Information (13:30), January 29, 2020

To All Missions (Embassies, Consular posts and International Organizations in Japan)

Report on the discharge record and the seawater monitoring results at Fukushima Daiichi Nuclear Power Station until December, 2019

The Ministry of Foreign Affairs wishes to provide all international Missions in Japan with a report on the summary of decommissioning and contaminated water management, the discharge record and seawater monitoring results with regard to groundwater pumped from the subdrain and groundwater drain systems, as well as, bypassing groundwater pumped during the month of December at Fukushima Daiichi Nuclear Power Station (NPS).

1. Summary of decommissioning and contaminated water management

In December, the summary of monthly progress on decommissioning and contaminated water management of Fukushima Daiichi NPS was issued shown in Appendix 1. For more information, please see the following URL:

https://www.meti.go.jp/english/earthquake/nuclear/decommissioning/index.html#cs

2. Subdrain and Groundwater Drain Systems

In December, purified groundwater pumped from the subdrain and groundwater drain systems was discharged on the dates shown in Appendix 2. Prior to every discharge, an analysis on the quality of the purified groundwater to be discharged was conducted by Tokyo Electric Power Company (TEPCO) and the results were announced.

All the test results during the month of December have confirmed that the radiation levels of sampled water were substantially below the operational targets set by TEPCO (these operational targets are well below the density limit specified by the Reactor Regulation). The results of these analyses were also confirmed by third-party organization (Tohoku Ryokka Kankyohozen Co.).

In addition, TEPCO and Japan Atomic Energy Agency (JAEA), at the request of the Government of Japan, regularly conduct more detailed analyses on the purified groundwater. The results of JAEA's latest analyses confirmed that TEPCO's analyses were accurate and verified that the radiation levels of sampled groundwater was substantially below the operational target (see Appendix 3). Moreover, TEPCO publishes the results of analyses conducted on seawater sampled during the discharge operation at the nearest seawater sampling post from the discharge point (see Appendix 4). The results show that the radiation levels of seawater remain lower than the density limit specified by the Reactor Regulation and significant change in the radioactivity has not been observed.

3. Groundwater Bypassing

In December, the pumped bypassing groundwater was discharged on the dates shown in Appendix 5. Prior to every discharge, an analysis on the quality of the groundwater to be discharged was conducted by TEPCO and the results were announced.

All the test results during the month of November have confirmed that the radiation levels of sampled water were substantially below the operational targets set by TEPCO (these operational targets are well below the density limit specified by the Reactor Regulation). The results of these analyses were also confirmed by Japan Chemical Analysis Center.

In addition, TEPCO and JAEA, at the request of the Government of Japan, regularly conduct more detailed analyses on the groundwater. The results of JAEA's latest analyses confirmed that TEPCO's analyses were accurate and verified that the radiation levels of the sampled groundwater were substantially below the operational target (see Appendix 6).

Moreover, TEPCO publishes analysis results on seawater sampled during the discharge operation at the nearest seawater sampling post from the discharge point (see Appendix 7). The result shows that the radiation levels in seawater remain lower than the density limit specified by the Reactor Regulation and significant change in the radioactivity has not been observed. The analysis had been conducted once a month until March 2017. Since April 2017, it is conducted four times a year because there has been no significant fluctuation in the concentration of radioactive materials in the sea water, and no influence on the surrounding environment has been confirmed.

The sampling process for analyses conducted this month is the same as the one conducted in the information disseminated last month. Results of the analyses are shown in the attached appendices:

(For further information, please contact TEPCO at (Tel: 03-6373-1111) or refer to the TEPCO's website:

http://www.tepco.co.jp/en/nu/fukushima-np/handouts/index-e.html)

Contact: International Nuclear Cooperation Division, Ministry of Foreign Affairs, Tel 03-5501-8227

Appendix 1 Summary of Decommissioning and Contaminated Water Management December 19, 2019 Secretariat of the Team for Countermeasures for Decommissioning and Contaminated Water Treatment

Fuel removal from the spent fuel pool

Toward fuel removal from the Unit 1 spent fuel pool, investigations have been implemented to ascertain the conditions of the fallen roof on the south side and the contamination of the well plug. Based on the results of these investigations, "the method to initially install a large cover over the Reactor Building and then remove rubble inside the cover" was selected to ensure a safer and more secure removal. Details of the selected method will be designed and the process of fuel removal will be refined.

<Reference> Progress to date Rubble removal on the north side of the operating floor started from January 2018 and has been implemented sequentially. In July and August 2019, the well plug, which was

misaligned from its normal position, was investigated and in August and September, the conditions of the overhead crane were checked. Based on the results of these investigations, as the removal requires more careful work taking dust scattering into consideration, two methods were examined: installing a cover after rubble removal and initially installing a large cover over the Reactor Building and then removing rubble inside the cover.

for fuel removal (image)

(High-performance multi-nuclide removal equipment)

impermeable wall

Inside the land-side Outside the land-side impermeable wall

(Installed welded-joint tanks)

Progress Status and Future Challenges of the Mid-and-Long-Term Roadmap toward Decommissioning of TEPCO Holdings Fukushima Daiichi Nuclear Power Station (Outline)

Progress status

- The temperatures of the Reactor Pressure Vessel (RPV) and Primary Containment Vessel (PCV) of Units 1-3 have been maintained within the range of approx. 20-30°C^{*1} over the past month. There was no significant change in the density of radioactive materials newly released from Reactor Buildings into the air*2. It was concluded that the comprehensive cold shutdown condition had been maintained.
- 1 The values varied somewhat, depending on the unit and location of the thermometer
- * 2 In November 2019, the radiation exposure dose due to the release of radioactive materials from the Unit 1-4 Reactor Buildings was evaluated at less than 0.00007 mSv/year at the site boundary. The annual radiation dose from natural radiation is approx. 2.1 mSv/year (average in Japan).

Selection of the method to initially install a large cover and remove rubble inside the cover for Unit 1

Toward fuel removal from Unit 1, two methods were examined: (i) installing a cover after rubble removal and (ii) initially installing a large cover over the Reactor Building and then removing rubble inside the cover...

Following the examination, "the method to initially install a large cover over the Reactor Building and then remove rubble inside the cover" was selected to ensure a safer and more secure removal.

Details of the selected method will be designed and the fuel removal process will be refined.

Evaluated that Unit 2 is suitable for the first implementing unit for fuel debris retrieval For fuel debris retrieval from the first implementing unit, methods have been examined; taking the progress status in internal investigations of the Primary Containment Vessel (PCV), the status of improvement in the work environment and other factors into consideration.

The characteristics of the debris acquired by the contact investigation in February 2019 and, the status of improvement in the environment on the 1st floor of the Reactor Building for access to PCV and the engineering works with these results taken into consideration and Unit 2 was evaluated that it is suitable for the first implementing unit for fuel debris retrieval. As the method, to determine, a trial retrieval using a robot arm will begin. After verifying and checking this retrieval method, the scale will be gradually expanded using equipment with the same mechanism.

Dismantling for the 5th block of the Unit 1/2 exhaust stack

For the Unit 1/2 exhaust stack, dismantling of the 4th block was completed on December 4 and the subdrain suspended due to interference

of the work was recovered on December 6.

Based on the following review of work to date and refining of the whole process, dismantling is estimated to be completed around early May in 2020*

Dismantling of the 5th block started from December 16 and was completed on December 19.

* As spare dates for bad weather, trouble of equipment and other accidents are not considered, the estimated date may change

Progress status in dismantling of the exhaust stack

Check of the conditions of sandbags installed on the basement floor of the HTI Building

To check the conditions of Zeolite sandbags installed on the basement floor of the High Temperature Incinerator (HTI) Building as a contaminated water treatment measure immediately after the earthquake, a dose investigation using an underwater drone and a visual inspection started from December 3.

The investigation confirmed that sandbags were broken and confirmed that the maximum surface dose of sandbags within the investigative scope was 4,000 mSv/h.

Based on the investigative results, the dose effect when the basement floor is exposed Condition immediately after the earthquake will be assessed.

* The work environment for operating the underwat drone was approx. 0.1-0.3 mSv/h

Current condition of Zeolite sandbags

nment Vessel		Experimental retrieval		Gradual expansion of the retrieval scope	
		Debris collection equipment			Debris collection equipment
					The state
connection s	structure	Met	al brush Cacuum container	Gr	ripper tool Drilling and collection tool
	Unit 1		Unit 2		Unit 3
Dose at the workplace	High (approx. 600mSv/h)		Low (approx. 5mSv/h)		Slightly high (approx. 10mSv/h)
Containment of radioactive materials	Slightly high airtightness		High air tightness (no hydrogen explosion and healthy building)		Low airtightness
Condition of debris	No information		Information obtained		Information obtained
Access route	No information		Information obtained		Information obtained
Swiftness	Removal of high- dose pipes is		Workplace is		Decrease of water level inside PCV is

Comparison of each unit

Toward resumption of fuel removal from Unit 3

Measures were implemented for defects detected during the preparatory work toward resumption of fuel removal from Unit 3 and operation was checked using dummy fuel. On December 14, however, interference of cans inside the transportation cask and dummy fuel was identified.

Though the following investigation confirmed slight leaning of the FHM mast, measures, including a review of the procedures, will be implemented to complete fuel removal within FY2020.

Results of analyses on the quality of the purified groundwater pumped from the subdrain and groundwater drain systems at Fukushima Daiichi NPS (made available by TEPCO prior to discharge)

Dete of compliant	Detected	Analytical body		
*Date of discharge	nuclides	TEPCO	Third-party organization	
	Cs-134	ND (0.80)	ND (0.61)	
December 25 th , 2019	Cs-137	ND (0.65)	ND (0.59)	
*Discharged on	Gross β	ND (1.8)	0.36	
December 30	H-3	910	970	
	Cs-134	ND (0.62)	ND (0.55)	
December 23 rd , 2019	Cs-137	ND (0.68)	ND (0.49)	
*Discharged on	Gross β	ND (1.9)	ND (0.32)	
December 20**	H-3	880	940	
	Cs-134	ND (0.53)	ND (0.62)	
December 21 st , 2019	Cs-137	ND (0.70)	ND (0.64)	
*Discharged on	Gross β	ND (1.8)	ND (0.33)	
December 20 ^m	H-3	930	1,000	
	Cs-134	ND (0.79)	ND (0.64)	
December 20 th , 2019 *Discharged on	Cs-137	ND (0.60)	ND (0.59)	
	Gross β	ND (1.9)	ND (0.32)	
December 25 th	H-3	830	900	
	Cs-134	ND (0.65)	ND (0.67)	
December 19 th , 2019	Cs-137	ND (0.75)	ND (0.45)	
*Discharged on	Gross β	ND (1.9)	ND (0.36)	
December 24**	H-3	860	940	
	Cs-134	ND (0.57)	ND (0.64)	
December 18 th , 2019	Cs-137	ND (0.71)	ND (0.49)	
*Discharged on	Gross β	ND (0.65)	ND (0.34)	
December 25	H-3	900	970	
	Cs-134	ND (0.72)	ND (0.40)	
December 16 th , 2019	Cs-137	ND (0.58)	ND (0.62)	
*Discharged on	Gross β	ND (1.7)	0.36	
December 21%	H-3	860	930	
December 15 th , 2019	Cs-134	ND (0.54)	ND (0.58)	
*Discharged on	Cs-137	ND (0.53)	ND (0.49)	

(Unit: Bq/L)

December 20 th	Gross β	ND (1.9)	ND (0.33)
	H-3	820	870
	Cs-134	ND (0.62)	ND (0.55)
December 13 th , 2019	Cs-137	ND (0.68)	ND (0.57)
*Discharged on	Gross β	ND (1.7)	0.39
December 18 th	H-3	840	890
	Cs-134	ND (0.67)	ND (0.64)
December 12 th , 2019	Cs-137	ND (0.58)	ND (0.69)
*Discharged on	Gross β	ND (1.8)	ND (0.32)
December 17 ^m	H-3	830	890
	Cs-134	ND (0.80)	ND (0.59)
December 11 th , 2019	Cs-137	ND (0.69)	ND (0.56)
*Discharged on	Gross β	ND (2.0)	0.48
December 16 ^m	H-3	810	850
	Cs-134	ND (0.52)	ND (0.64)
December 10 th , 2019	Cs-137	ND (0.58)	ND (0.74)
*Discharged on	Gross β	ND (1.9)	ND (0.36)
December 15 ^m	H-3	790	820
	Cs-134	ND (0.68)	ND (0.62)
December 9 th , 2019	Cs-137	ND (0.63)	ND (0.49)
*Discharged on	Gross β	ND (0.62)	ND (0.33)
December 14 ^m	H-3	760	820
	Cs-134	ND (0.44)	ND (0.61)
December 5 th , 2019	Cs-137	ND (0.53)	ND (0.56)
*Discharged on	Gross β	ND (1.8)	ND (0.31)
December 10"	H-3	800	840
	Cs-134	ND (0.63)	ND (0.55)
December 4 th , 2019	Cs-137	ND (0.58)	ND (0.69)
*Discharged on	Gross β	ND (2.0)	ND (0.35)
December 9 ^{aa}	H-3	680	750
	Cs-134	ND (0.76)	ND (0.64)
December 3 rd , 2019	Cs-137	ND (0.46)	ND (0.56)
*Discharged on	Gross β	ND (1.8)	ND (0.33)
December o	H-3	810	870
	Cs-134	ND (0.62)	ND (0.57)
December 2 nd , 2019	Cs-137	ND (0.68)	ND (0.62)
*Discharged on	Gross β	ND (1.8)	ND (0.31)
	H-3	770	800
	Cs-134	ND (0.62)	ND (0.47)
November 1 st , 2019	Cs-137	ND (0.75)	ND (0.62)
*Discharged on	Gross β	ND (0.64)	ND (0.35)
	H-3	720	760
November 30 th , 2019	Cs-134	ND (0.79)	ND (0.71)

*Discharged on	Cs-137	ND (0.58)	ND (0.66)
December 5 th	Gross β	ND (1.8)	ND (0.36)
	H-3	740	800
	Cs-134	ND (0.76)	ND (0.92)
November 29 th , 2019	Cs-137	ND (0.53)	ND (0.70)
*Discharged on	Gross β	ND (0.65)	ND (0.36)
December 4	H-3	780	820
	Cs-134	ND (0.63)	ND (0.58)
November 27 ^m , 2019	Cs-137	ND (0.63)	ND (0.67)
*Discharged on	Gross β	ND (1.9)	ND (0.38)
	H-3	680	720
	Cs-134	ND (0.64)	ND (0.64)
November 26 ⁴⁴ , 2019	Cs-137	ND (0.63)	ND (0.70)
*Discharged on December 1 st	Gross β	ND (2.3)	ND (0.36)
December 1	H-3	960	1,000
	Cs-134	ND (0.65)	ND (0.46)
November 25 [™] , 2019	Cs-137	ND (0.53)	ND (0.49)
*Discharged on	Gross β	ND (2.0)	ND (0.34)
November 50**	H-3	650	690
	Cs-134	ND (0.65)	ND (0.71)
November 24 th , 2019	Cs-137	ND (0.63)	ND (0.83)
*Discharged on	Gross β	ND (2.0)	ND (0.33)
November 29 ^m	H-3	640	680
	Cs-134	ND (0.54)	ND (0.59)
November 23 rd , 2019	Cs-137	ND (0.75)	ND (0.45)
*Discharged on	Gross β	ND (1.9)	ND (0.34)
November 28 th	H-3	660	690
	Cs-134	ND (0.46)	ND (0.51)
November 22 nd , 2019	Cs-137	ND (0.58)	ND (0.62)
*Discharged on	Gross β	ND (1.8)	ND (0.33)
November 27 th	H-3	670	700
	Cs-134	ND (0.52)	ND (0.62)
November 21 st , 2019	Cs-137	ND (0.68)	ND (0.62)
*Discharged on	Gross β		ND (0.33)
November 26 th	H-3	ND (1.0)	700
	Cs-134		
November 20 th . 2019	Cs-137	ND (0.71)	ND (0.64)
*Discharged on	Gross R	ND (0.53)	ND (0.71)
November 25 th	н-3	ND (1.8)	ND (0.33)
		610	670
November 19 th , 2019	05-134	ND (0.66)	ND (0.59)
*Discharged on	US-137	ND (0.53)	ND (0.52)

November 24 th	Gross β	ND (0.69)	ND (0.34)
	H-3	640	680
	Cs-134	ND (0.52)	ND (0.54)
November 18 th , 2019	Cs-137	ND (0.58)	ND (0.71)
*Discharged on	Gross β	ND (1.7)	ND (0.33)
November 23 rd	H-3	660	710
	Cs-134	ND (0.40)	ND (0.53)
November 17 th , 2019	Cs-137	ND (0.63)	ND (0.64)
*Discharged on	Gross β	ND (2.1)	ND (0.28)
November 22 nd	H-3	710	770
	Cs-134	ND (0.68)	ND (0.48)
November 16 th , 2019	Cs-137	ND (0.75)	ND (0.74)
*Discharged on	Gross β	ND (2.0)	0.35
November 21 st	H-3	690	730
	Cs-134	ND (0.62)	ND (0.58)
November 15 th , 2019	Cs-137	ND (0.63)	ND (0.71)
*Discharged on	Gross β	ND (1.8)	ND (0.38)
November 20 ^m	H-3	660	690
	Cs-134	ND (0.74)	ND (0.58)
November 14 th , 2019	Cs-137	ND (0.68)	ND (0.59)
*Discharged on	Gross β	ND (1.8)	ND (0.37)
November 19 ^m	H-3	610	660
	Cs-134	ND (0.40)	ND (0.63)
November 13 th , 2019	Cs-137	ND (0.53)	ND (0.59)
*Discharged on	Gross β	ND (1.8)	ND (0.36)
November 18"	H-3	610	660
	Cs-134	ND (0.60)	ND (0.65)
November 12 th , 2019	Cs-137	ND (0.68)	ND (0.76)
*Discharged on	Gross β	ND (2.0)	ND (0.32)
	H-3	660	710
	Cs-134	ND (0.94)	ND (0.61)
November 11 ^m , 2019	Cs-137	ND (0.53)	ND (0.49)
*Discharged on	Gross β	ND (1.9)	ND (0.33)
	H-3	730	800
	Cs-134	ND (0.52)	ND (0.57)
November 10 th , 2019	Cs-137	ND (0.46)	ND (0.53)
*Discharged on	Gross β	ND (0.64)	ND (0.34)
	H-3	710	770
	Cs-134	ND (0.65)	ND (0.52)
November 9 ⁿ , 2019	Cs-137	ND (0.68)	ND (0.67)
*Discharged on	Gross β	ND (1.9)	ND (0.34)
	H-3	690	590
November 8 th , 2019	Ćs-134	ND (0.44)	ND (0.62)

*Discharged on	Cs-137	ND (0.71)	ND (0.59)
November 13 th	Gross β	ND (2.0)	ND (0.33)
	H-3	720	770
	Cs-134	ND (0.68)	ND (0.55)
November 7 th , 2019	Cs-137	ND (0.58)	ND (0.56)
*Discharged on	Gross β	ND (2.1)	0.42
November 12 ^m	H-3	700	770
	Cs-134	ND (0.52)	ND (0.74)
November 6 th , 2019	Cs-137	ND (0.68)	ND (0.70)
*Discharged on	Gross β	ND (1.8)	ND (0.35)
November 11"	H-3	760	830
	Cs-134	ND (0.62)	ND (0.53)
November 5 th , 2019	Cs-137	ND (0.63)	ND (0.59)
*Discharged on	Gross β	ND (2.2)	ND (0.35)
November 10 ^m	H-3	720	770
	Cs-134	ND (0.44)	ND (0.65)
November 5 th , 2019	Cs-137	ND (0.58)	ND (0.62)
*Discharged on	Gross β	ND (2.2)	ND (0.35)
November 10 ^m	H-3	790	820
	Cs-134	ND (0.54)	ND (0.67)
November 4 th , 2019	Cs-137	ND (0.58)	ND (0.56)
*Discharged on	Gross β	ND (1.9)	ND (0.37)
November 9 ¹¹	H-3	570	620
	Cs-134	ND (0.58)	ND (0.64)
November 4 th , 2019	Cs-137	ND (0.68)	ND (0.62)
*Discharged on	Gross β	ND (1.9)	ND (0.35)
November 9"	H-3	660	700
	Cs-134	ND (0.83)	ND (0.60)
November 3 rd , 2019	Cs-137	ND (0.68)	ND (0.64)
*Discharged on	Gross β	ND (1.9)	ND (0.37)
November 8"	H-3	550	590
	Cs-134	ND (0.71)	ND (0.65)
November 2 nd , 2019	Cs-137	ND (0.68)	ND (0.56)
*Discharged on	Gross β	ND (2.2)	ND (0.34)
November 7"	H-3	710	770
	Cs-134	ND (0.65)	ND (0.66)
November 1 st , 2019	Cs-137	ND (0.58)	ND (0.69)
*Discharged on	Gross β	ND (0.78)	ND (0.36)
	H-3	810	870
	Cs-134	ND (0.72)	ND (0.59)
October 31 st , 2019	Cs-137	ND (0.63)	ND (0.64)
*Discharged on	Gross β	ND (2.0)	0.42
	H-3	780	850

	Cs-134	ND (0.65)	ND (0.79)
October 30 th , 2019	Cs-137	ND (0.68)	ND (0.80)
*Discharged on	Gross β	ND (2.3)	0.51
November 4 ^m	H-3	760	830
	Cs-134	ND (0.71)	ND (0.50)
October 30 th , 2019	Cs-137	ND (0.63)	ND (0.69)
*Discharged on	Gross β	ND (2.3)	ND (0.38)
November 4 ^m	H-3	820	860
	Cs-134	ND (0.64)	ND (0.71)
October 29 th , 2019	Cs-137	ND (0.58)	ND (0.67)
*Discharged on	Gross β	ND (2.2)	0.41
November 3 ^{ra}	H-3	850	920
	Cs-134	ND (0.56)	ND (0.71)
October 28 th , 2019	Cs-137	ND (0.58)	ND (0.70)
*Discharged on	Gross β	ND (2.0)	ND (0.38)
November 2 nd	H-3	910	1,000
	Cs-134	ND (0.60)	ND (0.90)
October 27 th , 2019	Cs-137	ND (0.58)	ND (0.80)
*Discharged on	Gross β	ND (2.0)	ND (0.35)
November 1 st	H-3	980	1,100
	Cs-134	ND (0.63)	ND (0.71)
October 26 th , 2019	Cs-137	ND (0.68)	ND (0.74)
*Discharged on	Gross β	ND (1.8)	ND (0.37)
October 31 st	H-3	910	1,000
	Cs-134	ND (0.68)	ND (0.74)
October 25 th , 2019	Cs-137	ND (0.58)	ND (0 74)
*Discharged on	Gross β	ND (0.69)	0.45
October 30 th	H-3	900	960
	Cs-134		
October 24 th , 2019	Cs-137	ND (0.00)	
*Discharged on	Gross β		ND (0.49)
October 29 th	H-3	ND (1.0)	0.55
	Cs-134	088	950
October 24th 2019	Ce-137	ND (0.57)	ND (0.68)
	Gross B	ND (0.53)	ND (0.66)
⁻ Discharged on October 29 th		ND (2.1)	0.43
		930	910
October 20rd 2010	US-134	ND (0.44)	ND (0.67)
October 23 ¹⁴ , 2019	Cs-137	ND (0.63)	ND (0.59)
*Discharged on October 28 th	Gross β	ND (2.1)	0.39
	H-3	820	890
October 22 nd , 2019	Cs-134	ND (0.57)	ND (0.62)
*Discharged on	Cs-137	ND (0.63)	ND (0.56)

October 27 th	Gross β	ND (2.0)	ND (0.34)
	H-3	890	960
	Cs-134	ND (0.55)	ND (0.65)
October 22 nd , 2019	Cs-137	ND (0.82)	ND (0.77)
*Discharged on	Gross β	ND (2.0)	0.39
October 27	H-3	770	810
	Cs-134	ND (0.62)	ND (0.62)
October 21 st , 2019	Cs-137	ND (0.53)	ND (0.45)
*Discharged on	Gross β	ND (2.2)	0.47
October 26 th	H-3	600	660
	Cs-134	ND (0.70)	ND (0.64)
October 20 th , 2019	Cs-137	ND (0.68)	ND (0.56)
*Discharged on	Gross β	ND (2.2)	ND (0.40)
October 25 ^m	H-3	630	700
	Cs-134	ND (0.74)	ND (0.61)
October 19 th , 2019	Cs-137	ND (0.85)	ND (0.59)
*Discharged on	Gross β	ND (2.3)	ND (0.37)
October 24	H-3	630	690
	Cs-134	ND (0.58)	ND (0.83)
October 18 th , 2019	Cs-137	ND (0.68)	ND (0.70)
*Discharged on	Gross β	ND (0.75)	ND (0.35)
October 23 rd	H-3	690	750
	Cs-134	ND (0.40)	ND (0.55)
October 17 th , 2019	Cs-137	ND (0.71)	ND (0.74)
*Discharged on	Gross β	ND (2.1)	0.39
October 22"	H-3	700	740
	Cs-134	ND (0.67)	ND (0.73)
October 16 th , 2019	Cs-137	ND (0.63)	ND (0.83)
*Discharged on	Gross β	ND (2.2)	0.51
	H-3	820	870
	Cs-134	ND (0.76)	ND (0.61)
October 16 ⁴¹ , 2019	Cs-137	ND (0.71)	ND (0.49)
*Discharged on October 21 st	Gross β	ND (0.78)	0.39
	H-3	560	600
	Cs-134	ND (0.57)	ND (0.59)
October 15", 2019	Cs-137	ND (0.58)	ND (0.62)
*Discharged on October 21 st	Gross β	ND (2.3)	ND (0.38)
	H-3	720	770
Ostober 20th 2010	Cs-134	ND (0.40)	ND (0.85)
Octoper 20", 2019	Cs-137	ND (0.68)	ND (0.66)
*Discharged on October 14 th	Gross β	ND (1.9)	ND (0.39)
	H-3	930	1,000

	Cs-134	ND (0.49)	ND (0.74)
October 19 th , 2019	Cs-137	ND (0.63)	ND (0.70)
*Discharged on	Gross β	ND (2.3)	ND (0.37)
October 13 th	H-3	860	950
	Cs-134	ND (0.58)	ND (0.46)
October 19 th , 2019	Cs-137	ND (0.68)	ND (0.64)
*Discharged on	Gross β	ND (2.3)	ND (0.36)
October 13 th	H-3	890	960
	Cs-134	ND (0.70)	ND (0.69)
October 10 th , 2019	Cs-137	ND (0.58)	ND (0.77)
*Discharged on	Gross β	ND (0.66)	ND (0.37)
October 15 th	H-3	1,000	1,100
	Cs-134	ND (0.66)	ND (0.68)
October 8 th , 2019	Cs-137	ND (0.58)	ND (0.67)
*Discharged on	Gross β	ND (2.4)	ND (0.35)
October 13 th	H-3	980	1,100
	Cs-134	ND (0.60)	ND (0.61)
October 7 th , 2019	Cs-137	ND (0.58)	ND (0.45)
*Discharged on	Gross β	ND (2.1)	ND (0.33)
October 12 th	H-3	960	1,100
	Cs-134	ND (0.68)	ND (0.61)
October 6 th , 2019	Cs-137	ND (0.58)	ND (0.67)
*Discharged on	Gross β	ND (2.0)	0.39
October 11 th	H-3	1,100	1,100
	Cs-134	ND (0.56)	ND (0.62)
October 5 th , 2019	Cs-137	ND (0.68)	ND (0.59)
*Discharged on	Gross β	ND (2.0)	ND (0.34)
October 10 th	H-3	1,100	1,200
	Cs-134	ND (0.67)	ND (0.71)
October 4 th , 2019	Cs-137	ND (0.78)	ND (0.59)
*Discharged on	Gross β	ND (1.9)	0.39
October 9 th	H-3	1,100	1,200
	Cs-134	ND (0.64)	ND (0.65)
October 3 rd , 2019	Cs-137	ND (0.58)	ND (0.71)
*Discharged on	Gross β	ND (2.3)	0.48
October 8 th	H-3	1,000	1,100
	Cs-134	ND (0.57)	ND (0.53)
October 2 nd , 2019	Cs-137	ND (0.58)	ND (0.59)
*Discharged on	Gross β	ND (2.0)	0.46
October /"	H-3	1,000	1,100
October 1 st 2019	Cs-134	ND (0.66)	ND (0.53)
*D: '	Cs-137	ND (0.63)	ND (0.67)
October 6 th	Gross β	ND (0.72)	ND (0.41)

	H-3	990	1,100
	Cs-134	ND (0.52)	ND (0.57)
September 30 th , 2019	Cs-137	ND (0.63)	ND (0.59)
*Discharged on	Gross β	ND (2.1)	ND (0.40)
October 5"	H-3	970	1,100
	Cs-134	ND (0.49)	ND (0.61)
September 29 th , 2019	Cs-137	ND (0.58)	ND (0.53)
*Discharged on	Gross β	ND (2.1)	0.46
October 4 ^m	H-3	1,000	1,100
	Cs-134	ND (0.79)	ND (0.74)
September 28 th , 2019	Cs-137	ND (0.68)	ND (0.45)
*Discharged on	Gross β	ND (2.1)	0.45
October 3 ^{ra}	H-3	910	1,000
	Cs-134	ND (0.58)	ND (0.55)
September 27 th , 2019	Cs-137	ND (0.63)	ND (0.59)
*Discharged on	Gross β	ND (2.0)	ND (0.37)
October 2 nd	H-3	940	1,000
	Cs-134	ND (0.48)	ND (0.57)
September 26 th , 2019	Cs-137	ND (0.53)	ND (0.59)
*Discharged on	Gross β	ND (0.71)	ND (0.36)
Uctober 1 st	H-3	990	1,100

- * * ND: represents a value below the detection limit; values in () represent the detection limit.
- * In order to ensure the results, third-party organizations have also conducted an analysis and verified the radiation level of the sampled water.
- * Third-party organization : Tohoku Ryokka Kankyohozen Co., Ltd

Result of detailed analyses conducted by TEPCO, JAEA, and Japan Chemical Analysis Center (In order to confirm the validity of analysis, the Government of Japan also requests JAEA; and TEPCO requests Japan Chemical Analysis Center to conduct independent analyses)

				(Unit: Bq/L)	
	Detected	Analytical body			
Date of sampling	nuclides	JAEA	TEPCO	Japan Chemical Analysis Center	
	Cs-134	ND (0.0024)	ND (0.0047)	ND (0.0063)	
	Cs-137	0.026	0.025	0.029	
November 1 st 2010	Gross α	ND (0.46)	ND (3.4)	ND (1.9)	
	Gross β	ND (0.46)	ND (0.78)	ND (0.50)	
	H-3	960	810	850	
	Sr-90	0.0023	ND (0.0046)	ND (0.0053)	
	Cs-134	ND (0.0033)	ND (0.0045)	ND (0.0066)	
	Cs-137	0.012	0.014	0.011	
October 1st 2010	Gross α	ND (0.73)	ND (3.5)	ND (2.1)	
October 1°,2019	Gross β	ND (0.47)	ND (0.72)	ND (0.58)	
	H-3	1,200	1,000	1,100	
	Sr-90	ND (0.0011)	ND (0.0015)	ND (0.0056)	
	Cs-134	ND (0.0029)	ND (0.0042)	ND (0.0063)	
September 1 st ,2019	Cs-137	0.0074	0.011	0.0086	
	Gross α	ND (0.66)	ND (3.4)	ND (2.0)	
	Gross β	ND (0.47)	ND (0.73)	ND (0.59)	
	H-3	1,100	940	1,000	
	Sr-90	0.0016	ND (0.0014)	ND (0.0058)	

 * ND: represents a value below the detection limit; values in () represent the detection limit.

Results of analysis on the seawater sampled near the discharge point (North side of Units 5 and 6 discharge channel)

		(Unit: Bq/L)
Date of sampling	Detected nuclides	Sampling point (South discharge channel)
December 18 th , 2019	Cs-134	ND (0.61)
*Sampled before discharge of purified	Cs-137	ND (0.63)
	Gross β	15
groundwater.	H-3	ND (1.6)
September 5 th , 2019	Cs-134	ND (0.75)
	Cs-137	ND (0.86)
*Sampled before discharge of purified	Gross β	13
groundwater.	H-3	1.9

(Reference)

(Unit: Bq/L)

Radionuclides	Operational Targets	Density Limit specified by the Reactor Regulation	World Health Organization (WHO) Guidelines for Drinking Water Quality
Cs-134	1	60	10
Cs-137	1	90	10
Gross α	—	—	—
Gross β	3 (1) *	—	—
H-3	1,500	60,000	10,000
Sr-90	—	30	10

% The operational target of Gross β is 1 Bq/L in the survey which is conducted once every ten days.

Results of analyses on the water quality of the groundwater pumped up for bypassing at Fukushima Daiichi NPS (made available by TEPCO prior to discharge)

Date of sampling		Analytical body	
*Date of discharge	Detected nuclides	TEPCO	Japan Chemical Analysis Center
	Cs-134	ND (0.58)	ND (0.62)
December 20 [™] , 2019	Cs-137	ND (0.74)	ND (0.46)
*Discharged on	Gross β	ND (0.66)	ND (0.53)
December 20	H-3	150	170
	Cs-134	ND (0.63)	ND (0.45)
December 16 th , 2019	Cs-137	ND (0.63)	ND (0.53)
*Discharged on	Gross β	ND (0.71)	ND (0.53)
December 25"	H-3	230	240
	Cs-134	ND (0.62)	ND (0.59)
December 10 th , 2019	Cs-137	ND (0.71)	ND (0.41)
*Discharged on	Gross β	ND (0.68)	ND (0.60)
December 18"	H-3	210	220
	Cs-134	ND (0.67)	ND (0.59)
December 5 th , 2019	Cs-137	ND (0.58)	ND (0.46)
*Discharged on	Gross β	ND (0.64)	ND (0.58)
December 13"	H-3	160	180
November 13 th , 2019	Cs-134	ND (0.52)	ND (0.59)
	Cs-137	ND (0.53)	ND (0.55)
*Discharged on	Gross β	ND (0.65)	ND (0.64)
November 21 st	H-3	260	280
	Cs-134	ND (0.59)	ND (0.57)
November 6 th , 2019	Cs-137	ND (0.63)	ND (0.52)
*Discharged on	Gross β	ND (0.80)	ND (0.56)
November 14 th	H-3	250	260
	Cs-134	ND (0.52)	ND (0.45)
October 30 th , 2019	Cs-137	ND (0.58)	ND (0.38)
*Discharged on	Gross β	ND (0.71)	ND (0.57)
November 7 th	H-3	160	180
	Cs-134	ND (0.74)	ND (0.50)
October 23 rd , 2019	Cs-137	ND (0.63)	ND (0.43)
*Discharged on	Gross β	ND (0.60)	ND (0.58)
October 31 st	H-3	150	140
October 16 th , 2019	Cs-134	ND (0.74)	ND (0.52)

(Unit: Bq/L)

*Dia da anna da an	Cs-137	ND (0.58)	ND (0.52)
October 24 th	Gross β	ND (0.68)	ND (0.57)
	H-3	120	130
	Cs-134	ND (0.52)	ND (0.54)
October 9 th , 2019	Cs-137	ND (0.53)	ND (0.48)
*Discharged on	Gross β	ND (0.69)	ND (0.62)
October 17"	H-3	120	130
	Cs-134	ND (0.76)	ND (0.49)
October 2 nd , 2019	Cs-137	ND (0.68)	ND (0.38)
*Discharged on	Gross β	ND (0.69)	ND (0.55)
October 10 ⁴⁴	H-3	120	130
	Cs-134	ND (0.54)	ND (0.49)
September 25 th , 2019	Cs-137	ND (0.63)	ND (0.57)
*Discharged on	Gross β	ND (0.74)	ND (0.64)
October 3 rd	H-3	120	120

- * * ND: represents a value below the detection limit; values in () represent the detection limit
- * In order to ensure the results, Japan Chemical Analysis Center, a third-party organization, has also conducted an analysis and verified the radiation level of the sampled water.

Result of detailed analyses conducted by TEPCO, JAEA, and Japan Chemical Analysis Center (In order to confirm the validity of analysis, the Government of Japan also requests JAEA; and TEPCO requests Japan Chemical Analysis Center to conduct independent analyses)

				(Unit: Bq/L)	
Date of sampling		Analytical body			
	Detected nuclides	JAEA	TEPCO	Japan Chemical Analysis Center	
	Cs-134	ND (0.0030)	ND (0.0047)	ND (0.0067)	
	Cs-137	0.0027	ND (0.0038)	ND (0.0052)	
November 6 th ,	Gross α	ND (0.48)	ND (3.1)	ND (1.9)	
2019	Gross β	ND (0.46)	ND (0.80)	ND (0.52)	
	H-3	290	240	260	
	Sr-90	ND (0.0013)	ND (0.0014)	ND (0.0055)	
October 2 nd , 2019	Cs-134	ND (0.0030)	ND (0.0045)	ND (0.0055)	
	Cs-137	ND (0.0020)	ND (0.0039)	ND (0.0053)	
	Gross α	ND (0.57)	ND (3.1)	ND (2.1)	
	Gross β	ND (0.46)	ND (0.69)	ND (0.67)	
	H-3	140	120	130	
	Sr-90	0.0014	ND (0.0015)	ND (0.0074)	
September 4 th , 2019	Cs-134	ND (0.0029)	ND (0.0044)	ND (0.0059)	
	Cs-137	ND (0.0021)	ND (0.0041)	ND (0.0048)	
	Gross α	ND (0.59)	ND (3.5)	ND (2.0)	
	Gross β	ND (0.46)	ND (0.80)	ND (0.48)	
	H-3	160	130	140	
	Sr-90	ND (0.0011)	ND (0.0013)	ND (0.0055)	

 * ND: represents a value below the detection limit; values in () represent the detection limit.

Results of analyses on the seawater sampled near the discharge point (Around South Discharge Channel)

(Unit: Bq/L)

Date of sampling ※conducted four times a year	Detected nuclides	Sampling point (South discharge channel)	
	Cs-134	ND (0.76)	
December 18 th , 2019	Cs-137	ND (0.67)	
	Gross β	13	
	H-3	8.5	
	Cs-134	ND (0.55)	
	Cs-137	ND (0.68)	
September 5", 2019	Gross β	9.4	
	H-3	1.5	

(Reference)

(Unit: Bq/L)

·	1		(1)
Radionuclides	Operational Targets	Density Limit specified by the Reactor Regulation	World Health Organization (WHO) Guidelines for Drinking Water Quality
Cs-134	1	60	10
Cs-137	1	90	10
Gross α	_	_	_
Gross β	5 (1) *	_	_
H-3	1,500	60,000	10,000
Sr-90	_	30	10

% The operational target of Gross β is 1 Bq/L in the survey which is conducted once every ten days.