCM.000000000000139.
- 155. Gaillard-Le Roux B, Cremer R, de Saint BL, et al. Organ donation by Maastricht-III pediatric patients: recommendations of the Groupe Francophone de Réanimation et Urgences Pédiatriques (GFRUP) and Association des Anesthésistes Réanimateurs Pédiatriques d'Expression Française (ADARPEF) Part I: ethical considerations and family care. Arch Pediatr 2022;29 (7):502–8. https://doi.org/10.1016/j.arcped.2022.06.004.
- Langer RM. Donation after cardiac death from then to now. Transplantation Reports 2023;8(1)100119. https://doi.org/10.1016/j.tpr.2022.100119.
- Gardiner D, Charlesworth M, Rubino A, Madden S. The rise of organ donation after circulatory death: a narrative review. Anaesthesia 2020;75(9):1215–22. https://doi.org/10.1111/anae.15100.
- Paul NW, Allison KC, Li H. Cases abusing brain death definition in organ procurement in China. Camb Q Healthc Ethics 2022;31(3):379–85. https://doi.org/10.1017/S0963180121001067.

- 159. Kaffka Genaamd Dengler SE, Vervoorn MT, Brouwer M, van Delden JJM, de Jonge J, van der Kaaij NP. Heart donation after circulatory death: ethical and emotional aspect of central normothermic regional perfusion. Ned Tijdschr Geneeskd 2022;166 [in Dutch]: PMID: 36300452.
- Seth AK, Mohanka R, Navin S, et al. Organ donation after circulatory determination of death in India: a joint position paper. Indian J Crit Care Med 2022;26(4):421–38. https://doi.org/10.5005/jp-journals-10071-24198.
- 161. Skowronski G, O'Leary MJ, Critchley C, et al. Death, dying and donation: community perceptions of brain death and their relationship to decisions regarding withdrawal of vital organ support and organ donation. Intern Med J 2020;50(10):1192–201. https://doi.org/10.1111/imi.15028.
- Lizza JP. Why DCD donors are dead. J Med Philos 2020;45
 (1):42–60. https://doi.org/10.1093/jmp/jhz030.
- 163. Murphy NB, Shemie SD, Capron A, et al. Advancing the scientific basis for determining death in controlled organ donation after circulatory determination of death. Transplantation 2024;108 (11):2197–208. https://doi.org/10.1097/TP.0000000000005002.
- 164. Thuong M, Ruiz A, Evrard P, et al. New classification of donation after circulatory death donors definitions and terminology. Transpl Int 2016;29(7):749–59. https://doi.org/10.1111/tri.12776.
- 165. Wahlster S, Danielson K, Craft L, et al. Factors associated with early withdrawal of life-sustaining treatments after out-of-hospital cardiac arrest: a subanalysis of a randomized trial of prehospital therapeutic hypothermia. Neurocrit Care 2023;38(3):676–87. https://doi.org/10.1007/s12028-022-01636-7.
- 166. Yates EJ, Schmidbauer S, Smyth AM, et al. Out-of-hospital cardiac arrest termination of resuscitation with ongoing CPR: an observational study. Resuscitation 2018;130:21–7. https://doi.org/10.1016/j.resuscitation.2018.06.021.
- 167. Druwe P, Monsieurs KG, Piers R, et al. Perception of inappropriate cardiopulmonary resuscitation by clinicians working in emergency departments and ambulance services: the REAPPROPRIATE international, multi-centre, cross sectional survey. Resuscitation 2018;132:112–9. https://doi.org/10.1016/j.resuscitation.2018.09.006.
- 168. Goto Y, Funada A, Maeda T, Goto Y. Termination-of-resuscitation rule in the emergency department for patients with refractory out-ofhospital cardiac arrest: a nationwide, population-based observational study. Crit Care 2022;26(1):137. https://doi.org/10.1186/s13054-022-03999-x.
- Goodman MD, Tarnoff M, Slotman GJ. Effect of advance directives on the management of elderly critically ill patients. Crit Care Med 1998;26(4):701–4. https://doi.org/10.1097/00003246-199804000-00018.
- 170. Cypress B, Gharzeddine R, Fu MR, Ransom M, Villarente F, Pitman C. Healthcare professionals perspective of the facilitators and barriers to family engagement during patient-and-family-centered-care interdisciplinary rounds in intensive care unit: a qualitative exploratory study. Intensive Crit Care Nurs 2024;82:103636. https://doi.org/10.1016/j.iccn.2024.103636.
- Andersson H, Svensson A, Frank C, Rantala A, Holmberg M, Bremer A. Ethics education to support ethical competence learning in healthcare: an integrative systematic review.
 BMC Med Ethics 2022;23(1):29. https://doi.org/10.1186/s12910-022-00766-z.
- 172. Anderson TM, Secrest K, Krein SL, et al. Best practices for education and training of resuscitation teams for in-hospital cardiac arrest. Circ Cardiovasc Qual Outcomes 2021;14(12)e008587. https://doi.org/10.1161/circoutcomes.121.008587.
- 173. Smith M, Holland T, Swain C, King K. Using immersive simulation to enhance preparedness for challenging and dynamic roles: experiences of UK Defence General Practitioners. Educ Prim Care 2025:1–7. https://doi.org/10.1080/14739879.2025.2476165.

- 174. Danis M, Fox E, Tarzian A, Duke CC. Health care ethics programs in U.S. Hospitals: results from a National Survey. BMC Med Ethics 2021;22(1):107. https://doi.org/10.1186/s12910-021-00673-9.
- 175. Harter TD, Sterenson EL, Borgert A, Rasmussen C. Perceptions of medical providers on morality and decision-making capacity in withholding and withdrawing life-sustaining treatment and suicide. AJOB Empir Bioeth 2021;12(4):227–38. https://doi.org/10.1080/23294515.2021.1887961.
- Balslev van Randwijk C, Opsahl T, Assing Hvidt E, Bjerrum L, Korup AK, Hvidt NC. Association between Danish physicians' religiosity and spirituality and their attitudes toward end-of-life procedures. J Relig Health 2020;59(5):2654–63. https://doi.org/10.1007/s10943-020-01026-3.
- 177. Tran K, Chen P, Korah T. Attempted suicides in the elderly with existing DNRs: an emerging geriatric ethical dilemma. Cureus 2021;13(1)e12658. https://doi.org/10.7759/cureus.12658.
- 178. Oxman DA, Richter B. Withdrawing life support after attempted suicide: a case study and review of ethical considerations. Narrat Inq Bioeth 2024;14(1):51–7. https://doi.org/10.1353/nib.2024.a934174.
- Bode MJ, Huber J, Roberts DM. Decision-making in suicide: when is the patient not for resuscitation? Emerg Med Australas 2022;34 (3):473–4. https://doi.org/10.1111/1742-6723.13977.
- Delbon P, Maghin F, Conti A. Medically assisted suicide in Italy: the recent judgment of the Constitutional Court. Clin Ter 2021;172 (3):193–6. https://doi.org/10.7417/CT.2021.2312.
- Dana Alonzo, PhD, Robin E. Gearing, PhD, Suicide Assessment and Treatment: Empirical and Evidence-Based Practices. 2, Springer Publishing Company, 2017. 0826135153, 9780826135155. PMID: 31866795
- 182. Capron AM. Looking back at withdrawal of life-support law and policy to see what lies ahead for medical aid-in-dying. Yale J Biol Med 2019;92(4):781–91. PMID: 31866795.
- 183. Battin MP, Kious BM. Ending one's life in advance. Hastings Cent Rep 2021;51(3):37–47. https://doi.org/10.1002/hast.1257.
- 184. McClelland W, Goligher EC. Withholding or withdrawing life support versus physician-assisted death: a distinction with a difference? Curr Opin Anaesthesiol 2019;32(2):184–9. https://doi.org/10.1097/ACO.00000000000000686.
- 185. Schnaubelt S, Garg R, Atiq H, et al. Cardiopulmonary resuscitation in low-resource settings: a statement by the International Liaison Committee on Resuscitation, supported by the AFEM, EUSEM, IFEM, and IFRC. Lancet Glob Health 2023;11(9):e1444–53. https://doi.org/10.1016/s2214-109x(23)00302-9.
- 186. Lauridsen KG, Djärv T, Breckwoldt J, Tjissen JA, Couper K, Greif R. Pre-arrest prediction of survival following in-hospital cardiac arrest: a systematic review of diagnostic test accuracy studies. Resuscitation 2022;179:141–51. https://doi.org/10.1016/j.gesuscitation.2022.07.041.
- 187. Gupta M, Joshi U, Rao SR, Longo M, Salins N. Views and attitudes of healthcare professionals on do-not-attempt-cardiopulmonaryresuscitation in low-and-lower-middle-income countries: a systematic review. BMC Palliat Care 2025;24(1):91. https://doi.org/10.1186/s12904-025-01676-8.
- Piscator E, Djarv T, Rakovic K, et al. Low adherence to legislation regarding do-not-attempt-cardiopulmonary-resuscitation orders in a Swedish University Hospital. Resusc Plus 2021;6:100128. https://doi.org/10.1016/j.resplu.2021.100128.
- 189. Ishii J, Nishikimi M, Ohshimo S, Shime N. The current discussion regarding end-of-life care for patients with out-of-hospital cardiac arrest with initial non-shockable rhythm: a narrative review. Medicina (Kaunas) 2024;60. https://doi.org/10.3390/medicina60040533.
- 190. Shiozumi T, Matsuyama T, Nishioka N, et al. Evaluation of interventions in prehospital and in-hospital settings and outcomes for out-of-hospital cardiac arrest patients meeting the termination of resuscitation rule in Japan: a nationwide database study (The

- JAAM-OHCA Registry). Resuscitation 2025;208. https://doi.org/10.1016/j.resuscitation.2025.110530.
- 191. Werner K, Hirner S, Offorjebe OA, et al. A systematic review of cost-effectiveness of treating out of hospital cardiac arrest and the implications for resource-limited health systems. Int J Emerg Med 2024;17(1):151. https://doi.org/10.1186/s12245-024-00727-w.
- 192. Khan KA, Petrou S, Smyth M, et al. Comparative cost-effectiveness of termination of resuscitation rules for patients transported in cardiac arrest. Resuscitation 2024;201:110274. https://doi.org/10.1016/i.resuscitation.2024.110274.
- 193. Krishna CK, Showkat HI, Taktani M, Khatri V. Out of hospital cardiac arrest resuscitation outcome in North India - CARO study. World J Emerg Med 2017;8(3):200–5. https://doi.org/10.5847/wjem.j.1920-8642.2017.03.007.
- 194. El Sayed M, Al Assad R, Abi Aad Y, Gharios N, Refaat MM, Tamim H. Measuring the impact of emergency medical services (EMS) on out-of-hospital cardiac arrest survival in a developing country: a key metric for EMS systems' performance. Medicine (Baltimore) 2017;96(29):e7570. https://doi.org/10.1097/MD.00000000000007570.
- Suryanto M, Plummer V, Boyle M. EMS systems in lower-middle income countries: a literature review. Prehosp Disaster Med 2017;32(1):64–70. https://doi.org/10.1017/S1049023X1600114X.
- Friesen J, Patterson D, Munjal K. Cardiopulmonary resuscitation in resource-limited health systems-considerations for training and delivery. Prehosp Disaster Med 2015;30(1):97–101. https://doi.org/10.1017/S1049023X14001265.
- Haywood K, Whitehead L, Nadkarni VM, et al. COSCA (Core Outcome Set for Cardiac Arrest) in adults: an advisory statement from the International Liaison Committee on Resuscitation. Resuscitation 2018;127:147–63. https://doi.org/10.1016/i.resuscitation.2018.03.022.
- 198. Mentzelopoulos SD, Mantzanas M, van Belle G, Nichol G. Evolution of European Union legislation on emergency research. Resuscitation 2015;91:84–91. https://doi.org/10.1016/j.resuscitation.2015.03.006.
- 199. Hsieh M, Dailey MW, Callaway CW. Surrogate consent by family members for out-of-hospital cardiac arrest research. Acad Emerg Med 2001;8(8):851–3. https://doi.org/10.1111/ji.1553-2712.2001. tb00220.x.
- World Medical A. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human participants. JAMA 2025;333(1):71–4. https://doi.org/10.1001/jama. 2024.21972
- Levine RJ. Research in emergency situations. The role of deferred consent. JAMA 1995;273(16):1300–2.
- Rincon F, Lee K. Ethical considerations in consenting critically ill patients for bedside clinical care and research. J Intensive Care Med 2015;30(3):141–50. https://doi.org/10.1177/0885066613503279.
- ICH. GUIDELINE FOR GOOD CLINICAL PRACTICE E6(R3). ICH. (https://database.ich.org/sites/default/files/ICH_E6%28R3%29_ Step4_FinalGuideline_2025_0106.pdf). – last accesed 21.8.2025
- 204. CIOMS. International Ethical Guidelines for Biomedical Research Involving Human Subjects. CIOMS. https://Cioms.Ch/Wp-Content/ Uploads/2016/08/International_Ethical_Guidelines_for_ Biomedical_Research_Involving_Human_Subjects.Pdf. last accessed 21.8.2025.
- Staniszewska S, Brett J, Simera I, et al. GRIPP2 reporting checklists: tools to improve reporting of patient and public involvement in research. BMJ 2017;358:j3453. https://doi.org/10.1136/bmj.j3453.
- Hopewell S, Chan AW, Collins GS, et al. CONSORT 2025 statement: updated guideline for reporting randomised trials. BMJ 2025;389:e081123. https://doi.org/10.1136/bmj-2024-081123.
- Lang I, King A, Jenkins G, Boddy K, Khan Z, Liabo K. How common is patient and public involvement (PPI)? Cross-sectional analysis of

- frequency of PPI reporting in health research papers and associations with methods, funding sources and other factors. BMJ Open 2022;12(5)e063356. https://doi.org/10.1136/bmjopen-2022-063356.
- 208. Haywood K, Brett J, Salek S, et al. Patient and public engagement in health-related quality of life and patient-reported outcomes research: what is important and why should we care? Findings from the first ISOQOL patient engagement symposium. Qual Life Res 2015;24(5):1069–76. https://doi.org/10.1007/s11136-014-0796-3.
- Price A, Albarqouni L, Kirkpatrick J, et al. Patient and public involvement in the design of clinical trials: an overview of systematic reviews. J Eval Clin Pract 2018;24(1):240–53. https://doi.org/10.1111/jep.12805.
- Haywood KL, Whitehead L, Perkins GD. An international, consensus-derived core outcome set for cardiac arrest effectiveness trials: the COSCA initiative. Curr Opin Crit Care 2019;25(3):226–33. https://doi.org/10.1097/
 MCC.00000000000000612.
- Grasner JT, Masterson S. EuReCa and international resuscitation registries. Curr Opin Crit Care 2015;21(3):215–9. https://doi.org/10.1097/MCC.000000000000000000.
- Gräsner J-T, Wnent J, Herlitz J, et al. Survival after out-of-hospital cardiac arrest in Europe – results of the EuReCa TWO study. Resuscitation 2020;148:218–26. https://doi.org/10.1016/j.resuscitation.2019.12.042.
- Nassal MMJ, Wang HE, Benoit JL, et al. Statewide implementation of the cardiac arrest registry to enhance survival in Ohio. Resusc Plus 2024;17:100528. https://doi.org/10.1016/j.resplu.2023.100528.
- 214. Shekhar AC, Nathanson BH, Mader TJ, Coute RA. Cardiac Arrest following drug overdose in the united states: an analysis of the cardiac arrest registry to enhance survival. J Am Heart Assoc 2024;13(3)e031245. https://doi.org/10.1161/JAHA.123.031245.

- Perry T, Raymond TT, Fishbein J, Gaies MG, Sweberg T. Does compliance with resuscitation practice guidelines differ between pediatric intensive care units and cardiac intensive care units? J Intensive Care Med 2023;38(8):743–50. https://doi.org/10.1177/08850666231162568.
- 216. Bak MAR, Blom MT, Tan HL, Willems DL. Ethical aspects of sudden cardiac arrest research using observational data: a narrative review. Crit Care 2018;22(1):212. https://doi.org/10.1186/s13054-018-2153-3.
- 217. Bak MAR, Veeken R, Blom MT, Tan HL, Willems DL. Health data research on sudden cardiac arrest: perspectives of survivors and their next-of-kin. BMC Med Ethics 2021;22(1):7. https://doi.org/10.1186/s12910-021-00576-9.
- 218. Bak MAR, Vroonland JCH, Blom MT, et al. Data-driven sudden cardiac arrest research in Europe: experts' perspectives on ethical challenges and governance strategies. Resusc Plus 2023;15:100414. https://doi.org/10.1016/j.resplu.2023.100414.
- Wiertz S, Boldt J. Evaluating models of consent in changing health research environments. Med Health Care Philos 2022;25(2):269–80. https://doi.org/10.1007/s11019-022-10074-3.
- Semeraro F, Schnaubelt S, Malta Hansen C, Bignami EG, Piazza O, Monsieurs KG. Cardiac arrest and cardiopulmonary resuscitation in the next decade: predicting and shaping the impact of technological innovations. Resuscitation 2024;200:110250. https://doi.org/10.1016/i.resuscitation.2024.110250.
- Mittermaier M, Raza MM, Kvedar JC. Bias in Al-based models for medical applications: challenges and mitigation strategies. npj Digital Medicine 2023;6(1):113. https://doi.org/10.1038/s41746-023-00858-z.
- UNION TEPATCOTE. Regulation (EU) 2024/1689. European Union. https://data.europa.eu/eli/reg/2024/1689/oj. last accesed 21.8.2025.