


LA QUALITÀ DELL'ARIA IN ITALIA EDIZIONE 2020

SNPA | 17 2020

LA QUALITÀ DELL'ARIA IN ITALIA EDIZIONE 2020

Il Sistema nazionale per la protezione dell'ambiente (SNPA) è operativo dal 14 gennaio 2017, data di entrata in vigore della Legge 28 giugno 2016, n.132 "Istituzione del Sistema nazionale a rete per la protezione dell'ambiente e disciplina dell'Istituto superiore per la protezione e la ricerca ambientale".

Esso costituisce un vero e proprio Sistema a rete che fonde in una nuova identità quelle che erano le singole componenti del preesistente Sistema delle Agenzie Ambientali, che coinvolgeva le 21 Agenzie Regionali (ARPA) e Provinciali (APPA), oltre a ISPRA.

La legge attribuisce al nuovo soggetto compiti fondamentali quali attività ispettive nell'ambito delle funzioni di controllo ambientale, monitoraggio dello stato dell'ambiente, controllo delle fonti e dei fattori di inquinamento, attività di ricerca finalizzata a sostegno delle proprie funzioni, supporto tecnico-scientifico alle attività degli enti statali, regionali e locali che hanno compiti di amministrazione attiva in campo ambientale, raccolta, organizzazione e diffusione dei dati ambientali che, unitamente alle informazioni statistiche derivanti dalle predette attività, costituiranno riferimento tecnico ufficiale da utilizzare ai fini delle attività di competenza della pubblica amministrazione.

Attraverso il Consiglio del SNPA, il Sistema esprime il proprio parere vincolante sui provvedimenti del Governo di natura tecnica in materia ambientale e segnala al MATTM e alla Conferenza permanente per i rapporti tra lo Stato, le regioni e le province autonome di Trento e Bolzano l'opportunità di interventi, anche legislativi, ai fini del perseguimento degli obiettivi istituzionali. Tale attività si esplica anche attraverso la produzione di documenti, prevalentemente Linee Guida o Report, pubblicati sul sito del Sistema SNPA e le persone che agiscono per suo conto non sono responsabili per l'uso che può essere fatto delle informazioni contenute in queste pubblicazioni.

Citare questo documento come segue:

"La qualità dell'aria in Italia. Edizione 2020". SNPA, Rapporti 17/2020, Roma, 1 dicembre 2020.

ISBN 978-88-448-1027-6 © Report SNPA, 17/2020

Riproduzione autorizzata citando la fonte.

Coordinamento della pubblicazione online: Daria Mazzella – ISPRA Copertina: Ufficio Grafica ISPRA

Dicembre 2020

Abstract - La qualità dell'aria in Italia

Sono riportati lo stato e il trend della qualità dell'aria in Italia nel periodo 2009-2019. Nel 2019 si sono verificati superamenti del valore limite giornaliero del PM₁₀ in diverse regioni del Paese. Sussistono anche superamenti del valore limite annuale dell'NO₂, ed è confermato il mancato rispetto dell'obiettivo a lungo termine per l'ozono esteso a tutto il territorio nazionale. Significative riduzioni delle concentrazioni di PM₁₀, PM_{2,5} e NO₂, sono state osservate nel decennio esaminato. Una serie di approfondimenti tematici monografici completa la rassegna.

Parole chiave: Qualità dell'aria, valutazione, trend

Abstract - Air quality in Italy

The status and trend of air quality in Italy in the period 2009-2019 are reported. In 2019, exceedances of the daily limit value for PM_{10} occurred in several regions of the country. There are also exceedances of the annual NO_2 limit value, and the failure to comply with the long-term objective for ozone extended to the whole national territory is confirmed. Significant reductions in PM_{10} , $PM_{2.5}$ and NO_2 concentrations were observed over the decade under review. A series of monographic thematic studies completes the review.

Keywords: Air quality, assessment, trend

AUTORI

Autori capitoli 1 - 10

ISPRA – Giorgio Cattani, Mariacarmela Cusano, Alessandro Di Menno di Bucchianico, Guido Fioravanti, Piero Fraschetti, Raffaela Gaddi, Alessandra Gaeta, Giuseppe Gandolfo, Francesca Lena, Gianluca Leone, Walter Perconti, Emanuela Piervitali, Silvia Brini

ARTA ABRUZZO – Sebastiano Bianco, Carlo Bellina Agostinone, Carlo Colangeli

ARPA BASILICATA – Anna Maria Crisci, Laura Bruno

APPA BOLZANO - Luca Verdi

ARPA CALABRIA – Claudia Vilma Tuoto, Maria Anna Caravita

ARPA CAMPANIA – Paolo D'Auria, Anna Ballirano

ARPA FRIULI VENEZIA GIULIA - Fulvio Stel

ARPAE EMILIA-ROMAGNA -Simona Maccaferri

ARPA LAZIO – Silvia Barberini, Andrea Bolignano

ARPA LIGURIA – Monica Beggiato, Massimiliano Pescetto

ARPA LOMBARDIA - Anna Di Leo, Guido Lanzani

ARPA MARCHE - Marco Salustri

ARPA MOLISE – Luigi Pierno

ARPA PIEMONTE – Federica Libanoro, Francesco Lollobrigida, Roberto Almasio, Barbara Cagnazzi, Stefano Bande, Francesca Bissardella, Monica Clemente

ARPA PUGLIA – Lorenzo Angiuli, Fiorella Mazzone

ARPA SARDEGNA - Alessandro Serci, Viviana Sirigu

ARPA SICILIA - Anna Abita

ARPA TOSCANA – Bianca Patrizia Andreini, Fiammetta Dini, Guglielmo Tanganelli

APPA TRENTO – Gabriele Tonidandel

ARPA UMBRIA – Marco Pompei

ARPA VALLE D'AOSTA - Claudia Tarricone

ARPA VENETO – Giovanna Marson, Luca Zagolin

Autori capitolo 11

ARPA PIEMONTE

Lollobrigida F., Grosa M.M., Pannocchia A., Bussi C., Fontana M., Bruno A., Maringo M., Sacco M., Bertello C.

ARPA VALLE D'AOSTA

Tombolato I., Diémoz H., Zublena M., Tarricone C., Magri T., Pession G.

ARPA LOMBARDIA

Colombi C., Algieri A., Corbella L., Cuccia E., Dal Santo U., Carroccio L., De Martini A., Gianelle V.

ARPAE EMILIA ROMAGNA

Bacco D., Agostini C., Maccaferri S., Scotto F., Trentini A., Poluzzi V. Maccone C., Ferrari S

UNIVERSITA' DELL'INSUBRIA - Cattaneo A., Rovelli S.

ARPA CAMPANIA

Onorati G., Autorino J. D'Ambrosio A.

UNIVERSITÀ DEGLI STUDI DI NAPOLI "PARTHENOPE"

D'amore D., Budillon G.

UNIVERSITÀ DEGLI STUDI DI LECCE

Buccolieri R.

ARPA PUGLIA

Schipa I., Morabito A.

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA Ferrero L.

ARIANET SRL

Costa M.P.

Autori capitolo 12

ARPAE EMILIA ROMAGNA

Zauli Sajani S., Marchesi S., Trentini A., Maccone C., Scotto F., Colacci A., Poluzzi V.

UNIVERSITA' DELL'INSUBRIA - Cattaneo A., Rovelli S.

ARPA LAZIO

Barberini S., Occhiuto D.

ARPA BASILICATA Acampora A., Crisci A.M., Mangiamele L., Di Pierro M., Zasa D., D'aniello M.

ARPA SICILIA

Giardina M., Buffa P., Abita A., Madonia G.

DIPARTIMENTO DI EPIDEMIOLOGIA SSR LAZIO Stafoggia M., De'Donato F.

Autori capitolo 13

ARPA PIEMONTE

Lollobrigida F., Bussi C., Bruno A., Calderaro E., Leogrande M., Maringo M., Milizia L., Romeo F., Sacco M., Sergi R., Strumia C.

ARPA VENETO

De Bortoli A., Zagolin L., Voltarel G., Marson G., Patti S.

ARPAE EMILIA ROMAGNA

Stortini M., Amorati R., Giovannini G.

ARPA BASILICATA

Lovallo M., Esposito R., Mangiamele L., Crisci A.M., Bruno I.

ARPA CAMPANIA

Onorati G., D'Auria P., Autorino J., Ballirano A.

UNIVERSITÀ DEGLI STUDI DI NAPOLI "PARTHENOPE" DIPARTIMENTO SCIENZE E TECNOLOGIE

De Vita A., Budillon G., Capozzi V.

Autori capitolo 14

ARPA PIEMONTE Otta C., Ameglio V., Erbetta L., Littera C., Mensi G., Scagliotti E., Bianchi D., Buratto S.

ARPA LOMBARDIA

Cuccia E., Gianelle V., Dal Santo U., Corbella L., Colombi C., Algieri A.

ARPAE EMILIA ROMAGNA Bacco D., Scotto F., Trentini A., Lasagni S., Maccone C., Ferrari S., Poluzzi V.

ARPA FRIULI VENEZIA GIULIA

Verardo P., Tassan-Mazzocco F.

ARPA UMBRIA Flori C., Della Bella V., Moretti O. **Autori capitolo 15**

ARPA VALLE D'AOSTA

Claudia Tarricone, Manuela Zublena, Tiziana Magri, Giordano Pession

ARPA PIEMONTE

Francesco Lollobrigida, Stefano Bande, Francesca Bissardella e Monica Clemente

ARPA LOMBARDIA

Elena Bravetti, Umberto Dal Santo, Anna Di Leo, Guido Lanzani, Orietta Cazzuli, Gian Paolo Minardi, Elisabetta Angelino, Giuseppe Fossati, Guido Lanzani, Alessandro Marongiu, Alessandra Pantaleo

APPA BOLZANO

Luca Verdi, Patrick Dalpiaz

APPA TRENTO

Valentina Miotto, Selene Cattani, Gabriele Tonidandel

ARPA VENETO

Salvatore Patti, Alberto Dalla Fontana, Francesca Liguori, Ketty Lorenzet, Giovanna Marson, Silvia Pillon, Laura Susanetti, Luca Zagolin

ARPA FRIULI

Edi Baiutti, Marco Bellini, Giovanni Bonafè, Andrea Mistaro, Francesco Montanari, Alessia Movia, Alessandra Petrini, Fulvio Stel, Arianna Tolloi, Marco Visintin

ARPA LIGURIA

Monica Beggiato, Roberto Cresta, Massimiliano Pescetto, Daniele Franceschini, Valerio Stabielli, Massimo Giannotti, Gianfranco Fortunato, Federico Manni, Sandro Tuvo, Andrea Giordano, Annamaria Casalini, Bianca Vallarino, Luigi Federici, Giancarlo Leveratto, Fabrizia Colonna

ARPAE EMILIA ROMAGNA

Chiara Agostini, Roberta Amorati, Barbara Arvani, Giulia Giovannini, Simona Maccaferri, Vanes Poluzzi, Michele Stortini, Arianna Trentini, Simonetta Tugnoli, Matteo Vasconi

ARPA TOSCANA

Chiara Collaveri, Bianca Patrizia Andreini con la collaborazione del Settore Centro Regionale Tutela Qualità dell'Aria

ARPA UMBRIA

Marco Pompei, Mara Galletti, Ilaria Corbucci

ARPA LAZIO

Antonio Amoroso, Alessandro Domenico Di Giosa, Massimo Enrico Ferrario, Stefano Listrani, Giada Marchegiani, Arianna Marinelli, Donatella Occhiuto, Giuseppe Grimaldi

ARTA ABRUZZO

Sebastiano Bianco, Carlo Bellina, Carlo Colangeli

ARPA MARCHE

ARPA CAMPANIA

Giuseppe Onorati, Jole Autorino, Anna Ballirano, Cristina Calenda, Antonio D'Ambrosio, Paolo D'Auria, Rocco De Pascale, Domenico Farina, Francesca Intini, Luigi Mosca

ARPA MOLISE

Giovanni Guglielmi, Antonello Mastromonaco, Luigi Pierno, Michela Presutti, Bernardino Principi, Egidio Risi

ARPA PUGLIA

Lorenzo Angiuli, Paolo Dambruoso, Fiorella Mazzone e Livia Trizio

ARPA CALABRIA

Claudia Tuoto, Emilio Centorrino, Pacquale Crea

ARPA SICILIA

Anna Abita, Riccardo Antero, Lucia Basiricò, Giuseppe Madonia. Nicolò Tirone

ARPA SARDEGNA

Alessandro Serci

continua

segue Autori capitolo 15

ISPRA

Federica Aldighieri, Riccardo De Lauretis, Francesca Fornasier, Giorgio Cattani

REGIONE LOMBARDIA DG AMBIENTE Elisabetta Buganza, Mauro Donzelli, Gian Luca Gurrieri, Matteo Lazzarini, Elisabetta Scotto Di Marco

REGIONE EMILIA ROMAGNA Matteo Balboni ISTITUTO SUPERIORE DI SANITÀ Maria Eleonora Soggiu

UNIVERSITÀ DI TRENTO Lorenzo Giovannini e Elena Bertazza

CISMA S.r.l. Ilaria Todeschini

CONTRIBUTI E RINGRAZIAMENTI

I dati di qualità dell'aria che quotidianamente vengono prodotti e diffusi, sono utilizzati per le finalità previste dal D.Lgs 155/2010 e s.m.i che comprendono l'informazione al pubblico, la predisposizione e pubblicazione di relazioni annuali, e la trasmissione alla Commissione Europea di dati e informazioni secondo le modalità definite dalla decisione di esecuzione della Commissione Europea 2011/850/EU.

Questi dati e le loro elaborazioni sono poi utilizzati e diffusi su scala nazionale dall'SNPA stesso con i report di sistema, dall'ISTAT, dall'EEA, da EUROSTAT, dall'OCSE, dall'OMS, dall'UNDESA, dalle associazioni ambientaliste e riprese e discusse dai media locali, nazionali ed internazionali.

I dati e le elaborazioni sono il frutto dell'impegno di un gran numero di persone che lavorano nelle varie articolazioni dell'SNPA che con la loro professionalità rendono possibile tutto questo.

Nella consapevolezza che anche questo rapporto è stato realizzato grazie a loro, desideriamo ringraziarle una ad una.

ARPA BASILICATA – Bruno Bove, Adelchi Acampora, Michele D'Aniello, Mauro Di Pierro, Raffaella Esposito, Michele Lovallo, Lucia Mangiamele, Valentina Sarli, Laura Zagaria, Daniele Zasa

APPA BOLZANO – Beatrice Bondanelli, Günther Kerschbaumer, David Simoncello, Oswald Vigl e Claudio Zanella

ARPA CALABRIA – Maria Anna Caravita, Emilio Centorrino, Pasquale Crea, Annalisa Morabito, Nicola Ocello, Serafina Oliverio, Domenico Vottari

ARPA CAMPANIA – Cristina Calenda, Antonio D'Ambrosio, Rocco De Pascale, Domenico Farina, Francesca Intini, Giuseppe Onorati

ARPA FRIULI VENEZIA GIULIA – Edi Baiutti, Marco Bellini, Roberto Cao, Sandro D'Odorico, Lorenzo Fragiacomo, Rossana Michelini, Flavio Moimas, Arnold Pastrello, Alessandra Pillon, Angela Roman Rioni, Francesca Tassan Mazzocco, Arianna Tolloi, Pierluigi Verardo, Marco Visintin, Gino Zampa

ARPAE EMILIA-ROMAGNA - Fiorella Achilli; Andrea Aldrovandi; Roberta Amorati; Antonella Anceschi; Antonella Sterni; Dimitri Bacco; Carla Barbieri; Sabina Bellodi; Federica Bernardi; Manuela Bottazzi; Enrica Canossa; Cinzia Para; Teresa Concari; Barbara Dellantonio; Adriana Eleuteri; SIlvia Ferrari; Daniele Foscoli; Francesca Frigo; Riccardo Gazzini; Giancarlo Pinto; Paola Leuci; Anna Lodigiani; Patrizia Lucialli; Claudio Maccone; Luca Malaguti; Elena Manzini; Andrea Mecati; Maria Rita Mingozzi; Pamela Ugolini; Claudia Pironi; Maurizio Poli; Emilio Rambelli; Giovanna Rubini; Fabiana Scotto; Michele Stortini; Patrizia Tedeschini; Luca Torreggiani; Marco Tosi; Marco Trepiccione; Arianna Trentini: Deborah Valbonetti: Maria Cristina Verna; Paolo Veronesi; Paolo Vittori; Cristina Volta; Marco Zamagni; Beatrice Zani

ARPA LAZIO – Antonio Amoroso, Fabio Barbini, Battista Bellusci, Stefano Bolognesi, Pierfrancesco Briotti, Marilena Caldarella, Cesarella Colonna, Sesto Damizia, Pierantonio Di Legge, Giorgio Evangelisti, Massimo Enrico Ferrario, Cinzia Gatta, Giuseppe Grimaldi, Stefano Listrani, Giada Marchegiani, Arianna Marinelli, Luigi Martino, Matteo Morelli, Veronica Neri, Donatella Occhiuto, Marika Ricci, Loredana Rinaldi, Manuela Riva, Marzia Trenta, Fabio Vantaggio, Angelo Zonetti

ARPA LOMBARDIA – Andrea Algieri, Nadia Bardizza, Saverio Bergamelli, Arnaldo Bessi, Maurizio Bonetti, Francesco Bonisoli, Laura Carroccio, Paola Carli, Marco Chiesa, Giovanni Cigolini, Cristina Colombi, Lucio Corrente, Rosario Cosenza, Eleonora Cuccia, Umberto

dal Santo, Marco Dal Zotto, Anna De Martini, Giuseppe De Stefani, Claudio Fanfoni, Romeo Ferrari, Nicola Gentile, Laura La Gaccia, Francesco Ledda, Emma Micheli, Gloria Mognaschi, Maurizio Mondini, Vome Gianelle, Rosetta Pagliuso, Fabio Raddrizzani, Giorgio Siliprandi, Luca Vergani, Matteo Zanetti, Orietta Cazzuli

ARPA MARCHE - Federica Marconi

ARPA MOLISE – Roberta Capati, Michela Ciccone, Vincenzo Di Iulio, Giovanni Guglielmi, Antonello Mastromonaco, Ernesto Piacenti, Michela Presutti, Bernardino Principi, Egidio Nicola Risi

ARPA PIEMONTE – Vincenzo Ameglio, Loretta Badan, Stefano Bande, Evelina Ballato, Luisella Bardi, Donatella Bianchi, Silvio Bo, Patrizia Bongiovanni, Annalisa Bruno, Adriano Brusco, Carlo Bussi, Elisa Calderaro, Diego Colla, Flavio Corino, Laura Erbetta, Mario Fassi, Marco Fontana, , Laura Gerosa, , Antonello Iovino, Gabriella Ippolito, Veronica Lagostina, Cristina Littera, Anna Maria Livraga, Salvatore Magri, Roberta Marinaro, Marilena Maringo, Sara Martini, Giancarlo Mensi, Laura Milizia, Roberta Nicolini, Sergio Oglino, Cristina Otta, Luca Pascucci, Roberta Pastorello, Aurelio Pellutiè, Francesco Pitasi, Ivo Riccardi, Francesco Romeo, Daniela Rossi, Milena Sacco, Fabio Santoro, Luca Sartoris, Roberto Sergi, Elena Scagliotti, Marco Tosco

ARPA PUGLIA – Pietro Caprioli, Daniele Cornacchia, Paolo Dambruoso, Domenico Gramegna, Maria Mantovan, Angela Morabito, Alessandra Nocioni, Andrea Pinto, Gaetano Saracino, Ilenia Schipa, Livia Trizio

ARPA SICILIA - Rossana Agazzani, Riccardo Antero, Giuseppe Ballarino, Lucia Basiricò, Biagio Battaglia,

Giuseppe Burgio, Pasquale Collura, Michele Condò, Enrico Croce, Rosario Dioguardi, Gaetano D'Oca, Rosalia Dolce, Sabrina Finocchiaro, Michele Fiore, Alfredo Galasso, Vittoria Giudice, Leonarda Gulotta Lorenzo Gentile, Rita Maria Gulletta, Danilo Lagona, Nicola Leone, Stefano Leone, Mariella Liali, Angelo Longi, Giuseppe Madonia, Mariarosaria Mannino, Giuseppe Marchì, Salvatore Messina, Dora Profeta, Salvatore Randieri, Corrado Regalbuto, Salvatore Rizzo, Santo Zappulla, Giovanni Sapienza, Giacomo Scalzo, Patrizia Scimecca, Nicolò Tirone, Silvia Tormene, Sebastiano Turrisi, Veronique Zappia

ARPA TOSCANA – Marco Bazzani, Elisa Bini, Claudia Cavazza, Tiziana Cecconi, Chiara Collaveri, Dennis Dalle Mura, Stefano Fortunato, Roberto Fruzzetti, David Magliacani, Marco Stefanelli

APPA TRENTO – Elisa Malloci, Valentina Miotto, Selene Cattani

ARPA UMBRIA – Paolo Stranieri, Mirco Areni, Emanuele Bubù, Giancarlo Caiello, Mara Galletti, Marco Vecchiocattivi

ARPA VALLE D'AOSTA – Manuela Zublena, Marco Pignet, Stefano Drigo, Alessandra Brunier, Michela Alessio, Giuliana Lupato, Andrea Zanella

ARPA VENETO – Antonio Carollo, Francesca Mello, Enrico Cosma, Silvia Rebeschini, Antonella Pagano, Roberta Millini, Andrea Salomoni, Simona De Zolt, Enzo Tarabotti, Silvia Pistollato, Luca Coraluppi, Claudia luzzolino, Massimo Simionato, Riccardo Tormen, Ermes Zanella

INDICE

PRESENTAZIONE	15
SOMMARIO	17
INTRODUZIONE	
1 INQUADRAMENTO NORMATIVO	24
2 METODI.	27
3 ANALISI CLIMATICA	30
3.1 Temperatura	30
3.2 Temperatura - dettaglio regionale	35
3.3 Precipitazioni	
3.4 Precipitazioni - dettaglio regionale	
4 MATERIALE PARTICOLATO	50
4.1 Caratteristiche chimico fisiche e sorgenti	
4.2 Effetti sulla salute	
4.3 Valori limite e valori di riferimento OMS	
4.4 PM ₁₀ - sintesi dei livelli su scala nazionale	
4.5 PM ₁₀ - dettaglio regionale	
4.6 PM ₁₀ - analisi dei trend	
4.7: PM _{2,5} - sintesi dei livelli su scala nazionale	
4.8 PM _{2,5} - dettaglio regionale	
4.9 PM _{2,5} - analisi dei trend	
4.10 PM _{2,5} - indicatore di esposizione media	
5 BIOSSIDO DI AZOTO	
5.1 Caratteristiche chimico fisiche e sorgenti	
5.2 Effetti sulla salute	_
5.3 Valori limite e valori di riferimento OMS	
5.4 NO ₂ - sintesi dei livelli su scala nazionale	
5.5 NO₂ - dettaglio regionale	
5.6 NO ₂ - analisi dei trend	
6 OZONO	
6.1 Caratteristiche chimico fisiche e sorgenti	
6.2 Effetti sulla salute	
6.3 Valori obiettivo e a lungo termine, soglie di informazione e di allarme e valori OMS	
6.4 O ₃ - sintesi dei livelli su scala nazionale	99

6.5 O₃ - dettaglio regionale	102
6.6 O₃ - analisi dei trend	105
7 BENZO(A)PIRENE	111
7.1 Caratteristiche chimico fisiche e sorgenti	111
7.2 Effetti sulla salute	111
7.3 Legislazione	111
7.4 Sintesi dei livelli su scala nazionale	112
7.5 B(a)P - dettaglio regionale	113
8 NICHEL, CADMIO, ARSENICO E PIOMBO	115
8.1 Caratteristiche chimico fisiche e sorgenti	115
8.2 Effetti sulla salute	116
8.3 Legislazione	.116
8.4 Sintesi dei livelli su scala nazionale	117
9 ALTRI INQUINANTI GASSOSI	127
9.1 Caratteristiche chimico fisiche e sorgenti	127
9.2 Effetti sulla salute	128
9.3 Legislazione	.129
9.4 Sintesi dei livelli su scala nazionale	. 129
10 VALUTAZIONE DELLA QUALITA' DELL'ARIA AI FINI DELLA PROTEZIONE DELLA VEGETAZIONE	138
10.1 Inquinanti dannosi per la vegetazione, caratteristiche chimico-fisiche e sorgenti	
10.3. Sintesi dei livelli su scala nazionale	
11 IMPATTO DI SPECIFICHE SORGENTI E SOURCE APPORTIONMENT	
11.1 L'impatto delle emissioni dovute alla combustione di biomassa sulla concentrazione di PM	
in Valle d ['] Aosta	
Tombolato I.1, Diémoz H.1, Zublena M.1, Tarricone C.1, Magri T.1, Pession G.1, Ferrero L.2	
¹ ARPA VALLE D'AOSTA – ² Università degli Studi di Milano-Bicocca	
11.2 Analisi di un evento di polvere sahariana nella regione Campania mediante una	
combinazione di osservazioni satellitari, dati monitorati a terra e simulazioni modellistiche CHIMERE	157
D'Amore D.1, Budillon G.1, Buccolieri R.2, Autorino J.3, D'Ambrosio A.3, Onorati G.3 –	131
¹ UNIVERSITÀ DEGLI STUDI DI NAPOLI "PARTHENOPE" – ² UNIVERSITÀ DEGLI STUDI DI LECCE	
³ ARPA CAMPANIA	
11.3 Studio dell'impatto delle attività di cava sulla qualità dell'aria: due casi di studio	172
Corbella L., Gianelle V., Cuccia E., Dal Santo U., Colombi C., Algieri A. – ARPA LOMBARDIA	
11.4 Monitoraggi aeroportuali: dodici anni di esperienze affrontate da ARPA Lombardia	188

	Colombi C., Algieri A., Corbella L., Cuccia E., Dal Santo U., Carroccio L., De Martini A., Gianelle V. – ARPA LOMBARDIA	
	11.5 Contributo degli incendi boschivi alle concentrazioni di PM ₁₀ sul territorio della Città Metropolitana di Torino nel mese di ottobre 2017	217
	11.6 Analisi modellistica di source apportionment sullo stato della qualità dell'aria della regione Puglia a 4 km di risoluzione	233
	11.7 Stima delle sorgenti del particolato atmosferico PM2,5: una proposta di analisi parallela fra inventario delle emissioni e Positive Matrix Factorization	253
	11.8 Principali sorgenti che partecipano alla formazione del PM _{2,5} in Emilia-Romagna	262
12	IL PROBLEMA DELLA VALUTAZIONE DELL'ESPOSIZIONE DELLA POPOLAZIONE	
	approfondimenti nell'ambito del progetto Supersito	273291
	12.3 Mappe di suitability per il progetto di adeguamento della rete di qualità dell'aria – Indice di Rappresentatività dell'Esposizione della Popolazione	314
	12.4 Applicazione della teoria degli insiemi sfumati per la definizione dell'indice FEAI. Studio della rete regionale di qualità dell'aria e dell'esposizione con mappe fuzzy di analogia ambientale	331
	Giardina M., Buffa P., Abita A., Madonia G. – ARPA SICILIA	
13	ASPETTI FENOMENOLOGICI E ANALISI DEI TREND 13.1 Simultaneità dei superamenti del valore limite giornaliero di PM10 in pianura padana nel triennio 2014-2016. Lollobrigida F., Bussi C., Bruno A., Calderaro E., Leogrande M., Maringo M., Milizia L., Romeo F., Sacco M., Sergi R., Strumia C. – ARPA PIEMONTE	358 359
	13.2 Controllo Qualità sulle misure di particolato atmosferico PM ₁₀ : l'esperienza di Arpa Veneto De Bortoli A., Zagolin L., Voltarel G., Marson G., Patti S. – ARPA VENETO	368
	13.3 Analisi statistica per la valutazione della ridondanza dei dati delle stazioni di monitoraggio	381

	di qualità dell'aria	
	Lovallo M., Esposito R., Mangiamele L., Crisci A.M., Bruno L. – ARPA BASILICATA	
	13.4 Ozono: misure di qualità dell'aria e misure meteorologiche in quota	
	13.5 Servizio operativo di previsione e valutazione della qualità dell'aria legato ai prodotti Copernicus CAMS	.406
4.4	: MONITORAGGIO DI INQUINANTI NON REGOLAMENTATI	442
14	14.1 Osservazioni sulle concentrazioni di diossine e furani misurate durante situazioni emergenziali quali gli incendi	
	Cuccia E., Gianelle V., Dal Santo U., Corbella L., Colombi C., Algieri A. – ARPA LOMBARDIA	
	14.2 Valutazione degli impatti sull'atmosfera di una fonderia mediante utilizzo di metodiche integrate di campionamento, analisi in campo e definizione di valori soglia mediante tecniche statistiche.	427
	Otta C., Ameglio V., Erbetta L., Littera C., Mensi G., Scagliotti E., Bianchi D., Buratto S. – ARPA PIEMONTE	.721
	14.3 Monitoraggio in continuo di acido cloridrico e fluoridrico in aria ambiente per la valutazione dell'impatto di un polo chimico e la gestione di eventi incidentali	
	14.4 La composizione del PM _{2,5} nella qualità dell'aria dell'Emilia-Romagna	. 450
	14.5 Quantificazione della presenza di granuli di toner colorato di stampante e valutazione della presenza di microplastiche in aria ambiente in 5 città italiane	. 466
15	LA QUALITÀ DELL'ARIA IN ITALIA DURANTE IL LOCKDOWN	
	15.2 Valle d'Aosta	
	15.3 Lombardia	
	15.4 Bolzano.	
	15.5 Trento	
	15.5 Il progetto LIFE BRENNERLEC	
	15.7 Friuli Venezia Giulia	
	15.8 II progetto LIFE PREPAIR.	
	15.9 Liguria	

15.10 Toscana	528
15.11 Umbria	
15.12 Marche	540
15.13 Lazio	543
15.14 Abruzzo	547
15.15 Molise	553
15.16 Campania	
15.17 Puglia	562
15.18 Calabria	568
15.19 Sicilia	572
15.20 Sardegna	578
RIRI IOGRAFIA	583

PRESENTAZIONE

Il Sistema nazionale per la protezione dell'ambiente di cui sono Presidente, oltre a supportare il Ministero dell'ambiente e della tutela del territorio e del mare nel coordinamento nazionale delle attività di valutazione e della gestione della qualità dell'aria, rilascia le statistiche ufficiali a livello nazionale sui livelli degli inquinanti dell'aria e informa i cittadini dei valori delle concentrazioni rilevati e delle tendenze in atto del fenomeno

Il Sistema nazionale per la protezione dell'ambiente inoltre, sulla base della sua Legge istitutiva (Legge 28 giugno 2016, n. 132 "Istituzione del Sistema nazionale a rete per la protezione dell'ambiente e disciplina dell'Istituto superiore per la protezione e la ricerca ambientale") concorre al perseguimento dei livelli omogenei di tutela ambientale in Italia, garantendo per tutto il territorio nazionale livelli essenziali di prestazioni tecniche ambientali (i così detti LEPTA) tra i quali ricadono anche le attività di monitoraggio della qualità dell'aria.

Tutte queste informazioni, rappresentate nel primo Rapporto nazionale sulla qualità dell'aria, che con grande soddisfazione presento nel mio ruolo di Presidente del Sistema nazionale per la protezione dell'ambiente e Presidente dell'Istituto superiore per la protezione e la ricerca ambientale, sono utili per valutare l'esposizione dei cittadini all'inquinamento atmosferico, che sappiamo essere uno dei più rilevanti problemi ambientali all'attenzione delle istituzioni italiane anche e soprattutto in questo ultimo periodo in cui la pandemia da Covid-19 ha messo in evidenza l'importanza di approfondire le sinergie tra inquinamento dell'aria e diffusione del contagio.

Il quadro che emerge dagli studi e dalle analisi del Sistema nazionale per la protezione dell'ambiente, a cui si aggiunge il presente Rapporto, è quello di un progressivo miglioramento della qualità dell'aria, anche

se c'è ancora molto da fare in particolare in alcune aree del nostro Paese perché in tutto il territorio nazionale i valori degli inquinanti siano al di sotto dei valori indicati dalla normativa per la tutela della salute dei cittadini e della vegetazione. Il delicato rapporto tra le fonti degli inquinanti atmosferici, la qualità dell'aria e la salute delle persone mette in luce criticità non trascurabili che trovano però una sintesi nel perseguimento dei Goals dell'Agenda ONU 2030 sullo Sviluppo Sostenibile e che sollecitano il Sistema nazionale per la protezione dell'ambiente ad approfondire costantemente lo studio delle sorgenti e delle dinamiche di diffusione e trasformazione delle sostanze emesse. I valori limite. valori obiettivo, soglie di allarme e di informazione che rappresentano gli obiettivi di qualità dell'aria ambiente da perseguire per evitare, prevenire, ridurre effetti nocivi per la salute umana e per l'ambiente nel suo complesso. sono definiti per numerosi inquinanti che abbiamo nel tempo imparato a conoscere: biossido di zolfo, biossido di azoto, particolato fine, benzene, monossido di carbonio, ozono, piombo, arsenico, nichel, cadmio e il persistente benzo(a)pirene. La normativa a cui facciamo riferimento è il Decreto legislativo 13 agosto 2010, n. 155 "Attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa" modificato poi con il Decreto legislativo 24 dicembre 2012

In Italia le criticità principali sono ancora quelle dovute al superamento degli standard di legge per le polveri sottili, per il biossido di azoto e per l'ozono per quanto attiene alla salute dei cittadini e per l'ozono e gli ossidi di azoto per quanto riguarda la tutela della vegetazione.

Questo primo Rapporto, previsto e pianificato dal Piano triennale delle attività 2018-2020 del Sistema nazionale per la protezione dell'ambiente, rappresenta un primo e grande sforzo di armonizzazione delle informazioni sulla qualità dell'aria per l'anno 2019 e per tutti gli inquinanti e gli indicatori previsti dalla normativa; con esso si dà il via

a una serie di pubblicazioni e comunicazioni che con cadenza regolare danno conto dello stato e delle dinamiche dell'inquinamento atmosferico nel nostro Paese.

Siamo tuttavia consapevoli ed impegnati per proseguire sulla strada dell'armonizzazione e della divulgazione tempestiva della conoscenza per fornire un quadro sempre più preciso di questo tema fra i più delicati e di maggior impatto per la vita di tutti noi.

Stefano Laporta Presidente ISPRA - SNPA

SOMMARIO

L'inquinamento atmosferico determinato dalle attività antropiche è un fattore riconosciuto di rischio per la salute umana e per gli ecosistemi. Nei Paesi occidentali la storia della lotta all'inquinamento atmosferico conta ormai oltre sessant'anni di studi e ricerche, finalizzati sia a comprendere i meccanismi degli effetti dannosi degli inquinanti, sia a individuare strategie e tecniche di mitigazione.

L'inquinamento atmosferico dipende in modo complesso da una serie di fattori: l'intensità e la densità delle emissioni su microscala, su scala locale e regionale; lo stato fisico e la reattività delle sostanze disperse in atmosfera; le condizioni meteorologiche e l'orografia del territorio che influenzano il movimento delle masse d'aria, i meccanismi di diluizione o di accumulo degli inquinanti, la velocità di formazione e trasformazione delle sostanze, il trasporto a lunga distanza e la deposizione. Alcuni fenomeni si sviluppano su scale spaziali continentali, come nel caso del trasporto transfrontaliero delle sostanze acidificanti. Hanno, invece, una rilevanza globale le emissioni di sostanze che contribuiscono ai cambiamenti climatici e alle variazioni dello strato di ozono stratosferico.

Le reti di monitoraggio sono il principale strumento per la valutazione della qualità dell'aria, intesa come l'insieme delle attività che hanno come obiettivo quello di verificare se sul territorio di uno Stato siano rispettati i valori limite e raggiunti gli obiettivi stabiliti al fine di prevenire, eliminare o ridurre gli effetti avversi dell'inquinamento atmosferico per la salute umana e per l'ecosistema.

Una rete di monitoraggio è l'insieme di punti di misura dislocati in un determinato territorio secondo criteri e metodi definiti. Questi sono stabiliti in Europa dalla Direttiva 2008/50/CE e dalla Direttiva 2004/107/CE, entrambe recepite nell'ordinamento nazionale dal D.Lgs. 155/2010 e s.m.i..

Il rapporto contiene i principali indicatori descrittivi dello stato della qualità dell'aria in Italia, con riferimento al materiale particolato aerodisperso (PM₁₀ e PM_{2.5}), al biossido di azoto, all'ozono troposferico, benzo(a)pirene, ad alcuni elementi ad altra rilevanza tossicologica (arsenico, cadmio, nichel, e piombo) e ad altri inquinanti gassosi (biossido di zolfo, monossido di carbonio e benzene). Per ciascun inquinante, a partire dai dati di concentrazione rilevati nelle oltre 600 stazioni di monitoraggio attive sul territorio nazionale, messi a disposizione dall'SNPA, sono stati calcolati i parametri statistici da confrontare con gli obiettivi ambientali per la salute umana e la vegetazione stabiliti dalla normativa vigente e con i valori di riferimento stabiliti dall'OMS per la protezione della salute umana (OMS-AQG, 2006), nonché le statistiche descrittive con i principali indici di posizione.

È stata verificata l'eventuale esistenza di un trend temporale statisticamente significativo nelle serie di dati dei principali inquinanti atmosferici (materiale particolato, biossido di azoto e ozono) in Italia, nel periodo dal 2010 al 2019. Per l'analisi statistica è stato utilizzato il test di Kendall corretto per la stagionalità. Lo studio è svolto sui punti di misura con serie temporale continua nel decennio analizzato, e permette una rappresentazione spaziale delle tendenze in corso nell'intero Paese.

Lo studio mostra come a tutt'oggi vengano superati i valori limite e i valori obiettivo previsti dalla legislazione, per il materiale particolato, il biossido di azoto, l'ozono troposferico e il benzo(a)pirene in diverse parti d'Italia. Inoltre gli obiettivi, più stringenti, dell'organizzazione mondiale della sanità sono ancora lontani dall'essere raggiunti. Nel quadro europeo, l'Italia con il bacino padano, rappresenta ancora una delle aree dove l'inquinamento atmosferico è più rilevante.

Le concentrazioni di biossido di zolfo, monossido di carbonio, benzene e piombo sono diminuite in modo

significativo e già nella seconda metà degli anni 2000 hanno raggiunto livelli minimi e ampiamente al di sotto delle soglie previste per la protezione della salute umana e degli ecosistemi.

Il materiale particolato aerodisperso (PM₁₀ e PM_{2,5}), il biossido di azoto, l'ozono troposferico e il benzo(a)pirene sono gli inquinanti per i quali si registra a tutt'oggi, in diverse zone del Paese, il mancato rispetto dei valori limite di legge. L'Unione Europea ha individuato nella strategia "Un programma "Aria pulita" per l'Europa" (COM, 2013) due obiettivi strategici in materia di inquinamento atmosferico: raggiungere entro il 2020 la piena conformità alla legislazione vigente sul territorio dell'Unione e porre le basi affinché entro il 2030 non siano superati i livelli raccomandati dall'Organizzazione Mondiale della Sanità.

I dati del PM₁₀ relativi al 2019 evidenziano ancora una significativa distanza dal primo obiettivo. Il valore limite giornaliero (50 μ g/m³, da non superare più di 35 volte in un anno) è stato superato in 111 stazioni, pari al 22% dei casi. Il valore di riferimento OMS giornaliero (50 μ g/m³, da non superare più di 3 volte in un anno), è stato superato in 279 stazioni (54% dei casi). Nel 2019 i superamenti del valore limite giornaliero hanno interessato 24 zone su 81 distribuite in 10 Regioni.

È stato registrato un solo superamento del valore limite annuale (40 μ g/m³). Il valore di riferimento OMS annuale (20 μ g/m³) è stato superato in 347 stazioni (65% dei casi).

Nell'86% dei casi (96 stazioni su 111) i superamenti sono stati registrati nel bacino padano. I superamenti nel bacino padano non si verificano solo nei grandi agglomerati urbani o nelle principali città, ma interessano anche le stazioni di fondo collocate in aree suburbane e rurali.

Da questo punto di vista, mentre i primi due mesi dell'anno sono stati caratterizzati da numerosi giorni di stabilità atmosferica, favorevoli all'accumulo degli inquinanti, gli ultimi due, e in particolare novembre, sono stati atipici, con frequenti e intense condizioni di bassa

pressione, precipitazioni, e vivace rimescolamento delle masse d'aria, che hanno determinato livelli di concentrazione particolarmente bassi rispetto alla media del periodo.

Oltre alle emissioni da traffico veicolare, significative e concentrate nelle aree urbane principali e lungo le strade e autostrade che le connettono, contribuiscono in modo rilevante ai livelli di particolato aerodisperso le emissioni degli impianti di riscaldamento civile alimentati a biomassa legnosa e le emissioni delle attività agricole e zootecniche, diffuse e distribuite su un territorio di circa 47000 km², più vasto di paesi come la Svizzera, l'Olanda o il Belgio.

Si registrano superamenti del valore limite giornaliero del PM_{10} anche nella zona della Valle del Sacco - nel Lazio - e nella zona dell'agglomerato di Napoli e Caserta. In Toscana, Marche e Molise è stato registrato il superamento in una sola stazione. Nessun superamento in Valle d'Aosta, nelle provincie di Bolzano e Trento, Liguria, Umbria, Abruzzo, Puglia, Basilicata, Calabria, Sardegna e Sicilia.

Il valore limite annuale del $PM_{2,5}$ (25 $\mu g/m^3$) è stato rispettato nella quasi totalità delle stazioni: sono stati registrati superamenti in 3 stazioni pari all'1% dei casi. Risulta tuttavia superato nella maggior parte delle stazioni di monitoraggio il valore di riferimento annuale della OMS pari a 10 $\mu g/m^3$ (80% dei casi).

I superamenti del valore limite annuale hanno interessato 3 zone su 81 distribuite in 2 Regioni (Lombardia e Veneto).

Per quanto riguarda l'ozono, nel 2019 l'obiettivo a lungo termine per la protezione della salute umana (OLT) è stato superato in 296 stazioni su 322 pari al 92% delle stazioni con copertura temporale sufficiente; l'OLT è stato superato per più di 25 giorni in 179 stazioni (56%). Le 26 stazioni in cui non sono stati registrati superamenti dell'OLT sono localizzate prevalentemente in siti urbani e suburbani.

Le soglie di informazione e di allarme sono state superate rispettivamente in 161 (50%) e 34 stazioni (4%) su 322. I valori di concentrazione più elevati si registrano in prevalenza nel Nord Italia.

Per quanto riguarda il biossido di azoto, il valore limite orario (200 $\mu g/m^3$, come media oraria, da non superare più di 18 volte per anno civile) è largamente rispettato e in nessuna stazione si sono registrati superamenti del valore limite. Il valore di riferimento OMS, che non prevede superamenti dei 200 $\mu g/m^3$, è stato superato in 13 stazioni (pari al 2% delle stazioni con copertura temporale sufficiente).

Il valore limite annuale, pari a 40 µg/m³, che coincide con il valore di riferimento OMS per gli effetti a lungo termine sulla salute umana, è stato superato in 30 stazioni (pari al 5% delle stazioni).

I superamenti del valore limite annuale hanno interessato 16 zone su 81 distribuite in 9 Regioni e 2 Province Autonome. Questi si sono verificati in grandi aree urbane (Torino, Milano, Genova, Bologna, Firenze, Roma, Napoli, Palermo) e altre importanti città (Trento, Brescia, Modena, Rimini, Salerno, Campobasso), presso stazioni classificate come "traffico" in zona "urbana" o "suburbana".

Il valore obiettivo del benzo(a)pirene (1,0 ng/m³ come media annuale), è stato superato in 16 stazioni (10% dei casi).

I superamenti del valore obiettivo hanno interessato 9 zone su 77 distribuite in 4 Regioni (Lombardia, Veneto, Liguria e Lazio) e una provincia autonoma (Bolzano).

Diversi casi di superamento sono stati registrati in stazioni di fondo urbano (4), suburbano (2) o rurale (1). Si tratta di zone (bacino padano e zone pedemontane appenniniche e alpine) dove è maggiore il consumo di biomassa legnosa per il riscaldamento civile e le condizioni meteorologiche invernali favoriscono l'accumulo degli inquinanti.

Il 2019 sembra confermare l'andamento generalmente decrescente dell'inquinamento da particolato e biossido di azoto osservato negli ultimi dieci anni, sia nelle regioni

del bacino padano che nel resto del Paese. Alcuni obiettivi ambientali previsti dalla normativa sono stati rispettati su tutto il territorio (valore limite orario del biossido di azoto) o si sono verificati superamenti in un numero molto limitato di casi che risultano decrescere nel tempo.

Per valutare in modo oggettivo il trend di medio periodo sono disponibili i risultati dell'analisi condotta con il metodo di Mann-Kendall corretto per la stagionalità, metodo statistico che consente di stimare in modo quantitativo la significatività e l'incertezza associata alla tendenza osservata.

Per il PM₁₀ si osserva un trend decrescente statisticamente significativo nel 72% dei casi (268 stazioni di monitoraggio su 370; variazione annuale media stimata: $-0.7 \,\mu\text{g/m}^3\text{y}$ [$-3.1 \,\mu\text{g/m}^3\text{y} \div -0.1 \,\mu\text{g/m}^3\text{y}$]); sulla porzione di campione considerato per il quale è stato individuato questo trend decrescente statisticamente significativo, si osserva una riduzione media annuale del 2,5% ($-6.6\% \div -0.8\%$), indicativa dell'esistenza di una tendenza di fondo alla riduzione delle concentrazioni di PM₁₀ in Italia.

Per il PM2,5 si osserva un trend decrescente statisticamente significativo nel 80% dei casi (101 stazioni di monitoraggio su 126; variazione annuale media stimata: -0,5 μ g/m³y [-1,5 μ g/m³y ÷ - 0,2 μ g/m³y]). Sulla porzione di campione considerato, per il quale è stato individuato questo trend decrescente statisticamente significativo, si osserva una riduzione media annuale del 2,7% (-5,4% ÷ -1,1%).

Per il biossido di azoto si osserva un trend decrescente statisticamente significativo nel 79% dei casi (331 stazioni di monitoraggio su 421; variazione annuale media stimata: -1,0 μ g/m³y [-4,5 μ g/m³y \div -0,1 μ g/m³y]). Si osserva una riduzione media annuale sulla porzione di campione considerato per il quale è stato individuato questo trend decrescente statisticamente significativo del 3,2% (-13,0% \div -0,5 %). I risultati sono indicativi dell'esistenza di una tendenza di fondo alla riduzione delle concentrazioni di PM₁₀, PM_{2,5}, NO₂ in Italia nella finestra temporale considerata (2010 - 2019) che

tendenzialmente confermano quanto osservato in precedenti analisi condotte sul decennio 2003 – 2012 e sul decennio 2008 – 2017.

I risultati sono coerenti con quanto osservato in Europa, dove una riduzione significativa delle emissioni generalmente è accompagnata da un trend decrescente delle concentrazioni (e.g. EEA, 2019).

L'ozono (O₃), ha un profilo stagionale opposto agli altri inquinanti, con massimi nel periodo estivo, e non mostra un andamento evidente negli anni.

Questa circostanza è spiegabile, almeno in parte, con la sua natura di inquinante secondario per il quale manca una relazione di proporzionalità diretta con la riduzione delle emissioni dei precursori.

Le dinamiche in gioco sono complesse, l'ozono si forma nella troposfera a partire da ossidi di azoto e composti organici volatili, in presenza di radiazione solare. La notevole riduzione negli ultimi vent'anni delle emissioni di queste sostanze non si riflette ancora in una riduzione apprezzabile dei livelli di ozono, non solo in Italia, ma in tutto il continente.

Riguardo al benzo(a)pirene il valore obiettivo (1,0 ng/m³), è stato superato in 16 stazioni (10% dei casi). I superamenti del valore obiettivo hanno interessato 9 zone su 77 distribuite in 4 Regioni (Lombardia, Veneto, Liquria e Lazio) e una provincia autonoma (Bolzano).

Il valore limite per il piombo e i valori obiettivo per il nichel e per il cadmio sono stati rispettati in tutte le stazioni di monitoraggio. Il valore obiettivo per l'arsenico è stato superto in una stazione (a Priolo Gargallo, provincia di Sicuracusa, Sicilia).

Il rapporto presenta anche una ricca sezione di approfondimenti monografici tematici, che affrontano attraverso l'analisi di casi studio, quattro temi rilevanti:

- L'impatto di specifiche sorgenti e il source apportionment
- Il problema della valutazione dell'esposizione della popolazione
- L'analisi delle serie temporali per la comprensione dei fenomeni atmosferici
- Il monitoraggio di inquinanti non regolamentati

INTRODUZIONE

L'inquinamento atmosferico può essere definito come la presenza in aria di una o più sostanze in concentrazione tale da avere la potenzialità di produrre un effetto avverso. Gli inquinanti ritenuti prioritari tenuto conto dei loro effetti e dell'entità delle loro emissioni sono gas inorganici (biossido di zolfo, SO₂; ossidi di azoto, NO_X; biossido di azoto, NO2; monossido di carbonio, CO; ozono, O₃), composti organici volatili (quali ad esempio benzene e formaldeide) e materiale particolato aerodisperso (o aerosol), una sospensione di particelle solide o liquide disperse in aria, di diversa dimensione e composizione in funzione della loro origine. Alcuni composti in forma particellare hanno una particolare igienico-sanitaria (idrocarburi aromatici, tra cui il benzo(a)pirene, e diversi metalli e semimetalli come arsenico, nichel, cadmio, mercurio e piombo). Ai livelli degli inquinanti rilevati in atmosfera contribuiscono anche alcune fonti naturali, in particolare le particelle trasportate a lunga distanza di origine desertica, l'aerosol marino, gli incendi naturali delle grandi aree forestali, le emissioni dei vulcani e le emissioni biogeniche.

Gli inquinanti emessi direttamente in atmosfera dalle varie sorgenti antropiche e naturali sono detti "primari". Complessi meccanismi chimico-fisici governano il destino degli inquinanti primari, la loro permanenza in atmosfera, così come la formazione di altri inquinanti a partire da questi (inquinanti secondari, diversi dei quali annoverati tra gli inquinanti prioritari come l'ozono troposferico, il biossido di azoto e il particolato secondario).

L'inquinamento atmosferico è largamente variabile sia su scala globale che su scala continentale o regionale.

Nel mondo la produzione e l'uso di energia, sono le più importanti fonti antropiche di emissioni di inquinanti atmosferici. A livello globale si prevede che il consumo di combustibili fossili aumenterà del 30% entro il 2040. Nel

2014, il 67% della produzione di elettricità era basata sull'uso di combustibili fossili (di cui il 40% era costituito da carbone) nelle centrali elettriche di produzione e trasformazione. La previsione che l'aumento della domanda di elettricità aumenterà di due terzi entro il 2040 richiama all'attenzione l'urgenza di politiche efficaci nella eliminazione, riduzione alla fonte, mitigazione delle emissioni nocive dovute al settore energetico.

In Europa, Nord America, Giappone e Australia è stato registrato negli ultimi 25 anni un disaccoppiamento tra la crescita economica e le emissioni dei principali inquinanti, dovuto alle azioni messe in campo per ridurre l'inquinamento atmosferico. Si prevede che un percorso analogo caratterizzerà lo sviluppo della Cina nei prossimi 25 anni. In molte parti del mondo tuttavia, in particolare in Africa in India e nel sud est asiatico, siamo tuttora in un fase di vertiginosa crescita delle emissioni, trainata dall'aumento della domanda di trasporto privato e dall'aumentato fabbisogno energetico, soddisfatto in larga parte con l'uso di combustibili fossili ed è prevedibile che tale trend non si invertirà prima del 2040 (IEA, 2016).

L'adozione di misure volte al miglioramento dei processi di combustione e di tecnologie di abbattimento dei fumi nella produzione energetica e nell'industria, il passaggio dall'olio e carbone al gas naturale, come combustibile principale, così come la diminuzione dell'uso di combustibili fossili per la produzione di energia hanno contribuito in Europa alla riduzione delle emissioni di ossidi di zolfo, ossidi di azoto, particolato e composti organici volatili; quest'ultima è importante anche perché tali composti contribuiscono alla formazione di particolato secondario ed ozono.

Per quanto riguarda il materiale particolato, in Europa, si evidenzia una riduzione nel corso degli anni, anche se limitata rispetto a quanto osservato per ossidi di zolfo, ossidi di azoto e composti organici volatili.

A rallentare i progressi nella riduzione complessiva delle emissioni di particolato sono le emissioni provenienti dal riscaldamento degli edifici, a causa della forte penetrazione nel mercato dell'uso di dispositivi alimentati a legna o derivati, sostenuta dalle politiche europee per ridurre gli impatti delle emissioni di sostanze climalteranti, poiché la legna è considerata una fonte rinnovabile, e determinata dalla competitività economica per l'utente finale rispetto ad altre fonti (EC, 2005; Pastorello et al., 2011). Le politiche per il clima sono in questo caso antisinergiche rispetto a quelle per la lotta all'inquinamento atmosferico.

Non meno rilevante per le emissioni di inquinanti atmosferici è il settore dei trasporti di persone e beni che rappresenta la sorgente dominante di emissioni di ossidi di azoto, e una delle principali fonti di particolato carbonioso, monossido di carbonio e composti organici volatili.

Nelle Regioni in fase di sviluppo del mondo le emissioni da trasporto su strada continuano ad aumentare, anche laddove sono stati implementati standard emissivi restrittivi, a causa dell'aumento sproporzionato di veicoli in circolazione rispetto al recente passato. Nei paesi più poveri poi il ricambio della flotta veicolare è prevalentemente affidato al mercato dell'usato e quindi i veicoli di nuova generazione meno inquinanti rappresentano ancora una quota minoritaria del parco veicolare.

In Nord America e in Europa invece le emissioni da trasporto su strada sono diminuite negli ultimi 20 anni; tuttavia la forte penetrazione, nel mercato dei due continenti, dei veicoli alimentati a gasolio ha rallentato il miglioramento in particolare per quanto riguarda ossidi di azoto e materiale particolato, in quanto anche i veicoli che rispettano gli standard emissivi più stringenti emettono più particolato e ossidi di azoto dei veicoli alimentati a benzina, anche in alcuni casi di generazioni precedenti, a parità di cilindrata, peso e stile di guida (e.g. ISPRA, 2020a).

In molti casi inoltre, le azioni miranti a ridurre la quota di mobilità soddisfatta dal trasporto privato a favore di quello pubblico e ciclo-pedonale, e quelle aventi l'obiettivo di razionalizzare il trasporto delle merci per ridurre la quota e le distanze percorse per trasportare i beni dai luoghi di produzione a quelli di commercializzazione, hanno avuto un impatto limitato.

Il monitoraggio ambientale mette in evidenza il fatto che la rapida crescita economica dei paesi asiatici ha avuto un forte impatto sulla qualità dell'aria. Il trasferimento delle tecnologie sviluppate dai paesi industrializzati per ridurre l'impatto delle attività umane, non ha accompagnato adequatamente tale crescita. Il risultato è che i livelli medi di esposizione sono rapidamente cresciuti, e sono oggi oltre tre volte superiori a quelli dei paesi europei ed americani cosiddetti ad "High Income". Inoltre un problema molto rilevante che riquarda soprattutto i paesi più poveri dell'Asia e dell'Africa subsahariana, è l'inquinamento dell'aria negli ambienti di vita. Oltre 2,7 miliardi di persone usano legno e altri combustibili solidi per la cottura di cibi e kerosene per l'illuminazione, creando microambienti indoor dove le concentrazioni di materiale particolato sono altissime; si stima che questa forma di inquinamento sia responsabile di circa 3,5 milioni morti premature ogni anno (OMS, 2016).

Viceversa la riduzione complessiva delle emissioni nei paesi occidentali si riflette in modo positivo sulle concentrazioni atmosferiche. In particolare, in Europa e in Italia, le azioni veramente efficaci di eliminazione alla fonte (piombo tetraetile nelle benzine) o drastica riduzione (contenuto di zolfo nei combustibili fossili) hanno permesso la riduzione delle concentrazioni di questi inquinanti a livelli minimi e ampiamente al di sotto delle soglie previste per la protezione della salute umana e degli ecosistemi. Analogamente i sistemi di abbattimento allo scarico dei veicoli si sono rilevati molto efficaci per migliorare la qualità dell'aria in riferimento a monossido di carbonio e benzene.

Tuttavia in larga parte del territorio dell'Unione non sono ancora rispettati i valori limite e i valori obiettivo previsti dalle direttive europee, per il PM₁₀, il PM_{2.5}, il biossido di azoto, il benzo(a)pirene e l'ozono sebbene si osservi una

lenta riduzione dei livelli, come risultato della riduzione delle emissioni degli inquinanti e dei loro precursori.

In particolare, per il PM₁₀, si registrano superamenti del valore limite giornaliero in 19 dei 28 stati membri e l'obiettivo di rispettare i livelli raccomandati dall'Organizzazione Mondiale della Sanità sembra lontanissimo. Anche gli obiettivi riguardanti l'esposizione all'ozono troposferico sono lungi dall'essere raggiunti, né in questo caso si osserva un trend di diminuzione. Si registrano superamenti del valore obiettivo in 14 stati membri e nel 17% delle stazioni di misura (EEA, 2019).

Considerato il mancato rispetto dei limiti in larga parte del territorio dell'Unione, la Commissione Europea ha proposto una nuova strategia per ridurre l'inquinamento atmosferico (EC, 2013).

La disponibilità d'informazioni sulla qualità dell'aria in Italia è aumentata nel tempo, tuttavia la risposta alla domanda: "la concentrazione degli inquinanti sta diminuendo?", se non è basata sull'analisi di serie storiche estese a un arco temporale sufficientemente lungo e su un set di punti di misura costante nel tempo, non può che essere di natura qualitativa.

Le concentrazioni degli inquinanti atmosferici evolvono nel tempo seguendo dei profili tipici sia su base giornaliera che su base stagionale. Differenze sostanziali nei profili giornalieri sono evidenziabili in uno stesso luogo in funzione del periodo dell'anno. È evidente anche una marcata variabilità intra e inter giornaliera.

Un importante ruolo nei profili temporali degli inquinanti aerodispersi è determinato dai fattori che governano le proprietà dispersive dello strato limite planetario (planetary boundary layer, PBL) ovvero della parte di troposfera influenzata direttamente dalla presenza della superficie terrestre. A causa dell'apporto dell'energia solare si sviluppano forzanti radiative, e a causa dell'attrito tra aria e suolo si sviluppano forzanti meccaniche, che determinano lo sviluppo di moti turbolenti, dalla cui intensità e variabilità dipendono le proprietà dispersive del PBL, e le sue modificazioni su un tempo di scala orario o inferiore. La variabilità delle sorgenti emissive su scala intragiornaliera

intergiornaliera è assai più riproducibile della variabilità dei fattori che influenzano i moti turbolenti del PBL. In questo senso è possibile affermare che le concentrazioni al suolo evolvono con la variazione dei moti turbolenti che coinvolgono il PBL e dai quali dipendono le proprietà dispersive dello stesso. L'inquinamento atmosferico varia notevolmente su tutte le scale spaziali, da quella globale a quella regionale o locale. La relazione tra il carico emissivo - la sua variabilità stagionale e giornaliera - e i livelli di concentrazione osservati è complessa e dipende dalle caratteristiche orografiche e climatiche della zona presa in esame. Le dinamiche alla base dell'intensità e della variabilità delle forzanti radiative e meccaniche sono profondamente diverse oltre che su base stagionale, in funzione della fascia climatica cui appartiene il punto di osservazione.

Da questo punto di vista il nostro Paese presenta una notevole variabilità e sono ben note le zone maggiormente influenzate negativamente dai fattori meteoclimatici ed orografici: il bacino padano, alcune valli subalpine e appenniniche, la conca ternana, la zona della valle del Sacco nel sud del Lazio, la piana di Acerra e Nola nel napoletano. La variabilità territoriale del carico emissivo, il ruolo delle diverse sorgenti sulle concentrazioni dei singoli inquinanti e su quelle delle specie che contribuiscono alla loro formazione in atmosfera, completa il quadro di complessità che caratterizza la valutazione della qualità dell'aria e delle tendenze nel tempo.

1. INQUADRAMENTO NORMATIVO

Il monitoraggio in siti fissi è stato a lungo il principale sistema utilizzato per la valutazione della qualità dell'aria.

In Italia il monitoraggio in continuo della qualità dell'aria è iniziato tra la fine degli anni sessanta e i primi anni settanta, limitatamente ad alcune città e pochi punti di misura, quasi in contemporanea all'emanazione della legge 615 del 1966 (provvedimenti contro l'inquinamento atmosferico).

In questo periodo le zone principalmente oggetto di monitoraggio erano rappresentate dai centri storici delle grandi aree urbane, congestionate dai crescenti flussi di traffico e in alcuni casi dalle città sedi di importanti insediamenti industriali e/o porti.

La determinazione della concentrazione di massa del materiale particolato aerodisperso, senza prevedere una selezione dimensionale (polveri totali sospese, PTS) e di alcuni inquinanti gassosi (SO₂, CO, NO₂, O₃) attraverso il monitoraggio in siti fissi è prevista nell'ordinamento nazionale fin dal 1983.

Alcuni metodi standard di misura compaiono infatti per la prima volta, in modo organico, con il D.P.C.M. 28 marzo 1983, poi modificato con D.P.R. 203 del 24 maggio 1988, e i criteri per la progettazione di reti di rilevamento ancora più tardi (D.M. 20 maggio 1991).

Lo sviluppo effettivo delle reti, limitatamente alle città con più di 250.000 abitanti risale ai primi anni '90 (D.M. 25/11/1994) quando sono stati introdotti in Italia criteri e metodi per il monitoraggio della frazione toracica del materiale particolato PM_{10} , benzene e idrocarburi policiclici aromatici (IPA), limitatamente al benzo(a)pirene (B(a)P) nelle aree urbane con più di 150.000 abitanti.

Con la direttiva quadro sulla qualità dell'aria (UE, 1996), recepita in Italia nel 1999 (D.Lgs. 351/1999), sono stati

introdotti criteri e metodi comuni sul territorio dell'Unione Europea in materia di valutazione e gestione della qualità dell'aria ambiente, con la finalità di stabilire obiettivi per evitare, prevenire o ridurre gli effetti dannosi per la salute e per l'ambiente nel suo complesso, mantenendo la qualità dell'aria laddove era buona e migliorandola negli altri casi fino a raggiungere gli obiettivi previsti in un tempo stabilito.

Con la prima, seconda e terza direttive "figlie" (UE, 1999; UE, 2000; UE, 2002) recepite con il D.M. 60/2002 e il D.Lgs. 183/2004 sono stati definiti per SO_2 , NO_2 , NO_x , PM_{10} , Pb, C_6H_6 , CO, e O_3 criteri e metodi per il monitoraggio e la valutazione della qualità dell'aria.

Nel 2007 le attività di valutazione e gestione della qualità dell'aria sono state estese ad alcuni componenti del particolato ad alta rilevanza tossicologica: l'arsenico (As), il nichel (Ni), il cadmio (Cd) e il mercurio (Hg), oltre agli idrocarburi policiclici aromatici (IPA), già oggetto come detto di specifica normativa nazionale. Il decreto n.152 del 3 agosto 2007 (recepimento della direttiva 2004/107/CE, UE, 2004b) concernente l'arsenico, il mercurio, il nichel e gli idrocarburi policiclici aromatici nell'aria ambiente introduce criteri e disposizioni che si estendono agli altri inquinanti, oltre ad aggiornare ed estendere le disposizioni già vigenti per gli IPA. Fino all'entrata in vigore di questa direttiva il piombo era l'unico elemento oggetto di monitoraggio nell'ordinamento europeo (UE, 1999; D.M. 60/2002).

Trascorsi quasi dieci anni dall'emanazione della prima direttiva "figlia", è stata emanata una nuova direttiva, la 2008/50/CE (UE, 2008), che ha aggiornato, unificato e integrato le precedenti (ad eccezione della 2004/107/CE).

La Direttiva 2008/50/CE (UE, 2008) è stata recepita in Italia con il D.Lgs. 13 agosto 2010 n.155. Il decreto

individua valori limite, valori obiettivo, soglie di allarme e di informazione e incorpora quanto previsto dal decreto legislativo n.152 del 3 agosto 2007.

In particolare il nuovo dettato normativo ha introdotto criteri e metodi per il monitoraggio della frazione respirabile del particolato, il PM_{2,5}. Per quest'ultimo, fino all'emanazione della nuova Direttiva, era stato solo raccomandato il monitoraggio e la trasmissione dei dati eventualmente raccolti.

È individuato per il PM_{2,5} un "indicatore di esposizione media" (IEM); si tratta di un livello medio da determinare sulla base di misurazioni effettuate da stazioni di fondo ubicate in siti fissi di campionamento urbani all'interno dell'intero territorio nazionale e che riflette l'esposizione della popolazione (D.M. 13 marzo 2013). Sulla base dei valori dell'IEM calcolati per il 2010, lo stato membro dovrà perseguire, attraverso misure atte a ridurre l'emissione del particolato e dei suoi precursori, un obiettivo nazionale di riduzione dell'esposizione e garantire comunque che, entro il 2015, il valore di IEM sia inferiore ai 20 µg/m³ (definito obbligo di concentrazione dell'esposizione).

Per gli inquinanti citati escluso l'ozono, la normativa definisce dei valori soglia, inferiori ai valori limite e distinti in soglia di valutazione superiore (SVS) e soglia di valutazione inferiore (SVI). La loro finalità è quella di regolare, in relazione ai livelli di inquinamento, l'impiego e l'integrazione di tecniche di valutazione della qualità dell'aria diverse dalla misura analitica, come la modellizzazione o le tecniche di stima obiettiva, con le misure nelle stazioni di monitoraggio. In relazione alla classificazione delle zone rispetto alle soglie sono previste azioni finalizzate al risanamento della qualità dell'aria, formalizzate in piani e programmi messi a punto dalle Regioni. La normativa affida il compito della valutazione e gestione della qualità dell'aria alle Regioni e Province Autonome e. nell'ambito delle azioni volte alla verifica e alla pubblicità dell'informazione sulla qualità dell'aria, prevede la comunicazione annuale di informazioni per la valutazione della qualità dell'aria dal livello locale a quello nazionale e a quello europeo (UE, 2004a; UE, 2011).

In attuazione del decreto legislativo 155/2010 (modificato dal D.Lgs. 250/2012 e dal D.M. 26 gennaio 2017) sono stati poi emanati appositi decreti in materia di stazioni e metodi speciali di monitoraggio della qualità dell'aria (D.M. 29 novembre 2012, D.M. 13 marzo 2013 e D.M. 5 maggio 2015), in materia di formati per la trasmissione al Ministero dei progetti di zonizzazione del territorio e delle reti di monitoraggio (D.M. 23 febbraio 2011 e D.M. 22 febbraio 2013) e sulle procedure di garanzia di qualità per verificare il rispetto della qualità delle misure effettuate nelle stazioni delle reti (D.M. 30 marzo 2017). In materia di scambio reciproco e comunicazione di informazioni sulla qualità dell'aria ambiente, la norma di riferimento è la Decisione 2011/850/UE (UE, 2011), che, aggiornando le procedure disciplinate in precedenza da altre norme comunitarie, ha previsto l'utilizzo di procedure informatiche di controllo, verifica e invio automatico delle informazioni. determinando profondo cambiamento negli adempimenti comunicazione alla Commissione europea previsti dalla direttiva 2008/50/CE.

Ulteriore norma di riferimento in materia di qualità dell'aria e di lotta all'inquinamento atmosferico è la Direttiva 2016/2284/UE del Parlamento Europeo e del Consiglio in materia di riduzione delle emissioni nazionali di determinati inquinanti atmosferici (la cosiddetta direttiva NEC - National Emission Ceilings). La direttiva, al fine di contribuire al generale miglioramento della qualità dell'aria sul territorio dell'Unione Europea, prevede il conseguimento di obiettivi nazionali di riduzione delle emissioni di alcuni inquinanti (materiale particolato, ossidi di zolfo, ossidi di azoto, composti organici volatili non metanici ed ammoniaca) al 2020 e al 2030, che dovranno essere ottenute tramite l'adozione e l'attuazione di un "Programma nazionale di controllo dell'inquinamento atmosferico" elaborato sulla base delle indicazioni contenute nella direttiva stessa. Tale direttiva sostituisce la Direttiva 2001/81/CE (UE, 2001) e trae origine da uno dei protocolli attuativi della Convenzione sull'inquinamento atmosferico transfrontaliero a lunga distanza (Long Range Transboundary Air Pollution -LRTAP), il primo accordo internazionale, firmato nel 1979 in ambito UNECE (United Nations Economic

Commission for Europe), finalizzato alla riduzione delle emissioni degli inquinanti atmosferici pericolosi per la salute umana e gli ecosistemi.

A livello nazionale la Direttiva 2016/2284/UE è stata recepita con il D.Lgs. 30 maggio 2018, n. 81 che ha abrogato la normativa precedente ed ha assunto come finalità generale il miglioramento della qualità dell'aria e la salvaguardia della salute umana e dell'ambiente, mirando a fornire un contributo significativo al raggiungimento degli obiettivi del D.Lgs. 155/2010.

2. METODI

Il rapporto si basa sui dati di concentrazione degli inquinanti in atmosfera, misurati nelle stazioni di monitoraggio distribuite sul territorio nazionale, trasmessi dalle ARPA/APPA già aggregati per ciascun obiettivo ambientale previsto dal D.Lgs. 155/2010.

È stato quindi istituito un apposito flusso informativo di dati finalizzato a questa attività, che è stato organizzato in modo tale da trovare le adeguate sinergie con le altre esigenze di reporting del SNPA. I dati sono stati aggregati dalle singole ARPA/APPA e trasmessi ad ISPRA secondo criteri di aggregazione condivisi e definiti. Un possibile miglioramento, che impatterebbe positivamente sul flusso dei dati, potrebbe riguardare la disponibilità dei dataset oggetto di reporting ai sensi della Decisione 2011/850/UE con tempi più rapidi rispetto a quelli attuali, in modo da impostare su quelli le diverse aggregazioni necessarie per la stesura del report.

Ogni ARPA/APPA applica un rigoroso protocollo basato su successivi livelli di validazione, prima di pervenire alla pubblicazione del dato finale. Questo processo è molto importante poiché i dati sono utilizzati al fine di verificare la "compliance" dell'Italia come stato membro della comunità Europea alle direttive Europee.

Per ciascun inquinante sono stati calcolati i parametri al fine di un confronto con i valori limite e i valori obiettivo per la protezione della salute umana stabiliti dalla normativa (D.Lgs.155/2010) e con i valori di riferimento definiti dall'OMS (OMS, 2006). Tutti i parametri sono stati calcolati da parte delle singole ARPA/APPA seguendo le regole europee. Per il confronto con gli obiettivi ambientali del D.Lgs. 155/2010 e con i valori di riferimento della OMS sono state utilizzate le serie di dati con la copertura temporale minima prevista per ciascun inquinante dal D.Lgs. 155/2010, allegato I seguendo i

criteri di aggregazione dei dati stabiliti dagli allegati VII e XI.

Le serie storiche sulle quali valutare il trend sono state estratte dai dati di monitoraggio della qualità dell'aria raccolti e archiviati in ISPRA, nel database INFOARIA secondo quanto previsto dalla Decisione 2011/850/EU (dal 2013 al 2018) e da quelli precedentemente raccolti ai sensi della Decisione 97/101/CE (dal 2009 al 2012).

È stato selezionato un set di stazioni di monitoraggio per le quali fossero disponibili i livelli giornalieri di materiale particolato (PM₁₀ e PM_{2,5}), nonché quelli orari di biossido di azoto (NO₂) e di ozono (O₃) nel periodo 2010 - 2019. Sono state incluse le serie che rispettavano un criterio minimo prefissato di copertura temporale corrispondente alla disponibilità, per ogni anno, di almeno il 75% di dati validi.

Tenuto conto di questo è stato individuato per ciascun inquinante un set di stazioni caratterizzato da serie pari con disponibilità di dati in almeno 8 anni su 10.

Esistono differenti metodi per la stima e la ricerca dell'evoluzione di fondo o trend statistico di un qualsiasi parametro variabile nel tempo; negli ultimi 30 anni alcuni di questi sono stati applicati in casi in cui la variabile di interesse fosse una variabile ambientale. In particolare. nel caso della concentrazione di un inquinante aerodisperso, possiamo ricordare lo Spearman partial rank correlation test (McLeod, 1991), il metodo del filtro di Kolmogorov-Zurbenko (Rao et al., 1994; Eskridge et al., 1997), i modelli di regressione lineare semplice, i modelli di regressione basati sui minimi quadrati generalizzati e quelli accoppiati a un modello autoregressivo a media mobile (ARMA), il test di Mann-Kendall, e infine il test di Kendall corretto per la stagionalità, che è stato usato nell'ambito di questo studio.

Questo consente di individuare l'esistenza di una tendenza di fondo e di esprimere in termini quantitativi tale tendenza e la sua significatività statistica. Il test restituisce una stima della riduzione/aumento della concentrazione su base annua cui è associata la relativa incertezza a un dato livello di confidenza (p<0,05).

Il test di Kendall corretto per la stagionalità è un test ad ipotesi statistiche di tipo non parametrico.

La prima versione del test proposta da Mann nel 1945 (Mann, 1945) estendeva l'analisi della significatività del coefficiente di correlazione τ di Kendall (Kendall, 1938) - test sviluppato per valutare l'associazione tra due variabili qualsiasi indipendentemente dalla distribuzione dei dati - al caso in cui una delle variabili fosse il tempo.

Il test ha come obiettivo la valutazione dell'esistenza di un trend ovvero di un andamento monotono crescente o decrescente dato un campione sufficientemente ampio di dati.

Le ipotesi su cui si basa il test sono le seguenti:

- ipotesi nulla H₀ ovvero ipotesi di assenza di trend;
- ipotesi alternativa H_1 ovvero ipotesi di esistenza di trend.

Trattandosi di un test non parametrico non viene fatta alcuna assunzione a priori sulle caratteristiche della popolazione e dunque non è richiesto che i dati sperimentali seguano una particolare distribuzione di probabilità come ad esempio quella normale (distribuzione frequentemente utilizzata nell'approssimazione delle distribuzioni empiriche).

Il test di Mann-Kendall così descritto venne rielaborato per tener conto degli effetti dovuti alla stagionalità; quest'ultimo test è, difatti, noto come Seasonal Kendall Test (SK) ovvero test di Kendall corretto per la stagionalità (Hirsch et al., 1982).

È stato dimostrato che tra i vari test parametrici e non parametrici disponibili per l'analisi dei trend il SK è tra quelli che ottiene le performance migliori, rispetto ad altri test, valutati attraverso l'utilizzo di serie storiche fittizie.

Esso è in grado di predire l'esistenza di un trend statisticamente significativo mantenendo la percentuale di errore al di sotto del valore prefissato, e al contempo, individuare deboli tendenze statisticamente significative laddove effettivamente presenti nella serie fittizia. Trattandosi di un test non parametrico, prescinde dall'ipotesi di normalità dei dati. A questo si aggiunge la robustezza del metodo nel caso di presenza di dati anomali (outliers) e di dati mancanti e la relativa semplicità di implementazione (Hess et al., 2001). Inoltre, quando applicato a serie storiche di dati di inquinamento atmosferico, individuare e rimuovere la componente stagionale (destagionalizzazione) può migliorare la stima delle tendenze di fondo, riducendo l'incertezza associata alla stima (Anttila et al., 2010).

L'analisi dei trend non può in ogni caso prescindere dalla disponibilità di serie storiche sufficientemente lunghe in modo da limitare l'effetto di anni caratterizzati da condizioni meteorologiche atipiche che possono mascherare la tendenza di fondo.

È stato dimostrato che l'incertezza nella determinazione dell'esistenza di un trend statisticamente significativo in una serie di dati di qualità dell'aria aumenta esponenzialmente con il diminuire della lunghezza della serie. Per poter apprezzare tendenze di riduzione o aumento molto piccole (dell'ordine di 0,3 µg m-3 y-1) è necessario disporre di serie di dati lunghe circa 15 anni. Con serie più brevi la tendenza diventa apprezzabile se risulta più significativa (1 µg m-3 y-1) ma la serie deve essere lunga almeno sette anni. La normalizzazione dei dati per gli effetti della meteorologia permette di ridurre l'incertezza associata alla stima e guindi di apprezzare l'esistenza di un trend dello stesso ordine di grandezza a partire da serie di dati relativamente meno estese (11 anni nel primo caso, 5 anni nel secondo) (Hoogerbrugge, 2010).

L'analisi dei dati di ozono è stata condotta sulla base dei valori di un indicatore di esposizione (Sum of Mean Over Zero, SOMO0) con riferimento al periodo stagionale tipico dell'inquinante (aprile – settembre), considerato il più rilevante ai fini dell'esposizione della popolazione (Martuzzi et al., 2006).

Il SOMO0 è stato calcolato a partire dalle medie orarie delle concentrazioni di ozono misurate presso 105 postazioni fisse, caratterizzate per ciascun anno da una copertura temporale pari almeno al 75%.

Per calcolarlo occorre disporre per ciascun giorno delle medie mobili di otto ore. Queste si ottengono calcolando, per ciascuna ora del giorno, il valore della media relativa alle otto ore precedenti: ogni media su 8 ore così calcolata è riferita al giorno nel quale la stessa si conclude. Per ciascun giorno si seleziona, tra le 24 disponibili, la media su otto ore massima.

Quindi si calcola il SOMO0 come sommatoria delle medie mobili massime, diviso il numero di giorni validi. In altre parole il SOMO0 è la media delle medie mobili massime di otto ore delle concentrazioni di ozono.

Tutte le elaborazioni sono state effettuate usando il software open-source R - package Openair (R DEVELOPMENT CORE TEAM, 2008; Carslaw et al., 2012).

3. ANALISI CLIMATICA

3.1. TEMPERATURA

La valutazione dello stato del clima in Italia e della sua evoluzione viene effettuata e aggiornata regolarmente dall'ISPRA attraverso l'elaborazione statistica di serie temporali di dati misurati da diverse reti di osservazione. Al fine di ottenere una stima accurata delle variazioni e delle tendenze climatiche, vengono selezionate le serie di dati più lunghe, che soddisfano

inoltre criteri rigorosi di qualità, completezza e continuità. Le elaborazioni più recenti sono riportate nell'ultimo rapporto annuale sul clima in Italia (ISPRA, 2020b). In Italia, con un'anomalia media di +1,56°C rispetto al valore climatologico di riferimento 1961–1990, il 2019 è stato il terzo anno più caldo dal 1961, dopo il 2018 e il 2015 (Figura 3.1). Inoltre il 2019 è stato il ventitreesimo anno consecutivo con anomalia positiva rispetto alla norma; otto dei dieci anni più caldi della serie storica sono stati registrati dal 2011 in poi.

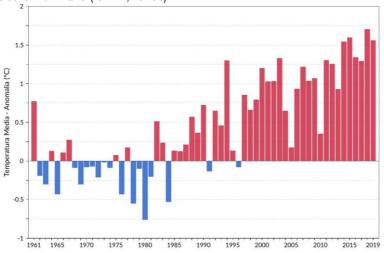


Figura 3.1. Serie delle anomalie medie in Italia della temperatura media rispetto al valore normale 1961-1990.

Fonte: ISPRA

Ad eccezione di gennaio e maggio, che hanno registrato anomalie negative (rispettivamente di -0,58°C e -1,49°C), in tutti i mesi dell'anno la temperatura media in Italia è stata nettamente superiore alla norma, con un picco di anomalia positiva a giugno (+3,82°C); in particolare, tra il 27 e il 28 giugno le temperature massime hanno segnato nuovi record assoluti in diverse località del nord-ovest e del settore alpino. Anomalie superiori a +2°C sono state registrate ad agosto (+2,60°C), dicembre (+2,24°C), luglio (+2,22°C), marzo e ottobre. I valori di anomalia rappresentano le differenze tra le temperature medie del 2019 e quelle normali riferite al periodo climatologico 1961-1990. L'anomalia della temperatura media (Figura 3.2) è stata più elevata al Nord (+1,87°C) e al Centro (+1,74°C) e meno elevata al Sud e Isole (+1,12°C).

L'andamento nel corso dei mesi è stato analogo nelle tre macroaree geografiche:

- il mese più caldo è stato giugno ovunque, con anomalia di +4,25°C al Nord, +4,0°C al Centro e +3,27°C al Sud e Isole;
- il mese di maggio è stato più freddo della norma in tutte le macroaree, con anomalie comprese tra -1,86°C al sud e Isole e -1,1°C al Nord;
- a gennaio l'anomalia è stata poco superiore alla media al Nord e negativa al Centro e al Sud e Isole.

Le anomalie annuali spazializzate della temperatura media, massima e minima nel 2019 sono illustrate dalle mappe nella Figura 3.3.

Come accaduto spesso negli anni passati, gli scostamenti dalla norma 1961-1990 della temperatura massima sono stati, in media, superiori a quelli della temperatura minima.

Il 2019 si colloca, insieme al 2017, al secondo posto della serie di temperatura massima dopo il 2015 e al quarto posto della serie di temperatura minima.

Su base stagionale, l'autunno (+1,77°C) e l'estate (+2,88°C) si collocano al terzo posto tra le più calde delle

rispettive serie storiche, mentre l'inverno e la primavera hanno registrato anomalie positive di temperatura più contenute. Per l'inverno, la temperatura media stagionale viene calcolata aggregando i mesi di gennaio e febbraio con il mese di dicembre dell'anno precedente.

Per un'analisi sistematica degli estremi di temperatura, sono stati presi in considerazione alcuni indici definiti da uno specifico Gruppo di Lavoro della Commissione per la Climatologia dell'OMM (Peterson et al., 2001; Toreti e Desiato, 2008). I criteri di selezione delle serie di dati italiani utili e i metodi di calcolo degli indici, che riprendono quelli di valutazioni analoghe a scala globale o continentale (Alexander et al., 2006; Klein Tank e Können, 2003), sono descritti in dettaglio in (Desiato et al., 2013). Per un'analisi dettagliata dei dati e dei metodi di stima degli estremi di temperatura in Italia si rimanda all'articolo (Fioravanti et al., 2015).

Sia per il numero medio di notti tropicali (con temperatura minima maggiore di 20°C, Figura 3.4), che per il numero medio di giorni estivi (con temperatura massima superiore a 25°C, Figura 3.5), il 2019 è stato il ventitreesimo anno consecutivo con anomalie positive rispetto alla media climatologica. Con un aumento medio di +23 giomi rispetto al 1961-1990, per il numero medio di notti tropicali il 2019 si colloca al secondo posto della serie storica dal 1961, dopo il 2003, a conferma della marcata anomalia positiva di temperatura registrata in estate.

L'indice WSDI (Warm Spell Duration Index) identifica periodi prolungati e intensi di caldo nel corso dell'anno e rappresenta il numero di giorni nell'anno in cui la temperatura massima giornaliera è superiore al 90° percentile della distribuzione nel periodo climatologico di riferimento, per almeno sei giorni consecutivi. I valori dei percentili sono calcolati su una finestra di 5 giorni centrata su ogni giorno dell'anno. A differenza degli indici basati su un valore soglia prefissato, questo indice, conteggiando le eccedenze rispetto ad una soglia definita dal percentile, è rappresentativo delle variazioni del clima locale. Con un aumento medio di +29 giorni rispetto al valore 1961-1990, il 2019 si colloca al sesto

posto, insieme al 2017, tra gli anni con WSDI più elevato, ed è stato è il ventitreesimo anno consecutivo con WSDI superiore alla media climatologica. (Figura 3.6).

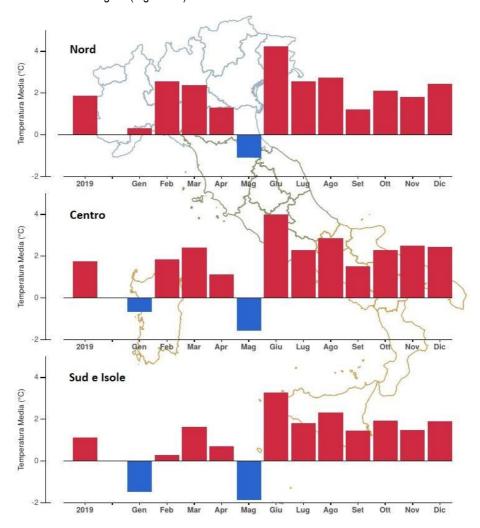


Figura 3.2. Anomalia media 2019 (annuale e mensile) della temperatura media rispetto al valore normale 1961-1990 – Nord, Centro, Sud e Isole. Fonte: ISPRA

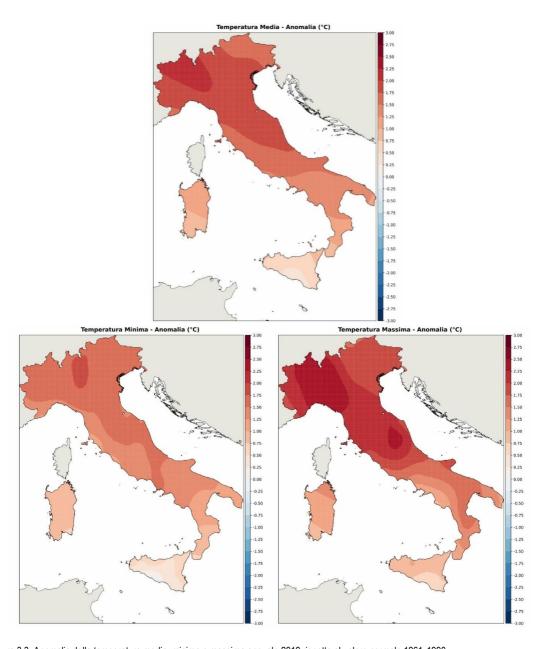


Figura 3.3. Anomalia della temperatura media, minima e massima annuale 2019 rispetto al valore normale 1961-1990. Fonte:ISPRA

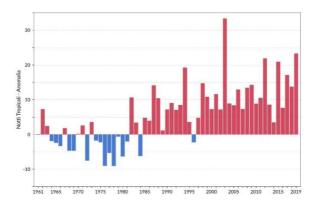


Figura 3.4: Serie delle anomalie medie annuali del numero di notti tropicali in Italia rispetto al valore normale 1961-1990.

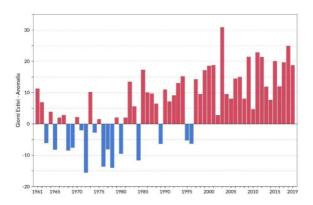


Figura 3.5: Serie delle anomalie medie annuali del numero di giorni estivi in Italia rispetto al valore normale 1961-1990.

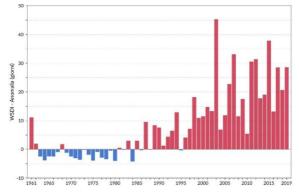


Figura 3.6: Serie delle anomalie medie annuali dell'indice WSDI (Warm Spell Duration Index) in Italia rispetto al valore normale 1961-1990.

3.2.TEMPERATURA - DETTAGLIO REGIONALE

Piemonte

Da un punto di vista meteorologico l'anno 2019 è stato il 4° più caldo degli ultimi 61 anni, con un'anomalia termica media di circa +1,4 °C rispetto alla climatologia del periodo 1971-2000. Ogni mese dell'anno ha registrato anomalie termiche positive tranne maggio, che è risultato il 5° mese di maggio più freddo nella distribuzione storica degli ultimi 62 anni, interrompendo una sequenza di 13

mesi consecutivi con temperature superiori alla norma. A giugno spicca l'eccezionale ondata di calore dei giorni 26-29 giugno nel corso della quale il 46% dei termometri della rete di Arpa Piemonte ha registrato il primato assoluto di temperatura massima. In particolare, il 27 giugno 2019 ha fatto registrare la più elevata temperatura misurata sul Piemonte dal 1958, superando l'11 agosto 2003 (Figura 3.7).

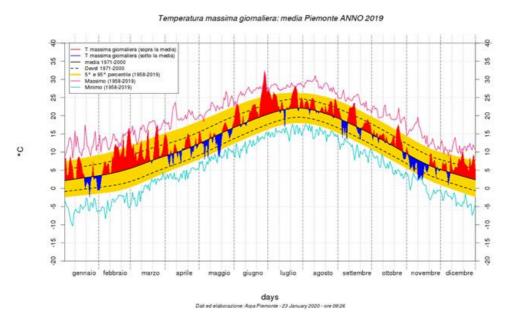


Figura 3.7. Piemonte. Andamento dell'anomalia giornaliera di temperatura (in rosso e in blu) rispetto alla media climatologica 1971-2000 rappresentata dalla linea nera continua. In rosa e verde i valori massimi e minimi della distribuzione dal 1958 ad oggi, in giallo i valori compresi tra il 5° e il 95° percentile.

Fonte: ARPA PIEMONTE

Lombardia

Il 2019 è stato contraddistinto da temperature mediamente superiori a quelle registrate nel periodo recente (2002-2018 nella presente analisi), sulla scia

quindi di un progressivo riscaldamento climatico che trova più ampio riscontro a scala nazionale. Analizzando più nel dettaglio la temperatura media nei singoli mesi (Figura 3.8), le anomalie positive più evidenti emergono nel mese di febbraio (caratterizzato da frequenti episodi

di Foehn), durante i mesi estivi e a dicembre. Degna di menzione è la forte ondata di calore di fine giugno, con temperature massime vicine ai 40 °C in pianura. Relativamente freddo e con un'importante anomalia negativa risulta il mese di maggio, a causa di numerosi

eventi perturbati con afflusso di aria fredda di origine artica.

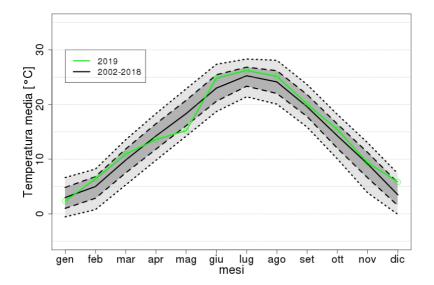


Figura 3.8. Temperatura media giornaliera per mese delle stazioni di pianura (quota < 250 m.s.l.m) misurata dalla rete di monitoraggio meteorologico di ARPA Lombardia.

Le barre verdi rappresentano la mediana della distribuzione delle temperature medie giornaliere osservate in ciascun mese del 2019. La linea nera continua rappresenta la mediana della distribuzione che si ottiene considerando il periodo dal 2002 al 2018; la linea tratteggiata grigio scuro delimita l'area compresa fra il 25-esimo e il 75-esimo percentile della distribuzione, mentre la linea grigia più chiara delimita l'area compresa fra il 10-imo e il 90-esimo percentile.

Fonte: ARPA LOMBARDIA

Emilia-Romagna

La stagione estiva è stata caratterizzata da temperature particolarmente elevate, soprattutto nel mese di giugno (il secondo più caldo dal 1961, dopo giugno 2003, con diffuse condizioni di alta pressione) e in luglio, mese in

cui si sono verificate due intense brevi ondate di caldo, che hanno fatto registrare massime sino a 37-38 °C; il numero di giorni favorevoli alla formazione di ozono riscontrati nel 2019 sono i più alti dopo quelli del 2003 (Figura 3.9). I giorni "favorevoli alla formazione di ozono"

sono quelli in cui la temperatura massima `e maggiore di 29°C.

Il 2019, con uno scostamento di circa +0,7 °C sul clima recente (1991 - 2015) e +1,7 °C sul clima 1961-1990, è stato, nel complesso e in media, il quarto anno più caldo dopo il 2014, 2015 e 2018. È stato, inoltre, il più mite in assoluto dal 1961 per le temperature medie di dicembre, e il più caldo per le temperature massime assolute a giugno. E' stato anche un anno caratterizzato da un'estrema variabilità nell'andamento termico. Il mese di

giugno, nel complesso il secondo più caldo dal 1961 dopo giugno 2003, è stato preceduto da un maggio tra i più freddi dal 1961, con valori massimi inferiori di oltre 4 °C rispetto alle medie 2001-2015. Va ricordato che, a cavallo dei due mesi, le temperature si sono alzate improvvisamente di circa 15 °C nel corso di una settimana. In pianura, sono state registrate fino a 60 notti tropicali, nei principali centri urbani e lungo la costa, mentre sui rilievi il numero di notti tropicali è variato da 0 a 20. A livello regionale, la media dell'indicatore, per il 2019, è di circa 4 notti.

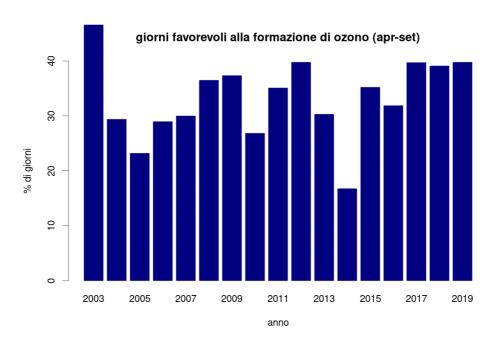


Figura 3.9. Emilia-Romagna, 2003 - 2019. Percentuale di giorni favorevoli alla formazione di ozono (periodo aprile - settembre di ciascun anno) Legenda: giorni "favorevoli alla formazione di ozono": quelli in cui la temperatura massima è maggiore di 29°C.

Fonte: ARPAE. Emilia-Romagna

3.3. PRECIPITAZIONI

Nel 2019 in Italia le precipitazioni sono state superiori alla media climatologica (ISPRA, 2020b).

L'andamento delle precipitazioni in Italia negli ultimi decenni è illustrato dalle serie di anomalie di precipitazione cumulata annuale nel periodo 1961-2019, rispetto al valore climatologico 1961-1990 (Figura 3.10).

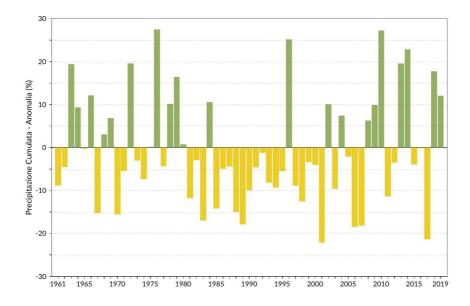


Figura 3.10 Serie delle anomalie medie in Italia, espresse in valori percentuali, della precipitazione cumulata annuale rispetto al valore normale 1961-1990.

Fonte: ISPRA

Con un'anomalia di precipitazione cumulata media in Italia di +12% circa, il 2019 si colloca all'undicesimo posto tra gli anni più piovosi dell'intera serie dal 1961.

L'andamento delle precipitazioni nel corso dell'anno è illustrato dai grafici in Figura 3.11 e dalle mappe in Figura 3.12a e 3.12b, in cui sono rappresentate le anomalie di precipitazione cumulata rispetto ai valori climatologici normali 1961-1990.

L'anomalia presenta differenze anche sensibili tra diverse aree del territorio italiano. Le precipitazioni sono

state superiori alla norma soprattutto al Nord, dove l'anomalia annuale del 2019 (+21%) risulta essere la quinta più elevata di tutta la serie, seguito dal Centro (+9%) e dal Sud e Isole, dove la precipitazione cumulata annuale è stata appena superiore alla norma (+4%). Nel corso dell'anno, tuttavia, mesi molto piovosi si sono alternati ad altri più secchi. Maggio, luglio e soprattutto novembre sono stati caratterizzati da piogge abbondanti, estese a tutto il territorio nazionale, mentre a marzo e giugno, le piogge sono state scarse in tutte le regioni.

Sull'intero territorio nazionale novembre è stato il mese mediamente più piovoso, con una prolungata fase di maltempo che ha portato persistenti e abbondanti piogge, con totali medi areali tra 2 e 3 volte superiori alle attese e un'anomalia media nazionale di +144%. Al Nord il mese più piovoso si conferma novembre, con un picco di anomalia positiva di +200%, seguito da dicembre (+77%) e maggio (+75%); al Centro e al Sud i mesi relativamente più piovosi sono stati maggio (rispettivamente +142% e +122%), novembre e luglio.

I mesi più secchi rispetto alla norma sono stati giugno (soprattutto al Centro, anomalia di -86%) seguito da marzo (soprattutto al Centro e al Nord, con anomalia rispettivamente -76% e -72%), febbraio, gennaio limitatamente al Nord ed al Centro, e infine agosto.

Le mappe delle figure 3.12a e 3.12b mostrano l'andamento delle precipitazioni sul territorio nazionale per ciascun mese. Vengono messe in rilevo le caratteristiche di notevole e diffusa piovosità nei mesi di maggio (ad eccezione di Alpi e Prealpi centro-occidentali) e novembre, e, in misura inferiore e meno uniforme sul territorio nazionale, di luglio; nonché di relativa siccità nei mesi di marzo e giugno, e in misura inferiore nei mesi di febbraio ed agosto; nel mese di gennaio le precipitazioni sono state nettamente inferiori alla media al Nord.

Dalle serie di anomalia della precipitazione cumulata stagionale si rileva che l'autunno e la primavera sono state stagioni più piovose della norma, mentre l'inverno e l'estate sono state mediamente più secche. L'autunno (anomalia media +47%) e la primavera (+19%) si collocano rispettivamente al sesto e al settimo posto tra le più piovose dell'intera serie dal 1961; l'inverno (anomalia media -37%) si colloca invece al settimo posto tra le meno piovose. Per l'inverno, la precipitazione cumulata stagionale viene determinata aggregando i mesi di gennaio e febbraio con il mese di dicembre dell'anno precedente.

Anche nel 2019 non sono mancati eventi di precipitazione intensa, di breve, media e lunga durata. I valori più elevati di precipitazione giornaliera sono stati

registrati il 21 ottobre in Liguria e Piemonte, nelle province di Genova e Alessandria, con precipitazioni cumulate nelle 24 ore comprese fra 400 e 500 mm, con un massimo di 502 mm a Campo Ligure (GE). Il 25 ottobre in Sicilia sono stati registrati 249 mm di precipitazione a Ispica (RG, rete SIAS). Altre aree che hanno registrato precipitazioni giornaliere intense sono la parte settentrionale del Veneto e buona parte del Friuli Venezia Giulia, dove sono stati superati localmente i 200 mm di precipitazione. Riguardo agli indici climatici rappresentativi delle condizioni di siccità, nella Figura 3.13 sono rappresentati i valori del numero di giorni asciutti (con precipitazione inferiore o uguale a 1 mm). I valori più elevati si registrano in Sicilia, con il massimo a Catania di 318 giorni, 317 giorni a Lentini (SR), e 316 giorni ad Agrigento (SR); valori elevati si registrano anche in Pianura Padana, sulla Liguria di Levante, sulla costa toscana e del Lazio settentrionale, sulle coste adriatica e ionica e su gran parte di Sicilia e Sardegna. I valori più bassi (fino a circa 220 giorni asciutti) si registrano su Alpi e Prealpi centro-orientali e sulla dorsale appenninica.

Nella Figura 3.14 sono rappresentati i valori di un altro indice di siccità, il Consecutive Dry Days (CDD), che rappresenta il numero massimo di giorni consecutivi nell'anno con precipitazione giornaliera inferiore o uguale a 1 mm. I valori più alti si registrano nella parte meridionale della Sardegna e della Sicilia (fino a 97 giorni secchi consecutivi). I valori più bassi si registrano sulla dorsale appenninica e su Alpi e Prealpi (fino a 15 giorni).

Come per la temperatura, per valutare l'andamento della frequenza, dell'intensità e dei valori estremi di precipitazione, sono stati presi in considerazione alcuni indici definiti dal Gruppo di Lavoro della Commissione per la Climatologia dell'OMM (Peterson et al., 2001). Complessivamente, dall'analisi delle serie temporali di questi indici, sulla base delle stazioni disponibili, non emergono segnali netti di variazioni nel medio-lungo periodo. Si può tuttavia segnalare che il 2019 ha registrato anomalie positive di tutti gli indici al Nord e al Centro, a conferma di un anno caratterizzato da diversi eventi di intensa precipitazione.

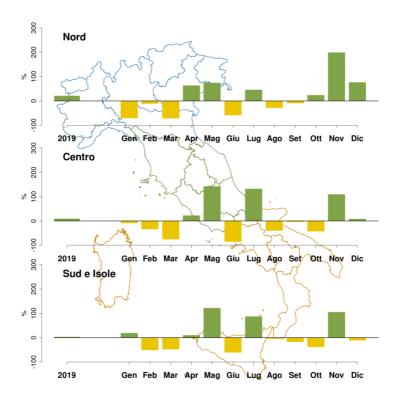


Figura 3.11 Anomalia media mensile ed annuale 2019, espressa in valori percentuali, della precipitazione cumulata Nord, Centro, Sud e Isole, rispetto al valore normale 1961-1990.

Fonte:ISPRA

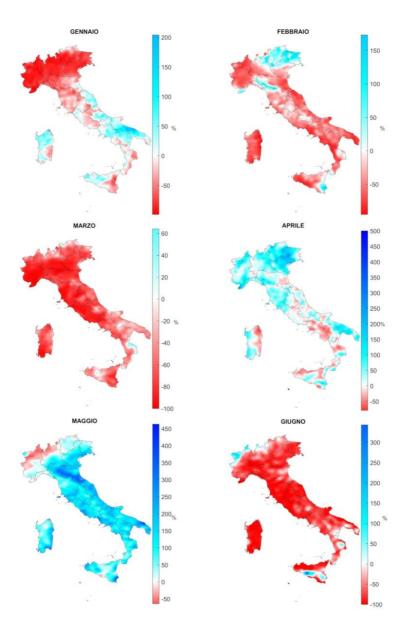


Figura 3.12a Anomalie della precipitazione cumulata mensile (gennaio-giugno) 2019, espresse in percentuali, rispetto al valore normale 1961-1990. Stessi colori rappresentano stessi valori di anomalia in tutte le mappe.

Fonte: ISPRA

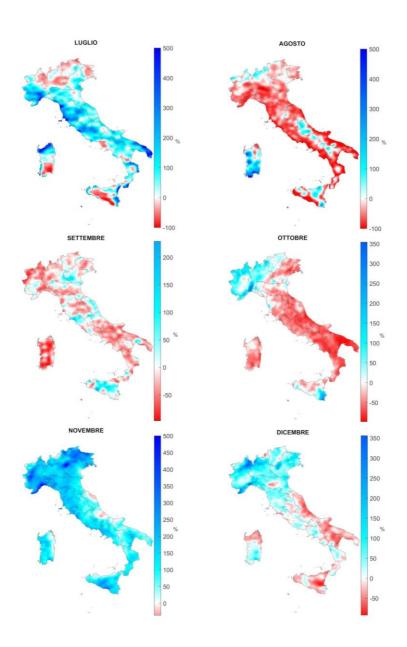


Figura 3.12b: Anomalie della precipitazione cumulata mensile (luglio-dicembre) 2019, espresse in percentuali, rispetto al valore normale 1961-1990. Stessi colori rappresentano stessi valori di anomalia in tutte le mappe.

Fonte: ISPRA

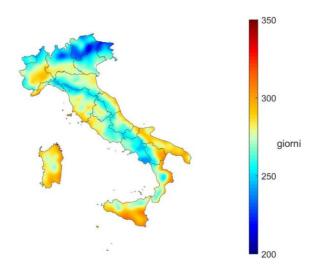


Figura 3.13: Giorni asciutti nel 2019.

Fonte: ISPRA

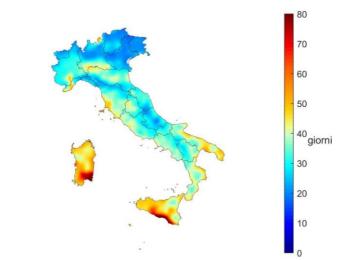


Figura 3.14: Indice di siccità (Consecutive Dry Days - CDD) nel 2019.

Fonte: ISPRA

3.4. PRECIPITAZIONI - DETTAGLIO REGIONALE

Piemonte.

Il 2019 ha visto i primi tre mesi caratterizzati da una predominanza di giornate con tempo stabile e soleggiato, in particolare a gennaio sono stati registrati 21 giorni con assenza di precipitazioni e di vento, 21 anche a febbraio e 16 nel mese di marzo. L'ultimo trimestre del 2019 ha visto condizioni di tempo più perturbato e nella prima metà di ottobre si sono avuti 14 giorni con assenza di precipitazione e di vento, a novembre solo 8 e a dicembre 15.

Nel mese di gennaio le giornate di tempo stabile sono state intervallate da eventi intensi di foehn il 6 ed il 14 e da nevicate in pianura il 23 e 24 ed il 30 e 31. Le nevicate sono proseguite anche nei primi tre giorni di febbraio, inoltre la regione è stata interessata da eventi di foehn dal 10 al 12 ed il 22 febbraio.

Nel mese di marzo il passaggio di una saccatura atlantica ha causato piogge intense il 6 e il 7; nelle giornate del 15 e del 16 si sono avute condizioni di foehn.

Per quanto riguarda l'analisi annuale delle precipitazioni, l'apporto totale annuo è stato pari a 1295.5 mm, portando il 2019 ad essere il nono degli anni più piovosi. Durante tutto l'anno i valori di pioggia sono stati al di sotto della media climatica fino a ottobre, quando si sono verificati

eventi alluvionali intensi che hanno fatto superare sensibilmente i valori climatologici. Ad ottobre e novembre si è registrata una marcata anomalia pluviometrica a cui hanno contribuito due eventi di precipitazioni intense e persistenti; il primo si è verificato nei giorni 19-24 Ottobre 2019 ed il secondo tra il 22 ed il Novembre 2019. Da evidenziare l'evento pluviometrico dei giorni 19-24 Ottobre 2019, nel corso del quale si sono verificate situazioni di criticità nel territorio piemontese e il pluviometro di Gavi (AL) ha registrato 432,2 mm in 12 ore e 480 mm in 24 ore che rappresentano i primati assoluti per le stazioni piemontesi della rete di Arpa Piemonte, e quello dei giorni 22-25 Novembre 2019, che ha causato precipitazioni intense e persistenti sul territorio piemontese con diffuse situazioni di criticità. In generale, l'autunno è stato particolarmente piovoso, con un numero di giorni piovosi superiori alla media (Figura 3.15).

Per quanto riguarda i venti, durante il 2019 sono stati registrati sulla regione 86 giorni di foehn superando così il precedente valore massimo di 84 registrato nel 2009 e nel 2017 (mediamente in Piemonte ci sono 66 giorni di foehn all'anno).

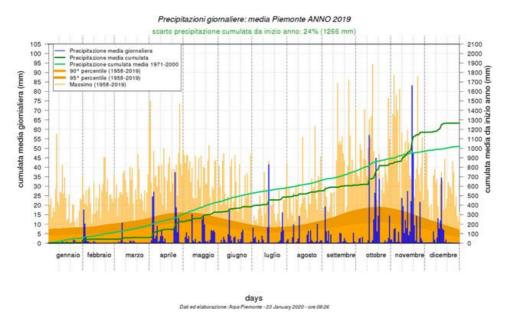


Figura 3.15. 2019 - Andamento della precipitazione giornaliera (in blu), cumulata annuale (in verde scuro), media climatologica del valore cumulato annuale (verde chiaro). L'istogramma in giallo è costruito con i valori massimi della distribuzione dal 1958 ad oggi, le bande arancioni rappresentano il 95° e 90° percentile della distribuzione.

Fonte: ARPA PIEMONTE

Lombardia

Nel 2019 la precipitazione annua totale è risultata essere mediamente superiore a quella degli ultimi anni (periodo 2002-2018), ma caratterizzata altresì da un andamento stagionale che segue, amplificandolo, l'andamento stagionale medio (fig. 3.16): si contraddistingue infatti per scarsità di precipitazioni nei primi mesi dell'anno (da gennaio a febbraio), che risultano sotto la media, e in una

accentuazione del massimo di precipitazione tardo primaverile (aprile e maggio), che risulta pari o sopra alla media. I mesi estivi, con l'eccezione di un giugno poco piovoso, sono stati generalmente confrontabili agli altri anni, mentre è stato particolarmente abbondante il periodo precipitativo di fine autunno e inizio inverno. A quest'ultimo proposito si citano cumulate in novembre fino a 500 - 600 mm sulle Prealpi, valori questi tra i più elevati degli ultimi 20 anni per questo mese.

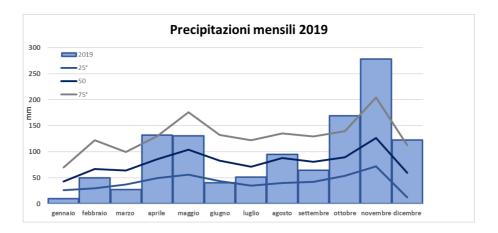


Figura 3.16. Mediana delle cumulate mensili registrate dalle stazioni automatiche della rete di monitoraggio di ARPA Lombardia nel 2019 (barre), confrontate con il 25°, 50°, 75° percentile delle precipitazioni totali mensili registrate dalle stesse stazioni tra il 2002 e il 2018 (linee).

Fonte: ARPA LOMBARDIA

Provincia di Bolzano

Il gennaio 2019 è stato caratterizzato da freguenti situazioni di Föhn, soprattutto nella parte meridionale della provincia, con conseguente rimescolamento dell'aria e beneficio per la qualità dell'aria. Nel confronto fra marzo 2018 e 2019 si evidenzia il diverso quadro delle temperature, nettamente più rigide nel 2018 rispetto al 2019. A fronte di un aprile 2018 particolarmente mite dal punto di vista delle temperature, l'aprile 2019 è stato molto variabile e più ventoso. Il mese di maggio 2019 è stato particolarmente ricco di precipitazioni, in tutta la provincia di Bolzano. I mesi di ottobre 2018 e 2019 sono risultati simili dal punto di vista delle temperature; le precipitazioni sono state globalmente maggiori nel 2018, ma concentrate in pochissimi giorni, mentre nel 2019 sono state distribuite su tutto il mese, portando un maggior beneficio ambientale in termini di qualità dell'aria. Il novembre 2019 è stato un mese estremamente piovoso: una serie di depressioni mediterranee hanno infatti causato abbondanti precipitazioni con problemi di interruzione della fornitura elettrica e di chiusura di strade.

Veneto

Dal punto di vista meteo climatico, il mese di Gennaio 2019 è stato piuttosto secco e si sono verificati solo quattro passaggi di perturbazioni a metà e alla fine del mese, Al tempo stesso, però si sono verificate numerose giornate ventose per correnti da nord, con foehn nelle valli e anche in pianura nella prima settimana dell'anno, e nella seconda metà del mese, e per un episodio di Bora all'inizio della terza decade. In febbraio sono prevalsi i periodi con tempo stabile, anche con forti inversioni termiche a metà mese, che hanno determinato condizioni favorevoli al ristagno delle polveri sottili. Nel mese di marzo le fasi con tempo stabile nel corso delle quali è stato favorito l'accumulo degli inquinanti sono state intervallate da qualche episodio di instabilità (nei giorni 4, 11, 18 e 25), che ha favorito il rimescolamento. In settembre e ottobre il passaggio di alcuni impulsi perturbati si è alternato a fasi di tempo stabile, interrompendo i periodi di accumulo delle polveri sottili, mentre in novembre e dicembre i passaggi di perturbazioni molto frequenti hanno creato condizioni atmosferiche dispersive.

Emilia-Romagna

Il 2019 risulta tra i dieci anni più piovosi dal 1961 e presenta una elevatissima variazione pluviometrica.

Le precipitazioni sono state generalmente superiori alla norma, con alcune sporadiche eccezioni. L'inverno è stato molto secco, mentre la primavera, dopo un marzo ancora decisamente siccitoso, è risultata molto piovosa, con elevate piogge a maggio (156 mm in più rispetto alla media climatologica di riferimento, quasi 4 volte la media 2001-2015). Le piogge mensili di giugno 2019 sono state all'opposto le più basse dal 1961. L'autunno è risultato molto piovoso presentando il novembre più piovoso di sempre (media regionale di 270 mm, pari al 250% in più della media del periodo 2001-2015), sempre dal 1961). L'andamento temporale del numero di giorni piovosi

evidenzia, per il 2019, una media regionale annua di circa 130 giorni. Il valore registrato nel 2019 è superiore al valore climatico di riferimento.

Il 2019 è stato caratterizzato da anomalie meteo climatiche legate all'alternarsi di periodi di tempo in prevalenza stabile, con forti anomalie negative delle precipitazioni (Gennaio, Febbraio e Ottobre), a periodi in cui si è avuto invece un tempo decisamente perturbato, con precipitazioni elevatissime (Maggio e Novembre). Nei mesi di Gennaio e Febbraio si sono verificati periodi con condizioni di alta pressione, assenza di precipitazioni e scarsa ventilazione che hanno determinato un numero elevato di giornate con condizioni favorevoli all'accumulo degli inquinanti.

giorni favorevoli all'accumulo del PM10 (gen-mar + ott-dic) % di giorni anno

Figura 3.17. Percentuale di giorni favorevoli all'accumulo del PM₁₀ (primo e ultimo trimestre di ciascun anno) in Emilia-Romagna (2003 – 2019). Legenda: Giorni favorevoli all'accumulo di PM₁₀: giornate senza pioggia (precipitazione < 0.3 mm) in cui l'indice di ventilazione giornaliero, inteso come il prodotto dell'altezza di rimescolamento media giornaliera e dell'intensità media giornaliera del vento, è inferiore a 800 m²/s.

Fonte: ARPAE Emilia-Romagna

Anche il mese di ottobre ha registrato condizioni che hanno comportato un numero di giornate favorevoli all'accumulo di PM₁₀ superiore a quelle che hanno caratterizzato il periodo 2003-2018. Per contro. pressoché in tutta la regione novembre ha registrato il più basso numero di giorni favorevoli nello stesso periodo. Ciò ha portato a un numero di giorni favorevoli all'accumulo degli inquinanti leggermente superiore al 2018, senza discostarsi comunque molto da guest'ultimo (Figura 3.16). I giorni "favorevoli all'accumulo di PM₁₀" riportati in figura sono definiti come le giornate senza pioggia (precipitazione < 0.3 mm) in cui l'indice di ventilazione giornaliero, inteso come il prodotto dell'altezza di rimescolamento media giornaliera e dell'intensità media giornaliera del vento, è inferiore a 800 m²/s.

Campania.

Dall'analisi dei dati di precipitazione (Figura 3.14) misurati delle centraline meteo del Centro Funzionale della Regione Campania di Napoli-Capodimonte, Grazzanise, San Marco Evangelista e Ariano Irpino, risulta che novembre è stato il mese più piovoso del 2019, seguito dal mese di maggio e dal mese di gennaio. In novembre, in particolare, sono stati registrati eventi di precipitazione intensa legati a perturbazioni che hanno interessato la regione per buona parte del mese. I mesi di febbraio e marzo sono risultati poco piovosi e interessati mediamente da campi di alta pressione.

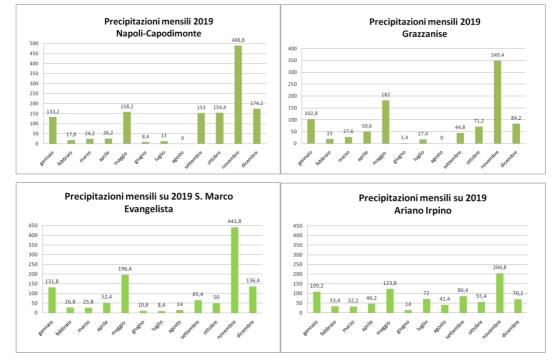


Figura 3.18. Precipitazione cumulata mensile determinata nelle centraline del Centro Funzionale della Regione Campania di Napoli-Capodimonte, Grazzanise, San Marco Evangelista e Ariano Irpino. Fonte: ARPA CAMPANIA

Sardegna

Nei mesi di gennaio, novembre e dicembre, non vi sono stati periodi di persistenza di condizioni anticicloniche e di stabilità atmosferica. Anche in questo caso il mese di novembre è stato caratterizzato da precipitazioni pressoché ovunque sopra media, con l'eccezione di alcune limitate zone della Sardegna orientale che

presentano anomalie negative generalmente contenute entro il 25%. La parte orientale della regione è inoltre l'unica ad avere ricevuto un apporto di precipitazioni comunque più vicino alla media, mentre la gran parte dell'Isola ha ricevuto apporti doppi o tripli rispetto ad essa, con alcune zone che presentano anomalie positive addirittura superiori.

4. MATERIALE PARTICOLATO

4.1. CARATTERISTICHE CHIMICO FISICHE E SORGENTI

Il materiale particolato aerodisperso viene definito come una sospensione di particelle solide o liquide relativamente stabili nell'aria circostante (aerosol). Questa sospensione può essere costituita da una varietà di particelle di diversa dimensione e composizione in funzione della loro origine.

Le particelle emesse direttamente nell'atmosfera sono dette primarie, mentre quelle che si formano in atmosfera sono dette secondarie.

Le principali sorgenti antropiche di particelle primarie sono, i processi di combustione negli impianti domestici di riscaldamento alimentati a biomassa legnosa, i veicoli dotati di motore a combustione interna e le attività industriali.

Le particelle nell'intervallo di diametro tra 0,01 e 100 µm sono quelle che rivestono un maggior interesse data la possibilità di essere inalate. L'intervallo dimensionale compreso tra 0,01 e 0,1 µm viene definito come "modo ultrafine" o. da alcuni autori, dei "nuclei di Aitken". Oltre ad essere prodotte ed emesse direttamente dalle sorgenti primarie, esse si formano in atmosfera per nucleazione omogenea di vapori sovrasaturi (SO2, NH3, NOx, e prodotti della combustione). Le particelle in questo intervallo sono numericamente prevalenti, sebbene contribuiscano in modo poco rilevante alla massa complessiva dei campioni di particolato rilevabili in aria. Le particelle comprese tra 0,1 e 2,5 µm sono note come "modo di accumulazione" o "fini". La loro formazione avviene per coagulo delle particelle ultrafini (UF) e attraverso i processi di conversione gas-particella, conosciuti anche come nucleazione eterogenea, oppure per condensazione di gas su particelle preesistenti nell'intervallo di accumulazione. Queste, insieme alle particelle di dimensioni maggiori, contribuiscono alla gran parte della massa di particolato, sebbene numericamente rappresentino una quota minoritaria, rispetto alle particelle ultrafini.

Le particelle nell'intervallo dimensionale 2,5 – 100 µm vengono dette "grossolane" (in inglese *coarse*). Queste sono prevalentemente prodotte da processi meccanici (macinazione, erosione, risospensione meccanica, fenomeni di attrito nei trasporti su strada – quali usura dei freni, dei pneumatici e abrasione delle strade). Anche materiale biogenico, come pollini e spore fungine aerodisperse ricade in questo intervallo dimensionale. Il loro contributo alla massa è variabile in dipendenza del prevalere dei meccanismi di formazione e diffusione di questa frazione rispetto alla frazione fine nella zona in esame, mentre il contributo al numero totale di particelle è minimo

In generale si può affermare che la distribuzione dimensionale e la composizione del materiale particolato sono molto variabili in dipendenza di diversi fattori, che possono essere individuati principalmente nelle sorgenti locali e nella modulazione temporale della intensità di emissione, nella modalità con cui i parametri meteorologici influenzano l'accumulo e la reattività in atmosfera dei precursori del particolato secondario e delle particelle primarie, e negli eventi di intrusione a livello del suolo di particelle trasportate a media o lunga distanza sia di origine naturale che antropica.

Con riferimento alla composizione, si possono individuare cinque classi di particolato: primario antropogenico, primario biogenico, secondario, crostale e spray marino.

Il primario antropogenico è prevalentemente associato al modo ultrafine, ed è quantitativamente più rilevante nelle vicinanze delle sorgenti lineari (strade, autostrade); tuttavia quote non trascurabili di particelle primarie sono individuabili in tutti gli intervalli dimensionali. Ad esempio è stata evidenziata la presenza nella frazione coarse di numerosi composti contenenti elementi di transizione originati da fenomeni di attrito propri dei mezzi di trasporto, come i residui particolati dei sistemi frenanti (Canepari et al., 2008). Molti costituenti del particolato ritenuti ad alta rilevanza tossicologica vengono emessi direttamente dalle diverse fonti antropiche e quindi vanno a costituire una parte importante del particolato, ad esempio: idrocarburi policiclici aromatici, cadmio, arsenico, nichel e loro composti.

Tra i costituenti del particolato primario antropogenico va ricordato il carbonio elementare; sebbene non esista una definizione univoca e condivisa, operativamente si può intendere per carbonio elementare la frazione del particolato carbonioso resistente all'ossidazione a temperatura inferiore a 400 °C, emesso direttamente nei processi di combustione incompleta. È stato evidenziato che circa il 70% della massa del particolato diesel è in forma di carbonio elementare. Il carbonio organico, ovvero la miscela di idrocarburi e composti ossigenati del carbonio che non resiste all'ossidazione, può invece essere sia di tipo primario che secondario, e di origine naturale o antropica.

Il particolato secondario è associato prevalentemente al modo di accumulazione; quantitativamente è dominato da solfati e nitrati di ammonio, oltre che da composti del carbonio organico, originati da fenomeni di condensazione gas-particella o particella-particella. Le sorgenti principali del particolato secondario sono la combustione negli impianti di riscaldamento domestico, alimentati a biomassa legnosa, i prodotti di scarico dei veicoli dotati di motore termico e l'agricoltura.

Il particolato "crostale" (sali di metalli alcalino terrosi, sali di ferro e alluminio, particelle di natura silicea) è prevalentemente di origine naturale e associato alla frazione "coarse"; la sua presenza è dovuta al sollevamento dal suolo di materiale terrigeno o a fenomeni di intrusione di materiale trasportato da lunga distanza. In questa frazione si rilevano le quote più alte di sali di ferro (che può avere un ruolo fondamentale nei

meccanismi di azione biologica del particolato inalato, poiché partecipa con azione catalitica alla formazione di radicali dell'ossigeno).

Il particolato di origine marina è ovviamente più rilevante nelle zone costiere sebbene possa essere trasportato a media-lunga distanza. La sua presenza è variabile notevolmente in dipendenza dei fattori meteo-climatici che ne favoriscono la dispersione dalla superficie del mare; generalmente è evidenziabile attraverso l'analisi chimica del particolato, prevalentemente nel modo di accumulazione, come sali di cloro e solfati di potassio e sodio.

Nella frazione dimensionale 0,1-2,5 µm possono spesso essere presenti anche particelle di origine biologica - particolato biogenico - come residui vegetali, batteri, lieviti, e virus. Le particelle fini, in generale hanno tempi di residenza in atmosfera dell'ordine dei giorni e possono essere trasportate a lunga distanza.

Gli indicatori utilizzati per la stima dell'esposizione al materiale particolato in aria ambiente sono:

- la concentrazione di massa del particolato inalabile (polveri totali sospese);
- la concentrazione di massa del particolato selezionato in base al diametro aerodinamico mediante teste selettive con taglio a 10 μ m (PM₁₀) che comprende tutte le particelle con diametro aerodinamico inferiore a 10 μ m:
- la concentrazione di massa del particolato selezionato in base al diametro aerodinamico mediante teste selettive con taglio a 2,5 μm (PM_{2,5}) che comprende tutte le particelle con diametro aerodinamico inferiore a 2,5 μm ;
- la concentrazione in numero delle particelle totale o distribuita per intervalli dimensionali.

I primi tre parametri sono stati oggetto di normative nazionali e internazionali nell'ambito della valutazione della qualità dell'aria e dell'individuazione di misure atte a migliorarla. Oggi è prevista la valutazione della qualità dell'aria con riferimento alle frazioni PM₁₀ e PM_{2.5}.

Questi sono i due parametri di riferimento, scaturiti da decine di studi epidemiologici, per le stime di effetto sanitario dell'esposizione al materiale particolato aerodisperso (come dettagliato nel paragrafo successivo).

La concentrazione in numero delle particelle è stata oggetto di studi recenti finalizzati a stimare gli effetti sulla salute associati all'esposizione al particolato, seguendo l'ipotesi che il numero di particelle inalate possa essere un parametro complementare a quelli classici basati sulla concentrazione di massa nella valutazione di impatto sulla salute della popolazione esposta (e.g. Aalto et al., 2005; Belleudi et al., 2010).

4.2. EFFETTI SULLA SALUTE

Vari studi epidemiologici sugli effetti sanitari dell'inquinamento atmosferico da particelle, hanno evidenziato associazioni tra le concentrazioni in massa del PM₁₀ e un incremento sia di mortalità che di ricoveri ospedalieri per malattie cardiache e respiratorie nella popolazione generale. I soggetti ritenuti maggiormente esposti a tali effetti sono in particolare, gli anziani, i bambini, le persone con malattie cardiopolmonari croniche e affette da influenza o asma: su di essi si concentrano incrementi di mortalità e seri effetti patologici a seguito di esposizioni acute a breve termine. Ulteriori evidenze sono emerse considerando gli effetti sanitari a lungo termine conseguenti all'esposizione a basse concentrazioni di PM₁₀. Tali effetti riguardano la mortalità ed altre patologie croniche come la bronchite e la riduzione della funzione polmonare.

Significative, coerenti e condivise evidenze epidemiologiche e tossicologiche secondo cui è possibile associare all'esposizione al particolato fine diversi importanti effetti sulla salute e sulla mortalità della popolazione generale e di individui suscettibili, sono emerse in numerosi studi (OMS, 2006). La nuova edizione del Position Paper sul materiale particolato, curato per conto della Commissione Europea dal CAFE Working group (EC, 2004) raccomandava l'uso del PM2,5 come principale metrica per valutare l'esposizione della

popolazione ed è stata la base scientifica su cui si è sviluppata la nuova legislazione.

Nella revisione delle Linee Guida della Qualità dell'Aria per l'Europa (OMS, 2006), l'OMS ha prodotto delle stime numeriche di rischio per una serie di effetti sanitari associati ad un incremento di 10 µg/m³ della concentrazione media annuale per il PM₁₀ ed il PM_{2.5}. Nelle sue valutazioni l'OMS non stabilisce un valore al di sotto del quale non vi sia rischio, ma individua come limite inferiore per la media annuale il valore di 20 µg/m³ per il PM₁₀ e di 10 µg/m³ per il PM_{2,5}, che sono i livelli più bassi per i quali è stato osservato un incremento della mortalità totale, di quella per cause cardiopolmonari, e di quella per cancro del polmone, con una confidenza migliore del 95% (Pope et al., 2002). Anche l'incremento di tumore polmonare è stato associato recentemente all'inquinamento ambientale, ed in particolare alla frazione fine dell'aerosol: il PM outdoor è stato inserito dall'Agenzia Internazionale per la Ricerca sul Cancro (IARC) tra i cancerogeni di gruppo 1 (agenti sicuramente cancerogeni per l'uomo) (IARC, 2016).

4.3. VALORI LIMITE E VALORI DI RIFERIMENTO OMS

I valori limite del particolato PM₁₀ nell'aria ambiente definiti dalla normativa insieme ai valori di riferimento OMS sono riportati nella Tabella 4.1.

Il D.Lgs. 155/2010 prevede la valutazione dei livelli di $PM_{2.5}$ nelle diverse zone in cui è suddiviso il territorio e la verifica del rispetto di un valore limite, che è stato fissato a 25 μ g/m³ da raggiungere entro il 1 gennaio 2015. Il valore di riferimento OMS per l'esposizione a lungo termine è di 10 μ g/m³ (Tabella 4.2). È previsto inoltre dalla direttiva 2008/50/CE il calcolo annuale di un "indicatore di esposizione media" avente la duplice funzione di stimare lo stato attuale dell'esposizione media della popolazione di ciascuno stato membro e al contempo rappresentare la base per monitorare i progressi degli stessi nella riduzione nel tempo dei livelli, in modo progressivo e coerente nel Paese.

A tal fine è stato individuato un set di stazioni di fondo urbano tra quelle collocate negli agglomerati e nelle aree

urbane con più 100.000 abitanti, assumendo che l'esposizione della popolazione sia ben rappresentata dalle concentrazioni rilevate in questo tipo di stazioni, in numero sufficiente e distribuite omogeneamente sul territorio in modo da rappresentare adeguatamente l'esposizione media della popolazione (o almeno di una larga parte di essa).

L'IEM per il 2010 è calcolato dalla media delle medie annuali rilevate nel set di stazioni individuato nel trienno 2009 - 2011. Sulla base di tale livello "nazionale" sono previsti obiettivi di riduzione percentuali da realizzare entro il 2020 (Tabella 4.1), fermo restando che in ogni caso, entro il 2015 l'IEM dovrà essere inferiore a 20 μ g/m³ e che l'obiettivo minimo per il 2020 è quello di raggiungere 18 μ g/m³, qualora l'IEM al 2010 fosse stato uquale o superiore a 22 μ g/m³.

Tabella 4.1: PM₁₀ - Valori limite ai sensi del D.Lgs.155/2010 e valori di riferimento OMS

Fonte: D.Lgs.155/2010; OMS, 2006.

Periodo di mediazione	Valore limite D.Lgs.155/2010	Valori di riferimento OMS	
1 giorno	50 µg/m³ da non superare più di 35 volte per anno civile	50 μg/m³ da non superare più di 3 volte in un anno civile	
Anno civile	40 μg/m³	20 μg/m³	

Tabella 4.2: PM_{2,5} - Valore limite ai sensi del D.Lgs.155/2010 e valori di riferimento OMS

Fonte: D.Lgs.155/2010; OMS, 2006.

Periodo di mediazione	Valore limite D.Lgs.155/2010	Valori di riferimento OMS	
Anno civile	25 μg/m³	10 μg/m³	

Tabella 4.3: PM_{2.5} - Indicatore di esposizione media e obiettivo di riduzione dell'esposizione ex allegato XIV D.Lgs. 155/2010.

Fonte: D.Lgs.155/2010 Allegato XIV.

IEM 2010 (base medie annuali 2009 – 2011)	Obiettivo di riduzione entro il 2020
$[PM_{2,5}] \le 8,5 \ \mu g/m^3$.	0%
$8.5 < [PM_{2,5}] < 13 \ \mu g/m^3$.	10%
$13 \le [PM_{2,5}] < 18 \ \mu g/m^3$.	15%
$18 \le [PM_{2,5}] < 22 \ \mu g/m^3$.	20%
$[PM_{2,5}] \ge 22 \ \mu g/m^3$.	Raggiungere 18 µg/m³.

4.4. PM₁₀ - SINTESI DEI LIVELLI SU SCALA NAZIONALE

Le stazioni di monitoraggio che hanno misurato e comunicato dati di PM₁₀ nel 2019 sono 561. Di queste 516 (92%) hanno copertura temporale minima del 90% (al netto delle perdite di dati dovute alla taratura periodica o alla manutenzione ordinaria) o una distribuzione dei dati nell'anno sufficientemente omogenea tale da risultare rappresentativa della variabilità stagionale. Tutte le Regioni sono rappresentate. La classificazione delle stazioni di monitoraggio di PM₁₀ secondo i criteri di ubicazione su macroscala previsti dalla normativa è rappresentata in Figura 4.1.

Il valore limite giornaliero (50 μ g/m³, da non superare più di 35 volte in un anno) è stato superato in 111 stazioni, pari al 22% dei casi. Il valore di riferimento OMS giornaliero (50 μ g/m³, da non superare più di 3 volte in

un anno), è stato superato in 279 stazioni (54% dei casi) (Figura 4.2).

Nel 2019 i superamenti del valore limite giornaliero hanno interessato 24 zone su 81 distribuite in 10 Regioni: Lombardia, Veneto, Piemonte, Friuli Venezia Giulia, Emilia-Romagna, Toscana, Marche, Lazio, Molise e Campania (Tabella 4.1).

È stato registrato un solo superamento del valore limite annuale (40 μ g/m³). Il valore di riferimento OMS annuale (20 μ g/m³) è stato superato in 347 stazioni (65% dei casi). In questo caso sono state considerate nel conteggio anche le stazioni che rispettano i criteri specifici per il PM¹0 di cui all'allegato I D.Lgs. 155/2010 (Figura 4.4).

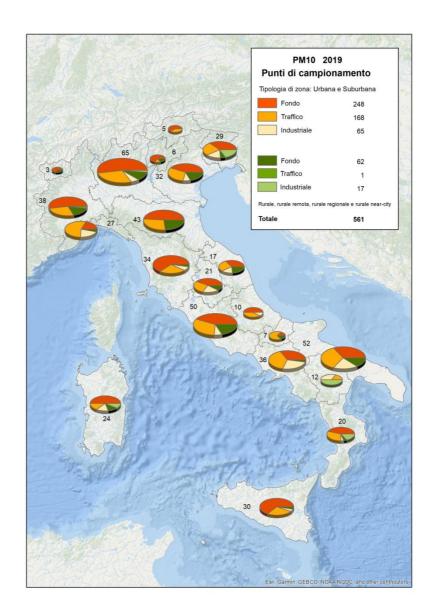


Figura 4.1. PM₁₀. Classificazione dei punti di campionamento secondo i criteri di ubicazione su macroscala di cui all'Allegato III, D.Lgs.155/2010 (2019).

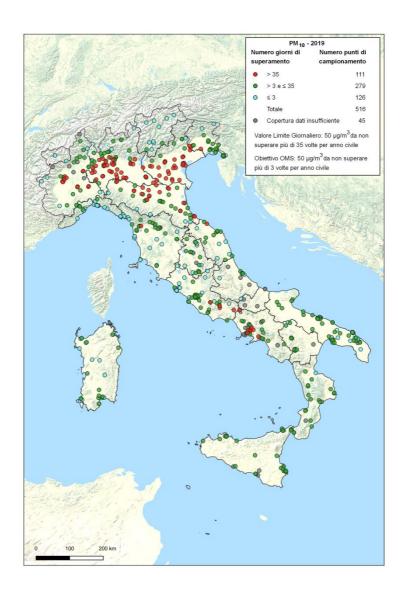


Figura 4.2. PM₁₀. Stazioni di monitoraggio e superamenti del valore limite giornaliero per la protezione della salute (2019). Fonte: Elaborazioni ISPRA su dati ARPA/APPA

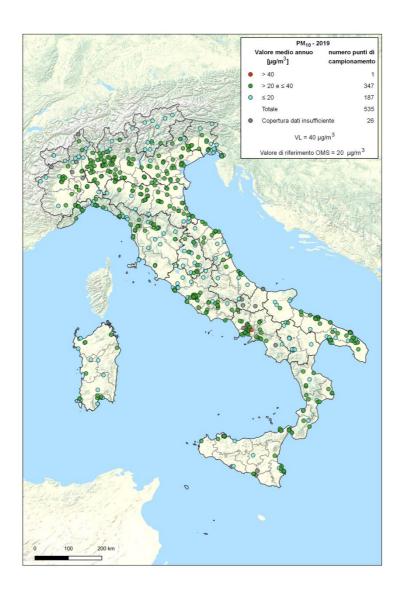


Figura 4.3. PM₁₀. Stazioni di monitoraggio e superamenti del valore limite annuale per la protezione della salute (2019). Fonte: elaborazioni ISPRA su dati ARPA/APPA

Tabella 4.3: PM₁₀. Zone dove si è verificato il superamento del valore limite giornaliero in almeno una stazione (2019)

Regione	Codice zona_	Nome zona	Tipo zona
PIEMONTE	IT0118	Agglomerato	agg
PIEMONTE	IT0119	Pianura	noagg
LOMBARDIA	IT0306	Agglomerato di Milano	agg
LOMBARDIA	IT0307	Agglomerato di Bergamo	agg
LOMBARDIA	IT0308	Agglomerato di Brescia	agg
LOMBARDIA	IT0309	Zona A- Pianura ad elevata urbanizzazione	noagg
LOMBARDIA	IT0310	Zona B - Pianura	noagg
LOMBARDIA	IT0311	Zona C - Montagna	noagg
VENETO	IT0508	Agglomerato_Venezia	agg
VENETO	IT0509	Agglomerato_Treviso	agg
VENETO	IT0510	Agglomerato_Padova	agg
VENETO	IT0511	Agglomerato_Vicenza	agg
VENETO	IT0512	Agglomerato_Verona	agg
VENETO	IT0513	Pianura_Capoluogo_Bassa_Pianura	noagg
VENETO	IT0514	Bassa_Pianura_Colli	noagg
FRIULI_VENEZIA_GIULIA	IT0608	Zona di pianura	noagg
EMILIA_ROMAGNA	IT0892	Pianura Ovest	noagg
EMILIA_ROMAGNA	IT0893	Pianura Est	noagg
TOSCANA	IT0909	Zona Valdarno pisano e pianura lucchese	noagg
MARCHE	IT1110	Zona Costiera e Valliva	noagg
LAZIO	IT1212	Zona Valle del Sacco	noagg
MOLISE	IT1403	Pianura	
CAMPANIA	IT1507	Agglomerato Napoli_Caserta	
CAMPANIA	IT1508	Zona costiera_collinare ne	

Nota: Se si è verificato nell'anno in esame un superamento del valore limite in almeno una delle stazioni facenti parte del programma di valutazione della zona, o questo è stato individuato anche mediante l'uso di modelli, misure indicative o stime obiettive, l'intera zona è considerata in superamento. L'effettiva area di superamento (area, ricadente all'interno di una zona o di un agglomerato, nella quale è stato valutato il superamento di un valore initie o di un valore obiettivo), può essere individuata sulla base della rappresentatività delle misurazioni in siti fissi o indicative o sulla base delle tecniche di modellizzazione dalle Regioni e PP/AA in fase di valutazione della qualità dell'aria, anche al fine di programmare gli interventi di risanamento.

4.5. PM₁₀ - DETTAGLIO REGIONALE

Nella Figura 4.4 è riportata la distribuzione del numero di medie giornaliere superiori a 50 $\mu g/m^3$ per area geografica del Paese.

Un rettangolo piccolo (piccola distanza interquartile, il 50% delle misure ricade all'interno di tale intervallo) indica che tale variabilità è limitata. I segmenti che si estendono dai lati superiore ed inferiore descrivono quanto i livelli si possono discostare dal valore mediano (rappresentato dalla linea interna al rettangolo). Quanto più grande è la distanza tra gli estremi dei due segmenti, tanto maggiore è l'intervallo di variabilità complessiva riscontrato. I punti esterni agli estremi dei segmenti sono valori che si discostano significativamente dalle altre osservazioni disponibili.

Il grafico riassume complessivamente i valori rilevati e la variabilità osservata sul territorio, stratificati in base alla collocazione geografica.

Questa assume una rilevanza particolare, che va al di là dei confini amministrativi regionali e comunali. I punti di misura del bacino padano, selezionati tra quelli posizionati a quote inferiori ai 200 m, riflettono il particolare ruolo che gioca la climatologia della zona. La zona della Valle del Sacco e, in parte, quella dell'agglomerato di Napoli e Caserta, sperimentano analoghe situazioni sfavorevoli, con condizioni meteoclimatiche invernali che favoriscono l'accumulo degli inquinanti.

Discorso opposto per le zone in quota, alpine ed appenniniche, e per le zone di costa dove, generalmente, si registrano i livelli più bassi.

Livelli intermedi si registrano nelle zone di entroterra e nelle valli subalpine.

È interessante osservare che nelle zone industriali e negli agglomerati non collocati nel bacino padano, si registra un generalizzato rispetto del valore limite giornaliero del PM₁₀.

Per quanto riguarda il Piemonte, la situazione rimane critica con più di 35 superamenti in tutti i punti di misura della città di Torino e della sua cintura, ad esclusione della stazione di Druento - La Mandria che, nonostante sia in un comune confinante con Torino, è collocata in un parco pubblico ed è classificata come rurale di fondo (10 superamenti). Anche nelle stazioni di Alessandria ed Asti sono stati misurati più di 35 superamenti, nel comune di Vercelli invece la stazione di traffico di Vercelli- Gastaldi ha superato il valore limite, mentre quella di fondo Vercelli – Coni ha presentato 30 superamenti.

I superamenti del valore limite giornaliero nella stazione di *Torino – Rebaudengo* sono stati 71 (erano stati 87 lo scorso anno). Nelle stazioni di *Torino-Rubino e Torino-Lingotto*, sono stati rispettivamente 42 (erano 36 nel 2018) e 48 (45 nel 2018). Tra le altre città della regione nella stazione di traffico urbano di *Alessandria – D'Annunzio* è stato rilevato il maggior numero di superamenti del valore limite giornaliero (66 giorni di superamento del valore di 50 μg/m³ contro i 59 del 2018). Anche nelle altre province della regione la tendenza non è stata netta, registrando miglioramenti in tutte le stazioni di Biella e Cuneo, ma non in tutte quelle delle altre province.

La quasi totalità dei superamenti misurati nel 2019 nelle stazioni della rete regionale di rilevamento si è concentrata nei mesi di gennaio e febbraio.

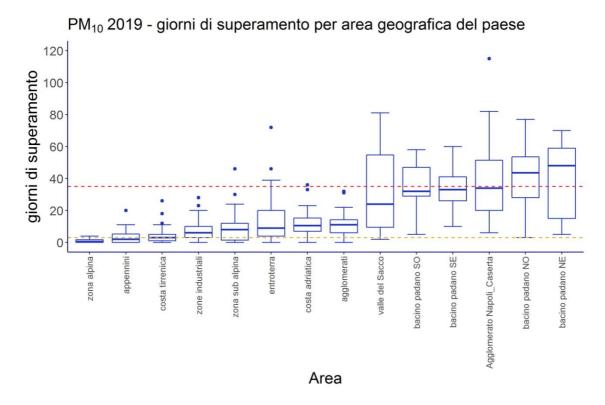


Figura 4.4. PM₁₀ (2019). Distribuzione del numero di giorni con concentrazioni superiori a 50 μg/m³ per zona geografica. Oltre al bacino padano (suddiviso in quattro classi, Nord Ovest, Nord Est, Sud Ovest e Sud Est) sono evidenziate le altre due zone critiche, la Valle del Sacco e l'aggromerato di Napoli e Caserta. Sono rappresentati poi gli agglomerati e le zone industriali non appartenenti al bacino padano. La linea rossa rappresenta il valore limite giornaliero (50 μg/m³ da non superare più di 35 volte per anno civile), quella arancione in valore di riferimento dell'OMS (50 μg/m³ da non superare più di 3 volte per anno civile).

<u>Legenda:</u> nel grafico box-plot per ciascuna distribuzione: il lato inferiore del rettangolo coincide con il primo quartile (25° percentile) della distribuzione; il lato superiore del rettangolo coincide con il terzo quartile (75° percentile). La linea interna al rettangolo coincide con la mediana. Il punto blu coincide con la media. I segmenti a partire dal lato superiore ed inferiore del box sono chiamati "baffi".

Il "baffo" inferiore assume il valore L=Q1-1,5IQR (dove Q1 è il primo quartile e IQR è il range interquartile, cioè la differenza tra 3° e 1° quartile) o il valore minimo, se maggiore di L.

Il "baffo" superiore assume il valore R=Q3+1,5IQR (dove Q3 è il terzo quartile e IQR è il range interquartile) o il valore massimo, se inferiore a R. I punti celesti sono valori esterni all'intervallo definito dai baffi superiore ed inferiore.

Fonte: Elaborazioni ISPRA su dati ARPA/APPA

In **Lombardia** in numerose stazioni si registra ancora il superamento del valore limite giornaliero.

In riferimento alla suddivisione in zone, solo la zona di Montagna ha rispettato il valore limite giornaliero nel 2019. Sebbene il confronto tra anni contigui sia comunque molto dipendente dalla variabilità meteorologica, si rileva che il 2019, apertosi con un bimestre particolarmente sfavorevole alla dispersione

degli inquinanti ma con un mese di novembre e buona parte del mese di dicembre al contrario favorevoli per la qualità dell'aria (anche in relazione alle precipitazioni copiose), ha fatto in generale registrare un numero di giorni di superamento variabile a seconda della stazione da poco superiore a significativamente inferiore a quello registrato nel 2018, anno che già era stato contraddistinto da concentrazioni particolarmente basse rispetto agli anni precedenti.

In provincia di Bolzano II 2019 è stato caratterizzato da concentrazioni medie leggermente inferiori rispetto al 2018. Questo comportamento trova un'importante spiegazione analizzando mese per mese la meteorologia del 2019 rispetto a quella del 2018.

Riportiamo alcuni esempi: il gennaio 2019 è stato caratterizzato da frequenti situazioni di Föhn, soprattutto nella parte meridionale della provincia, con conseguente rimescolamento dell'aria e beneficio per la qualità dell'aria. Nel confronto fra marzo 2018 e 2019 si evidenzia il diverso quadro delle temperature, nettamente più rigide nel 2018 rispetto al 2019. A fronte di un aprile 2018 particolarmente mite dal punto di vista delle temperature, l'aprile 2019 è stato molto variabile e più ventoso. Il mese di maggio 2019 è stato particolarmente ricco di precipitazioni, in tutta la provincia di Bolzano. I mesi di ottobre 2018 e 2019 sono risultati simili dal punto di vista delle temperature; le precipitazioni sono state globalmente maggiori nel 2018, ma concentrate in pochissimi giorni, mentre nel 2019 sono state distribuite su tutto il mese, portando un maggior beneficio ambientale in termini di qualità dell'aria. Il novembre 2019 è stato un mese estremamente piovoso: una serie di depressioni mediterranee hanno infatti causato abbondanti precipitazioni con problemi di interruzione della fornitura elettrica e di chiusura di strade.

In Veneto, nel 2019, 25 stazioni su 32 superano ancora il valore limite giornaliero; trattasi prevalentemente delle stazioni di traffico, industriali e di fondo situate nell'area di pianura. In tutte le stazioni situate nella zona montana e lungo la fascia pedemontana il valore limite giornaliero è rispettato. La stazione con il numero maggiore di

superamenti è stata PD-Granze (70), stazione di tipologia industriale ubicata a Padova. Dal punto di vista meteo climatico, il mese di Gennaio 2019 è stato piuttosto secco e si sono verificati solo quattro passaggi di perturbazioni a metà e alla fine del mese, Al tempo stesso, però si sono verificate numerose giornate ventose per correnti da nord, con foehn nelle valli e anche in pianura nella prima settimana dell'anno, e nella seconda metà del mese, e per un episodio di Bora all'inizio della terza decade. In febbraio sono prevalsi i periodi con tempo stabile, anche con forti inversioni termiche a metà mese, che hanno determinato condizioni favorevoli al ristagno delle polveri sottili. Nel mese di marzo le fasi con tempo stabile nel corso delle quali è stato favorito l'accumulo degli inquinanti sono state intervallate da qualche episodio di instabilità (nei giorni 4, 11, 18 e 25), che ha favorito il rimescolamento. In settembre e ottobre il passaggio di alcuni impulsi perturbati si è alternato a fasi di tempo stabile, interrompendo i periodi di accumulo delle polveri sottili, mentre in novembre e dicembre i passaggi di perturbazioni molto frequenti hanno creato condizioni atmosferiche dispersive.

In Emilia-Romagna i mesi in cui si sono registrati il maggior numero di giorni con condizioni favorevoli all'accumulo degli inquinanti, soprattutto gennaio e febbraio (vedi capitolo 3), hanno influito sul superamento del valore limite giornaliero in 17 delle 43 stazioni della rete regionale. Il massimo numero di superamenti, pari a 60, è stato registrato nella stazione di Ferrara – Isonzo, seguito da Modena - Giardini con 58 superamenti. Seguono poi Reggio Emilia - Timavo (53), Ravenna -Zalamella (51), Carpi – Remesina (49) Fiorano Modenese - S. Francesco e Piacenza - Giordani Farnese (48), Modena – Parco Ferrari, (47), Mirandola – Gavello (45), Ferrara – Villa Fulvia (44), Rimini – Flaminia (43), Parma – Montebello (42), Rimini –Marecchia Guastalla - S. Rocco e Cento (41), Parma - Cittadella (39), Forlì – Roma (37).

Nel Lazio gli unici superamenti del valore limite giornaliero per il PM₁₀ sono stati registrati nella zona Valle del Sacco, nelle postazioni di *Cassino, Ceccano, Colleferro Europa* e *Frosinone Scalo.* Nell'Agglomerato

di Roma, nelle zone Appenninica e Litoranea non si sono registrati superamenti dei limiti normativi, sebbene il numero di medie giornaliere superiori a 50 µg/m³ sia stato maggiore nell'agglomerato di Roma rispetto alle altre due zone.

In Campania i superamenti del valore limite giornaliero sono concentrati principalmente nel territorio ad est del capoluogo partenopeo e nell'agro acerrano-nolano. Oltre il limite di 35 giorni di superamento per anno solare anche la stazione di Napoli - NA07 Ente Ferrovie - in un contesto fortemente esposto alle emissioni da traffico veicolare, e la stazione di Nocera Inferiore, Scuola Solimena in provincia di Salerno, rappresentativa della situazione generale registrata nell'agro nocerinosamese, che risente anche dell'impatto emissivo rappresentato dal tessuto urbano in cui è situata. Le giornate di superamento sono tendenzialmente concentrate nel periodo autunno-inverno, quando al maggiore carico emissivo corrispondono condizioni meteo particolarmente favorevoli all'accumulo degli inquinanti, con campi anche fortemente stabili di alta pressione e assenza di precipitazioni. Il mese di novembre ha rappresentato una vera eccezione nel trend consueto delle concentrazioni di PM₁₀, con un numero di superamenti sulla rete regionale tra i più bassi nelle serie storiche recenti, a causa degli eventi di precipitazione intensa legati a perturbazioni che hanno interessato la regione per buona parte del mese. I mesi di febbraio e marzo sono risultati poco piovosi e interessati mediamente da campi di alta pressione in corrispondenza dei quali si sono verificati numerosi

superamenti del limite giornaliero, così come i mesi estivi di giugno, luglio e agosto quando eventuali superamenti possono essere ricollegati anche all'apporto di polveri sahariane.

In Sardegna non si registrano superamenti del valore limite giornaliero ((50 μg/m³ da non superare più di 35 volte per anno civile) come in Valle d'Aosta, provincia di Bolzano, Trento, Liguria, Umbria, Abruzzo, Puglia, Basilicata, Calabria e Sicilia.

Da segnalare che in Toscana, Marche e Molise è stato registrato il superamento in una sola stazione e il numero di superamenti è di poco superiore a 35: in Toscana, presso la stazione di fondo urbano LU-Capannori della Zona Valdamo pisano e Piana lucchese ci sono stati 38 superamenti; nelle Marche, presso la stazione Via Montegrappa a Fano in zona costiera e valliva i superamenti sono stati 36; in Molise, presso la stazione di monitoraggio Venafro2 (VE2) in provincia di Isemia, ne sono stati registrati 39. Questa è l'unica disponibile per il Molise, poiché le altre stazioni non hanno raggiunto la percentuale di raccolta minima dei dati per poter confrontare i valori registrati con i valori limite.

In Valle d'Aosta si è avuto un solo superamento della soglia di 50 µg/m³ in Aosta piazza Plouves, nessuno in Aosta via Liconi a fronte di un limite di 35 giornate di superamento indicate dalla normativa. Valle d'Aosta e provincia di Bolzano sono le uniche due aree del territorio italiano con un numero di superamenti nel 2019 inferiore al valore di riferimento dell'OMS.

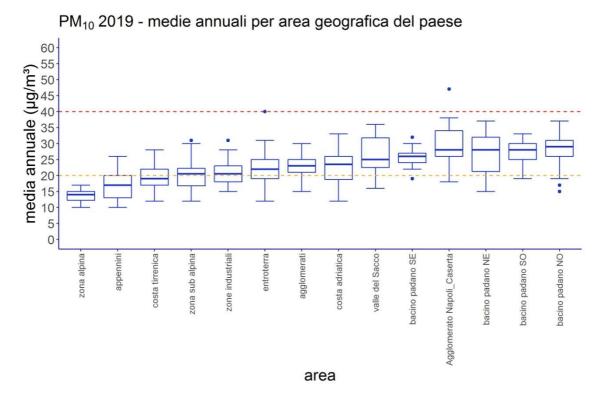


Figura 4.5. PM₁₀ (2019). Distribuzione delle medie annuali per zona geografica, agglomerati e zone industriali non appartenenti al bacino padano. Oltre al bacino padano (suddiviso in quattro classi, Nord Ovest, Nord Est, Sud Ovest e Sud Est) sono evidenziate le altre due zone critiche, la Valle del Sacco e l'aggromerato di Napoli e Caserta.

. La linea rossa rappresenta il valore limite annuale (40 µg/m³), quella arancione in valore di riferimento dell'OMS (20 µg/m³).

<u>Legenda:</u> nel grafico box-plot per ciascuna distribuzione: il lato inferiore del rettangolo coincide con il primo quartile (25° percentile) della distribuzione; il lato superiore del rettangolo coincide con il terzo quartile (75° percentile). La linea interna al rettangolo coincide con la mediana. Il punto blu coincide con la media. I segmenti a partire dal lato superiore ed inferiore del box sono chiamati "baffi".

Il "baffo" inferiore assume il valore L=Q1-1,5IQR (dove Q1 è il primo quartile e IQR è il range interquartile, cioè la differenza tra 3° e 1° quartile) o il valore minimo, se maggiore di L.

Il "baffo" superiore assume il valore R=Q3+1,5IQR (dove Q3 è il terzo quartile e IQR è il range interquartile) o il valore massimo, se inferiore a R. I punti celesti sono valori esterni all'intervallo definito dai baffi superiore ed inferiore.

Fonte: Flaborazioni ISPRA su dati ARPA/APPA

Il quadro meteorologico descritto nel capitolo 3 è utile anche per interpretare i livelli medi annuali del PM₁₀. In particolare le condizioni di stabilità atmosferica invernale e il numero di giorni favorevoli all'accumulo del particolato, si riflettono sulle medie annuali, e sulla

distribuzione dei dati nel corso dell'anno nelle diverse zone del Paese.

In Figura 4.5 è riportata la distribuzione delle medie annuali del PM_{10} per area geografica, analogamente a

quanto riportato in Figura 4.4. Un rettangolo piccolo (piccola distanza interquartile, il 50% delle misure ricade all'interno di tale intervallo) indica che tale variabilità è limitata. I segmenti che si estendono dai lati superiore ed inferiore descrivono quanto i livelli si possono discostare dal valore mediano (rappresentato dalla linea interna al rettangolo). Quanto più grande è la distanza tra gli estremi dei due segmenti, tanto maggiore è l'intervallo di variabilità complessiva riscontrato in una regione. I punti estemi agli estremi dei segmenti sono valori che si discostano significativamente dalle altre osservazioni disponibili.

Il grafico riassume complessivamente i valori rilevati e la variabilità osservata sul territorio di ciascuna area, e il quadro che emerge è ovviamente analogo a quello riportato relativo ai superamenti del valore limite giornaliero, con livelli generalmente più alti nel bacino padano, nella Valle del Sacco e nell'agglomerato di Napoli e Caserta, pur se il rispetto del valore limite annuale appare generalizzato.

In Valle d'Aosta e in provincia di Bolzano sono stati registrati in tutte le stazioni valori inferiori a 20 μ g/m³, valore di riferimento indicato dall'OMS per la protezione della salute, la metà del limite normativo. Nelle stazioni urbane valdostane i livelli sono inferiori o al più pari al valore delle linee guida per il quinto anno consecutivo.

Anche nella regione **Piemonte**, come nel 2018, il valore limite della media annuale, non è stato superato in nessuna stazione. Si tratta del secondo anno consecutivo in cui il valore limite annuale di PM_{10} è rispettato in tutto il territorio regionale. Tra le stazioni di rilevanza nazionale il valore più elevato della media annuale, pari a 35 $\mu g/m^3$, è stato misurato ad Alessandria, nella stazione di traffico urbano di Alessandria - D'Annunzio (nel 2018 era stato pari a 37 $\mu g/m^3$).

Situazione analoga in Veneto e Lombardia, dove in tutte le stazioni è stato rispettato il valore limite sulla media annua. In entrambe le regioni è il quarto anno, dopo il 2014, il 2016 e il 2018, che si verifica un rispetto generalizzato di tale parametro. In Emilia-Romagna per

il settimo anno consecutivo, non si registrano superamenti del valore limite annuale in nessuna stazione della regione. Nel 2019 i valori medi annui sono stati in linea con quelli registrati nel 2018. In **Campania** la concentrazione media annuale è risultata superiore a 40 (46 µg/m³) nella stazione di *S. Vitaliano Scuola Marconi* in provincia di Napoli. Le altre misurazioni, seppur sotto soglia, confermano la situazione di criticità territoriale già evidenziata per l'agro acerrano-nolano e l'agro nocerino-sarnese.

4.6: PM₁₀ – ANALISI DEI TREND

Le emissioni di PM_{10} sono caratterizzate nel periodo 1990-2018 da un andamento decrescente, passando da 296 Gg a 177 Gg con un decremento del 40%. La riduzione dal 2005 tuttavia è pari solo al 22%. La maggior parte delle emissioni è dovuta alla combustione non industriale (54% del totale nel 2018), per la quale si registra un incremento del 38% rispetto al 2005, all'agricoltura (13%) e ai trasporti su strada (12%) (ISPRA, 2020a).

La relazione tra riduzione delle emissioni ("la quantità" di un dato inquinante rilasciato in atmosfera in un dato periodo di tempo in una data area) e la corrispondente riduzione della concentrazione (la quantità di un certo inquinante rilevabile in un dato volume d'aria in un dato luogo e momento o periodo) non è semplice né intuitiva.

Gli inquinanti emessi in atmosfera dalle varie sorgenti si diluiscono e vengono trasportati a medie e lunghe distanze. Alcuni di essi reagiscono chimicamente tra loro per formare nuovi inquinanti e tali reazioni possono essere favorite o sfavorite dalle diverse condizioni meteo-climatiche

Le emissioni allo scarico dei veicoli rilasciano direttamente in atmosfera particelle carboniose come residuo della combustione. Queste costituiscono una delle macrocomponenti del materiale particolato, il carbonio elementare. Alcune sostanze gassose (gli ossidi di azoto, gli ossidi di zolfo – oggi in quantità praticamente trascurabile - i composti organici volatili e l'ammoniaca) emesse anch'esse allo scarico

contribuiscono alle concentrazioni osservate di PM_{10} e $PM_{2,5}$ come precursori del cosiddetto particolato secondario (da esse si formano in atmosfera, attraverso una serie di reazioni chimiche, particelle che costituiscono altre tre macrocomponenti del materiale particolato: il carbonio organico, i nitrati e i solfati d'ammonio). Qualsiasi altro tipo di combustione che abbia origine dall'uso di combustibili fossili rilascia in atmosfera le stesse sostanze che vanno a formare le medesime macrocomponenti.

Anche la combustione della biomassa legnosa è rilevante in particolare per le macrocomponenti di carbonio elementare e carbonio organico con una spiccata variabilità stagionale e regionale (in relazione all'uso più o meno intensivo). Le attività agricole e zootecniche possono anch'esse contribuire alle macrocomponenti citate, qualora vengano svolte attività di abbruciamento di materiale vegetale derivante dalle normali attività agricole e selvicolturali (oggi vietate nel periodo invernale nelle zone, come il bacino padano, a maggior rischio di superamento dei valori limite di legge per il PM₁₀), ma soprattutto sono la fonte assolutamente prevalente di emissioni di ammoniaca. Vanno poi ricordate altre tre macrocomponenti del particolato, che hanno diversa rilevanza in funzione della stagione e della zona geografica: due sono di origine naturale, l'aerosol marino e le particelle che originano da trasporto a lunga distanza di sabbie desertiche, la terza, componente terrigena o di risollevamento dal suolo, in parte ha origine naturale in parte può riportare in dispersione particelle originariamente emesse dai veicoli per fenomeni di attrito, o prodotte da attività di costruzione, cantieristiche o rilasciate da attività di estrazione.

Nella Figura 4.6 è riportata la distribuzione delle concentrazioni medie annuali determinate nel periodo studiato (2010 - 2019) su un campione di 370 stazioni che rispettano nel decennio i criteri di selezione descritti nella sezione metodi.

Si può osservare qualitativamente la riduzione complessiva dei livelli medi annuali, e una tendenza alla riduzione della variabilità spaziale, che è indicata dalla

distanza interquartile e dalla distanza tra l'estremo superiore e inferiore della distribuzione che tendono a ridursi negli anni. Le oscillazioni interannuali sono piuttosto ampie, come prevedibile, a conferma del fatto che le valutazioni fatte confrontando anni adiacenti anziché analizzare serie storiche di lungo periodo, non consentono in alcun modo di apprezzare eventuali tendenze di fondo

Proseguendo una valutazione preliminare di tipo qualitativo, è interessante osservare l'andamento generale, rappresentato dalla media delle medie annuali, distinto per tipo di stazione (Figura 4.7). In questo caso non sembrano emergere tendenze diverse per tipo di stazione, l'andamento generale delle stazioni di fondo urbano e suburbano segue in modo fedele il profilo dell'andamento delle stazioni di traffico urbano e suburbano.

L'analisi statistica condotta con il metodo di Mann-Kendall corretto per la stagionalità, i cui risultati sono riportati sinteticamente nella Tabella 4.4 e nella Figura 4.8, ha permesso di evidenziare un trend decrescente statisticamente significativo nel 72% dei casi (268 stazioni di monitoraggio su 370; variazione annuale media stimata: -0,7 μ g/m³y [-3,1 μ g/m³y ÷ -0,1 μ g/m³y]). Un trend crescente statisticamente significativo è stato individuato nel 5% dei casi (18 stazioni di monitoraggio su 370; variazione annuale media stimata: +0,7 μ g/m³y [+0,2 μ g/m³y ÷ +1,5 μ g/m³y]). Nel restante 23% dei casi (84 stazioni di monitoraggio su 370) non è stato possibile escludere l'ipotesi nulla (assenza di trend) per il dato livello di confidenza (95%).

Nella Figura 4.9 sono riportati su mappa i risultati dell'analisi dei trend per ciascuna stazione di monitoraggio considerata.

Nella maggior parte dei casi le stazioni ubicate nel territorio di una stessa provincia mostrano un trend coerente tra loro, supportando l'ipotesi che il trend non sia dovuto a situazioni locali, ma possa essere indicativo di una tendenza generale, nel territorio in esame. Si osserva una riduzione media annuale sulla porzione di

campione considerato per il quale è stato individuato un trend decrescente statisticamente significativo (268 casi su 370) del 2,5% (-6,6% \div -0,8%), corrispondente a una riduzione media in termini di concentrazione di 0,7 μ g/m³ (-3,1 \div -0,1 μ g/m³) indicativa dell'esistenza di una

tendenza di fondo alla riduzione delle concentrazioni di PM_{10} in Italia.

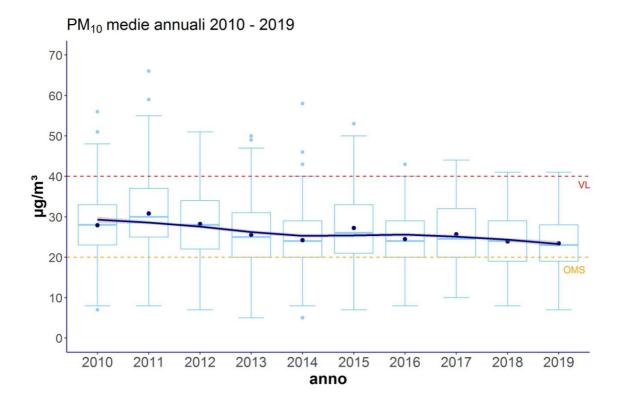


Figura 4.6. PM₁₀, 2010 - 2019. Media annua - Statistiche descrittive calcolate su una selezione di 370 stazioni di monitoraggio distribuite sul territorio nazionale.

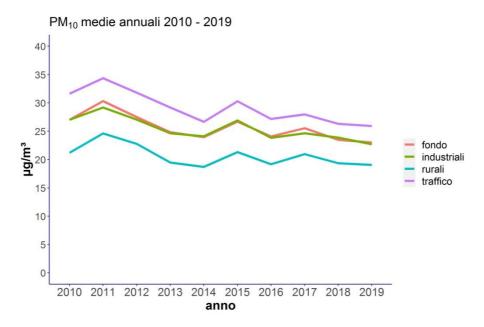


Figura 4.7. PM₁₀, 2010 - 2019. Andamento della media delle media annuali calcolata su un campione di 370 stazioni, per tipo di stazione. Fondo = stazioni di fondo urbano e suburbano (180 stazioni); industriali = stazioni industriali urbane, suburbane e rurali (37 stazioni); traffico = stazioni di traffico urbano, suburbano e rurale (113 stazioni); rurali: stazioni rurali di fondo, nearcity, e remote (40 stazioni).

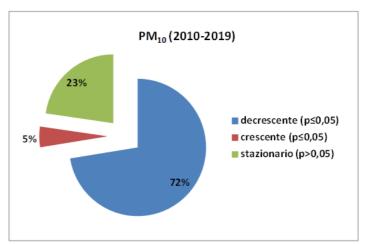


Figura 4.8. Sintesi dei risultati dell'analisi del trend (2010 - 2019) con il test di Kendall corretto per la stagionalità delle concentrazioni di PM₁₀ in Italia su una selezione di 370 stazioni di monitoraggio distribuite sul territorio nazionale.

Tabella 4.4. Sintesi dei risultati dell'analisi del trend (2010 - 2019) con il test di Kendall corretto per la stagionalità delle concentrazioni di PM₁₀ in Italia su una selezione di 370 stazioni di monitoraggio distribuite sul territorio nazionale.

PM ₁₀	Trend decrescente (p≤0,05)		Trend crescente (p≤0,05)		Trend non significativo (p>0,05)
	n	$\Delta_{ m y}$ (µg m $^{-3}$ y $^{-1}$)	n	Δy (μg m ⁻³ y ⁻¹)	n
2010 - 2019 (370 stazioni)	268	-0,7 [-3,1 ÷ -0,1]	18	0,7 [0,2 ÷ 1,5]	84

Legenda:

p≤ 0,05: il trend osservato è statisticamente significativo

p>0,05: non può essere esclusa l'ipotesi nulla (assenza di trend)

Δy: variazione media annuale stimata sulla base dei risultati del test di Kendall corretto per la stagionalità

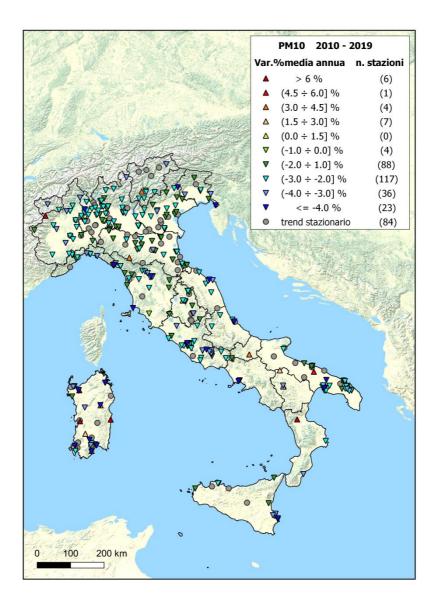


Figura 4.9. PM₁₀, 2010 - 2019. Risultati dell'analisi del trend con il test di Kendall corretto per la stagionalità su una selezione di 370 stazioni. Distribuzione sul territorio delle stazioni analizzate e variazione percentuale media annua stimata della concentrazione.

4.7. PM_{2,5} - SINTESI DEI LIVELLI SU SCALA NAZIONALE

Le stazioni di monitoraggio che hanno misurato e comunicato dati di $PM_{2,5}$ nel 2019 sono 298. Di queste, 286 (96%) rispettano i criteri di copertura temporale di cui all'allegato I del D.Lgs. 155/2010 (al netto delle perdite di dati dovute alla taratura periodica o alla manutenzione ordinaria). Tutte le Regioni sono rappresentate. La classificazione delle stazioni di monitoraggio di $PM_{2,5}$ secondo i criteri di ubicazione su macroscala previsti dalla normativa è rappresentata in Figura 4.10.

Il valore limite annuale del PM_{2,5} (25 μg/m³) è rispettato nella quasi totalità delle stazioni: sono stati registrati superamenti in 3 stazioni pari all'1% dei casi. Risulta tuttavia superato nella maggior parte delle stazioni di monitoraggio il valore di riferimento annuale dell'OMS (80% dei casi, Figura 4.11).

I superamenti del valore limite annuale hanno interessato 3 zone su 81 distribuite in 2 Regioni (Lombardia e Veneto).

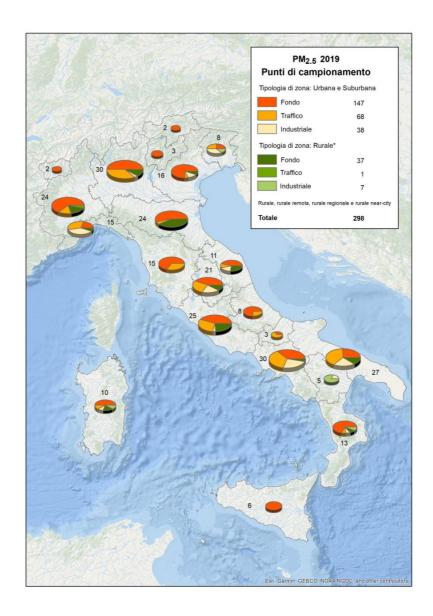


Figura 4.10. PM_{2.5}. Classificazione dei punti di campionamento secondo i criteri di ubicazione su macroscala di cui all'Allegato III, D.Lgs.155/2010 (2019).

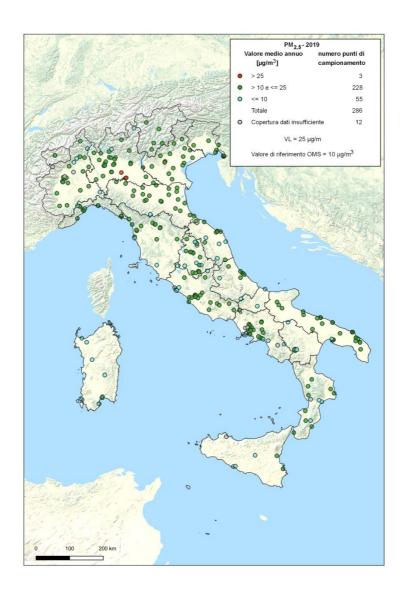


Figura 4.11. PM_{2,5}. Stazioni di monitoraggio e superamenti del valore limite annuale per la protezione della salute (2019). Fonte: Elaborazioni ISPRA su dati ARPA/APPA

17	abella 4.5. Pivi _{2,5} . Zone dove si e verilica	to il superamento d	dei valore ilmite annuale in almeno una stazione (2019)	

Regione	Codice zona	Nome zona	Tipo zona
LOMBARDIA	IT0309	Zona A- Pianura ad elevata urbanizzazione	noagg
LOMBARDIA	IT0310	Zona B - Pianura	noagg
VENETO	IT0511	Agglomerato_Vicenza	agg

Nota: Se si è verificato nell'anno in esame un superamento del valore limite in almeno una delle stazioni facenti parte del programma di valutazione della zona, o questo è stato individuato anche mediante l'uso di modelli, misure indicative o stime obiettive, l'intera zona è considerata in superamento. L'effettiva area di superamento (area, ricadente all'interno di una zona o di un agglomerato, nella quale è stato valutato il superamento di un valore initie o di un valore obiettivo), può essere individuata sulla base della rappresentatività delle misurazioni in siti fissi o indicative o sulla base delle tecniche di modellizzazione dalle Regioni e PP/AA in fase di valutazione della qualità dell'aria, anche al fine di programmare gli interventi di risanamento.

4.8. PM_{2.5} - DETTAGLIO REGIONALE

In Figura 4.12 è riportata la distribuzione delle medie annuali del PM_{2,5} per regione. Il grafico riassume complessivamente i valori rilevati e la variabilità osservata sul territorio di ciascuna regione. Un rettangolo piccolo (piccola distanza interquartile, il 50% delle misure ricade all'interno di tale intervallo) indica che tale variabilità è limitata. I segmenti che si estendono dai lati superiore ed inferiore descrivono quanto i livelli si possono discostare dal valore mediano (rappresentato dalla linea interna al rettangolo). Quanto più grande è la distanza tra gli estremi dei due segmenti, tanto maggiore è l'intervallo di variabilità complessiva riscontrato in una regione. I punti esterni agli estremi dei segmenti sono valori che si discostano significativamente dalle altre osservazioni disponibili. Ciascuna regione ha un numero totale di stazioni di monitoraggio diverso, e differente distribuzione numerica per zona (rurale, urbana e suburbana) e tipo (fondo, traffico, industriale) che discende dai criteri fissati dalla normativa seguiti nella definizione dei programmi di valutazione regionali, e riflette le caratteristiche di ciascuna regione. Un'ampia distanza interquartile, ad esempio, è indice del fatto che le stazioni sono ubicate in zone molto differenti dal punto di vista orografico, climatico e, spesso, dei carichi (montagna, emissivi pianura, zone costiere. agglomerati). Questi grafici non sono quindi da interpretare ai fini del confronto tra le varie regioni, ma piuttosto servono ad evidenziarne le specificità, legate a fattori che rendono ciascuna diversa dalle altre.

Valle d'Aosta, Alto Adige, Trento, Liguria, Abruzzo, Basilicata e Sicilia sono le regioni con i livelli medi più bassi, ampiamente inferiori al limite di 25 μg/m³ stabilito dalla legge, vicini al rispetto del valore di riferimento dell'OMS e al massimo pari a 15 μg/m³.

Anche in questo caso un'importante chiave di lettura dei dati è fornita dal quadro meteorologico descritto nel capitolo 4. In particolare i livelli medi annuali registrarti nelle regioni del bacino padano sono influenzati dagli alti livelli invernali che si verificano nei giorni favorevoli all'accumulo degli inquinanti dovuti alle condizioni di stabilità atmosferica e inversione termica a bassa quota.

In Valle d'Aosta la concentrazione media annua del PM_{2.5} resta ampiamente inferiore al limite di 25 µg/m³ stabilito dalla legge, mostrando dati sostanzialmente sovrapponibili tra le due stazioni urbane.

In Lombardia il valore limite annuale è stato rispettato in tutte le stazioni di monitoraggio del programma di valutazione regionale, con la sola eccezione di *Cremona Fatebenefratelli* e *Soresina*, determinando quindi il mancato rispetto del limite nelle zone di Pianura ad Elevata urbanizzazione e di Pianura. Analogamente al PM₁₀, anche per il PM_{2.5} il dato 2019 conferma il trend in progressiva diminuzione nel corso degli anni, con dati in generale meno elevati che nel 2017 e, in buona parte delle stazioni, inferiori anche a quelli del 2018. In Veneto si registra un superamento del valore limite a Vicenza, nella stazione di *VI-Quartiere Italia*. I valori medi su tutte

le stazioni sono in leggera diminuzione rispetto agli anni precedenti (2017 e 2018).

In tutti e tre i casi di superamento la media annuale è stata pari a 26 µg/m³.

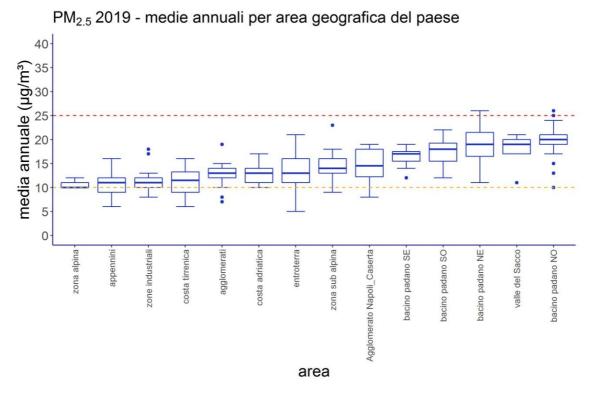


Figura 4.12. PM_{2.5} (2019). Distribuzione delle medie annuali per zona geografica, agglomerati e zone industriali non appartenenti al bacino padano. Oltre al bacino padano (suddiviso in quattro classi, Nord Ovest, Nord Est, Sud Ovest e Sud Est) sono evidenziate le altre due zone critiche, la Valle del Sacco e l'aggromerato di Napoli e Caserta.

Legenda: nel grafico box-plot per ciascuna distribuzione: il lato inferiore del rettangolo coincide con il primo quartile (25° percentile) della distribuzione; il lato superiore del rettangolo coincide con il terzo quartile (75° percentile). La linea interna al rettangolo coincide con la mediana. Il punto blu coincide con la media. I segmenti a partire dal lato superiore ed inferiore del box sono chiamati "baffi".

Il "baffo" inferiore assume il valore L=Q1-1,5IQR (dove Q1 è il primo quartile e IQR è il range interquartile, cioè la differenza tra 3° e 1° quartile) o il valore minimo, se maggiore di L.

Il "baffo" superiore assume il valore R=Q3+1,5IQR (dove Q3 è il terzo quartile e IQR è il range interquartile) o il valore massimo, se inferiore a R. I punti celesti sono valori esterni all'intervallo definito dai baffi superiore ed inferiore.

La linea rossa rappresenta il valore limite annuale (40 μg/m³), quella arancione in valore di riferimento dell'OMS (20 μg/m³).

In **Piemonte** i dati riferiti al 2019 rilevano un decremento rispetto al 2018 (che già aveva evidenziato una netta riduzione delle concentrazioni rispetto al 2017) con un rispetto del valore limite annuale su tutto il territorio regionale. Il valore di media annuale più elevato, pari a 25 µg/m³, è stato rilevato nella stazione da traffico urbano di *Torino Rebaudengo*. Nessun superamento anche in **Emilia-Romagna**, così come nel 2018; inoltre i valori medi su tutte le stazioni risultano in leggera diminuzione rispetto all'anno precedente.

In Sardegna le medie annuali variano da 10 µg/m³ a 19 µg/m³ nell'agglomerato di Cagliari, mentre sono vicine al rispetto del valore di riferimento dell'OMS nel resto del territorio come si evince dai valori registrati nella zona Urbana (costituita dai comuni di Sassari e Olbia), in quella Industriale e in quella rurale.

4.9. PM_{2.5} - ANALISI DEI TREND

Il trend delle emissioni di PM $_{2.5}$ è decrescente dal 1990 al 2018 con una variazione da 229 Gg a 143 Gg pari a -38% (19% dal 2005). In particolare, le emissioni dai trasporti su strada, che sono pari al 10% del totale, decrescono rispetto al 2005 del 62%. Come nel caso del PM $_{10}$, la combustione non industriale costituisce la maggiore fonte di emissione (66%) crescendo dal 2005 al 2018 del 38% (ISPRA, 2020a).

Si riporta nel seguito l'analisi descrittiva dell'andamento generale, ottenuto confrontando i risultati delle valutazioni annuali disponibili dal 2010 ad oggi. Si tratta, come già descritto per il PM₁₀, di una prima valutazione di screening perché il campione è numericamente variabile di anno in anno (il numero di punti di misura è riportato in blu in corrispondenza di ogni box plot annuale) in relazione all'evoluzione delle reti regionali che si è verificata nel tempo anche in relazione all'entrata in vigore di successive normative. Questo aspetto è particolarmente critico per il PM_{2,5} in quanto la rete si è sviluppata progressivamente proprio negli ultimi anni successivi all'entrata in vigore del D.Lgs. 155/2010.

Si nota comunque una lenta ma constante tendenza alla riduzione dei livelli medi. In particolare si osserva che fino

al 2012 si registravano superamenti del valore limite annuale in circa il 20 - 25% dei punti di misura; negli ultimi due anni invece il valore limite è stato superato solo in 3 casi nel 2018 ed in un solo caso nel 2019.

Tali osservazioni sono integrate da un'analisi statistica dei trend, eseguita su un campione omogeneo di punti di misura con osservazioni continue in un arco temporale lungo. Nel caso del PM_{2.5} il set di stazioni con queste caratteristiche è limitato a 126, nel periodo 2010 – 2019 (vedi sezione metodi per i criteri di selezione ed analisi).

Nella Figura 4.13 è riportata la distribuzione delle concentrazioni medie annuali determinate nel periodo studiato (2010 – 2019). Si può osservare qualitativamente la riduzione complessiva dei livelli medi annuali, e una tendenza alla riduzione della variabilità spaziale, che è indicata dalla distanza interquartile e dalla distanza tra l'estremo superiore e inferiore della distribuzione che tendono a ridursi negli anni.

Le oscillazioni interannuali sono piuttosto ampie, come prevedibile a conferma del fatto che le valutazioni fatte confrontando anni adiacenti, anziché analizzare serie storiche di lungo periodo, non consentono in alcun modo di apprezzare eventuali tendenze di fondo.

Proseguendo una valutazione preliminare di tipo qualitativo, è interessante osservare l'andamento generale, rappresentato dalla media delle medie annuali, distinto per tipo di stazione (Figura 4.14). In questo caso non sembrano emergere tendenze diverse per tipo di stazione, l'andamento generale delle stazioni di fondo urbano e suburbano segue in modo fedele il profilo dell'andamento delle stazioni di traffico urbano e suburbano.

L'analisi statistica condotta con il metodo di Mann-Kendall corretto per la stagionalità, i cui risultati sono riportati sinteticamente nella tabella 4.6 e nella Figura 4.15, ha permesso di evidenziare un andamento decrescente statisticamente significativo nel 80% dei casi (101 stazioni di monitoraggio su 126; variazione annuale media stimata: -0,5 µg/m³y [-1,5 µg/m³y ÷ -0,2 µg/m³y]). Un trend crescente statisticamente significativo

è stato individuato nel 3% dei casi (4 stazioni di monitoraggio su 126; variazione annuale media stimata: $+0.5 \mu g/m^3 y$ [$+0.2 \mu g/m^3 y \div +0.9 \mu g/m^3 y$]). Nel restante 17% dei casi (21 stazioni di monitoraggio su 126) non è stato possibile escludere l'ipotesi nulla (assenza di trend) per il dato livello di confidenza (95%).

Sulla porzione di campione considerato per il quale è stato individuato un trend decrescente statisticamente

significativo (101 casi su 126) si osserva una riduzione media annuale del 2,7% (-5,4% \div -1,1%), corrispondente a una riduzione media in termini di concentrazione di 0,5 μ g/m³y (-1,5 \div -0,2 μ g/m³y). Tale riduzione appare dunque generalizzata, con riferimento al campione di stazioni analizzato.

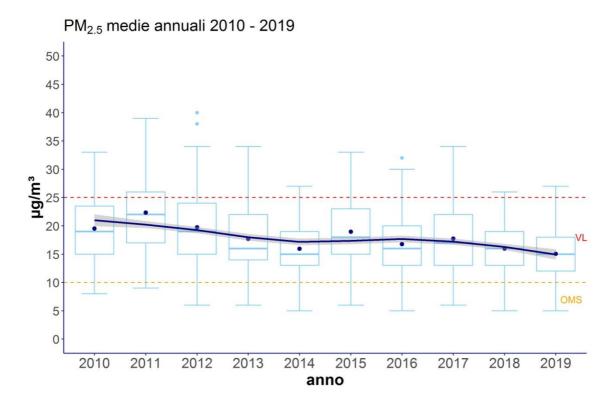


Figura 4.13. PM₂₅, 2010 – 2019. Media annua - Statistiche descrittive calcolate su una selezione di 126 stazioni di monitoraggio distribuite sul territorio nazionale.

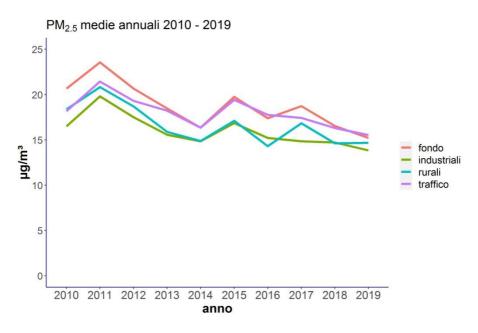


Figura 4.14. PM_{2.5}, 2010 – 2019. Andamento della media delle media annuali calcolata su un campione di 126 stazioni, per tipo di stazione. Fondo = stazioni di fondo urbano e suburbano (67 stazioni); industriali = stazioni industriali urbane, suburbane e rurali (14 stazioni); traffico = stazioni di traffico urbano, suburbano (26 stazioni); rurali: stazioni rurali di fondo, nearcity, e remote (19 stazioni).

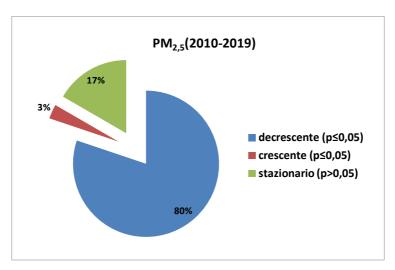


Figura 4.15. Sintesi dei risultati dell'analisi del trend (2010 – 2019) con il test di Kendall corretto per la stagionalità delle concentrazioni di PM_{2,5} in Italia su una selezione di 126 stazioni di monitoraggio distribuite sul territorio nazionale.

Tabella 4.6. Sintesi dei risultati dell'analisi del trend (2010 – 2019) con il test di Kendall corretto per la stagionalità delle concentrazioni di PM_{2.5} in Italia su una selezione di 126 stazioni di monitoraggio distribuite sul territorio nazionale.

PM _{2,5}	PM _{2,5} Trend decrescente (p≤0,05)		Trend crescente (p≤0,05)		Trend non significativo (p>0,05)
	n	$\Delta_{ m y}$ (µg m $^{-3}$ y $^{-1}$)	n	$\Delta_{ m y}$ (µg m ⁻³ y ⁻¹)	n
2010 – 2019 (126 stazioni)	101	-0,5 [-1,5 ÷ -0,2]	4	0,7 [0.2 ÷ 0,9]	21

Legenda:

p≤ 0,05: il trend osservato è statisticamente significativo

p>0,05: non può essere esclusa l'ipotesi nulla (assenza di trend)

Δy: variazione media annuale stimata sulla base dei risultati del test di Kendall corretto per la stagionalità.

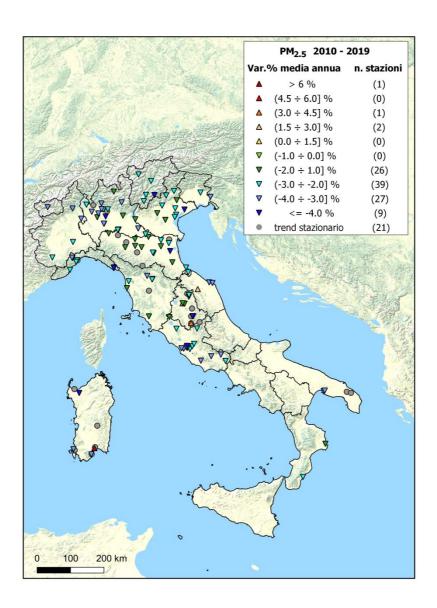


Figura 4.16. PM_{2.5}, 2010 – 2019. Risultati dell'analisi del trend con il test di Kendall corretto per la stagionalità su un campione di 126 stazioni. Distribuzione sul territorio delle stazioni analizzate e variazione percentuale media annua stimata della concentrazione.

4.10. PM_{2.5} – INDICATORE DI ESPOSIZIONE MEDIA

In questo paragrafo è descritto l'andamento dell' "indicatore di esposizione media" introdotto dalla legislazione vigente per stimare lo stato attuale dell'esposizione media della popolazione di ciascuno stato membro e al contempo rappresentare la base per monitorare i progressi degli stessi nella riduzione nel tempo dei livelli, in modo progressivo e coerente nel Paese (vedi paragrafo 4.3).

La valutazione di tale indicatore su base nazionale integra la normativa vigente rispetto a quanto previsto per il PM_{2,5} e i relativi obblighi di valutazione e gestione

della qualità dell'aria con riferimento al valore limite annuale.

Con il decreto del Ministero dell'ambiente 13 marzo 2013 è stato individuato il set di stazioni utili ai fini del calcolo dell'IEM per l'Italia (Tabella 4.7).

Il grafico di Figura 4.17 illustra l'andamento dell'indicatore calcolato sulla base delle medie annuali rilevate in ciascuna stazione dal 2010 al 2019.

Tenuto conto del valore iniziale (compreso tra 18 e 22 μ g/m³) l'obiettivo al 2020 per l'Italia è quello di ridurre tale valore del 20%.

L'obiettivo appare raggiunto già nel 2019 (si registra una riduzione percentuale del 23% rispetto al valore iniziale).

Tabella 4.7. Stazioni individuate dal D.M. 13 marzo 2013 ai fini del calcolo dell'Indicatore di esposizione media per il PM25.

Regione	Provincia	Comune	Nome stazione
PIEMONTE	Torino	Torino	TORINO LINGOTTO
VALLE_AOSTA	Aosta	Aosta	AOSTA (PIAZZA PLOUVES)
LOMBARDIA	Milano	Milano	MILANO PASCAL CITTÀ STUDI
LOWBARDIA	Brescia	Brescia	BRESCIA VILLAGGIO SERENO
PA_BOLZANO	Bolzano	Laives	LS1 LAIVES
PA_TRENTO	Trento	Trento	TRENTO PSC
VENETO	Padova	Padova	MANDRIA
FRIULI VENEZIA GIULIA	Udine	Udine	CAIROLI
LIGURIA	Genova	Genova	QUARTO - GENOVA
LIGURIA	La Spezia	La Spezia	MAGGIOLINA - LA SPEZIA
	Parma	Parma	CITTADELLA
EMILIA ROMAGNA	Bologna	Bologna	GIARDINI MARGHERITA
	Rimini	Rimini	MARECCHIA
TOCCANA	Firenze	Firenze	FI-BASSI
TOSCANA	Grosseto	Grosseto	GR-URSS
UMBRIA	Perugia	Perugia	CORTONESE
MARCHE	Ancona	Ancona	ANCONA CITTADELLA
WARCHE	Macerata	Macerata	MACERATA COLLEVARIO
LAZIO	Roma	Roma	VILLA ADA
CAMPANIA	Napoli	Napoli	NA01 OSSERVATORIO ASTRONOMICO
PUGLIA	Taranto	Taranto	TARANTO MACHIAVELLI
	Lecce	Lecce	LECCE - GARIGLIANO
CALABRIA	Cosenza	Cosenza	CITTÀ DEI RAGAZZI

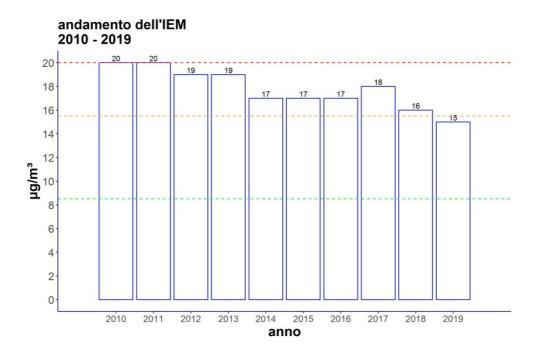


Figura 4.17. Andamento dell'indicatore di esposizione media (IEM) al PM_{2.5}. La linea rossa indica il valore corrispondente all' "obbligo di esposizione" (raggiungere entro il 2015 e non superare un valore dell'IEM pari al massimo a 20 μg/m³). La linea gialla rappresenta il valore corrispondente al raggiungimento dell'obiettivo per l'Italia (una riduzione dell'IEM pari almeno al 20% rispetto al valore iniziale dell'IEM). La linea verde corrisponde al valore minimo dell'IEM oltre il quale era richiesto dalla normativa l'implementazione di azioni per ridurre l'esposizione della popolazione.

5. BIOSSIDO DI AZOTO

5.1. CARATTERISTICHE CHIMICO FISICHE E SORGENTI

Gli ossidi di azoto si formano durante qualsiasi combustione dove l'aria sia il comburente, in ragione della presenza di azoto e ossigeno. Nella miscela di reazione il monossido di azoto (NO) è prevalente ed è accompagnato da quote variabili di biossido di azoto (NO₂).

Quest'ultimo si forma in atmosfera prevalentemente in conseguenza di reazioni chimiche che coinvolgono l'ossido di azoto (NO) emesso da fonti primarie, l'ozono (O₃) e alcuni radicali ossidrilici o organici come HO₂ o RO₂ (dove R è una catena di atomi di carbonio, a saturazione variabile con la possibile presenza di gruppi funzionali di vario tipo). Generalmente solo una parte (<10%) dell'NO2 presente in atmosfera è emesso direttamente dalle fonti antropiche o naturali. Attraverso numerose altre reazioni che coinvolgono gli stessi radicali, l'O₃, l'ossigeno, l'acqua e la radiazione ultravioletta solare, gli ossidi di azoto (NOx) possono essere trasformati in acido nitroso, acido nitrico e perossiacetilnitrati (PAN). In funzione dell'entità delle emissioni dei precursori (NO e composti organici volatili), dell'intensità della radiazione solare, delle condizioni di stabilità delle masse d'aria e dei gradienti verticali di temperatura, possono essere favoriti o meno i processi che portano alla formazione di alcune delle sostanze citate rispetto alle altre, determinando così gli episodi di smoq fotochimico. Le forme idrate degli ossidi di azoto possono formare in atmosfera sali nitrati che diventano parte importante del particolato secondario. Le principali sorgenti di ossidi di azoto sono costituite dalle combustioni nel settore dei trasporti (in particolare dai motori diesel), negli impianti industriali, negli impianti di

produzione di energia elettrica, di riscaldamento civile e di incenerimento dei rifiuti. Le sorgenti naturali di emissione sono i suoli, i vulcani e i fenomeni temporaleschi (EC. 1997a).

5.2. EFFETTI SULLA SALUTE

L'NO₂ è tra i vari ossidi di azoto quello più importante da un punto di vista tossicologico. Tale composto possiede un forte potere ossidante, che esercita prevalentemente sulle mucose con cui viene in contatto. Numerosi lavori hanno evidenziato una associazione statisticamente significativa tra le concentrazioni atmosferiche giornaliere di NO₂ e le consultazioni mediche, i ricoveri ospedalieri per malattie respiratorie, la sintomatologia respiratoria nei bambini e l'incidenza di attacchi d'asma. È stata anche riscontrata un'associazione significativa tra le concentrazioni atmosferiche di NO₂ e la mortalità giornaliera in varie città.

Le evidenze supportano un valore guida per esposizioni a breve termine (un'ora) di 200 $\mu g/m^3$ e per esposizioni a lungo termine di 40 $\mu g/m^3$ (OMS, 2000; OMS, 2006). Inoltre sono noti effetti dannosi per i materiali e per gli ecosistemi (acidificazione ed eutrofizzazione) causati dall'NO₂ e dalle deposizioni dei composti dell'azoto che si formano in atmosfera.

5.3: VALORI LIMITE E VALORI DI RIFERIMENTO OMS

I valori limite del biossido di azoto nell'aria ambiente definiti dalla normativa insieme ai valori di riferimento OMS sono riportati nella Tabella 5.1.

Tabella 5.1: NO₂- Valori limite per la protezione della salute umana ai sensi del D.Lgs.155/2010 e valori di riferimento OMS

Fonte: D.Las. 155/2010

Periodo di mediazione	Valore limite D.Lgs.155/2010	Valori di riferimento OMS	
1 ora	200 µg/m³ da non superare più di 18 volte per anno civile	200 µg/m³ da non superare mai in un anno civile	
Anno civile		40 μg/m³	

5.4: NO₂ - SINTESI DEI LIVELLI SU SCALA NAZIONALE

Le stazioni di monitoraggio che hanno misurato e comunicato dati di NO_2 sono 622 nel 2019. Di queste, 578 (93%) hanno copertura temporale minima del 90% (al netto delle perdite di dati dovute alla taratura periodica o alla manutenzione ordinaria). Tutte le Regioni sono rappresentate. La classificazione delle stazioni di monitoraggio di NO_2 secondo i criteri di ubicazione su macroscala previsti dalla normativa è rappresentata in Figura 5.1.

Il valore limite orario (200 $\mu g/m^3$, come media oraria, da non superare più di 18 volte per anno civile) è largamente rispettato e in nessuna stazione si sono registrati superamenti del valore limite (Figura 5.2). Il valore di riferimento OMS, che non prevede superamenti dei 200 $\mu g/m^3$, è stato superato in 13 stazioni (pari al 2% delle stazioni con copertura temporale sufficiente).

Il valore limite annuale, pari a 40 µg/m³, che coincide con il valore di riferimento OMS per gli effetti a lungo termine sulla salute umana, è stato superato in 30 stazioni (pari al 5% delle stazioni con copertura temporale sufficiente) (Figura 5.3).

I superamenti del valore limite annuale hanno interessato 16 zone su 81 distribuite in 9 Regioni e 2 Province Autonome (Tabella 5.2). Si sono verificati in grandi aree urbane (Torino, Milano, Brescia, Genova, Bologna, Firenze, Roma, Napoli, Palermo, tutte città che costituiscono il centro principale di zone classificate come "agglomerato" ai fini della valutazione della qualità dell'aria) e altre importanti città (Trento, Modena, Rimini, Salerno, Campobasso).

La Figura 5.4 illustra in particolare la distribuzione dei livelli rilevati per tipo di stazione e di zona.

Si osserva come il maggior numero di superamenti del valore limite annuale si verifica nelle zone agglomerato in stazioni classificate come "traffico" in zona "urbana" o "suburbana" (circa il 34% delle stazioni di questo tipo nelle zone agglomerato). In tre casi su 65 si sono verificati superamenti anche in stazioni di fondo urbano.

Con minore frequenza (3 casi su 67) i superamenti si registrano in stazioni da traffico in zone diverse dagli agglomerati. In generale è raro osservare superamenti in stazioni di fondo urbano e suburbano (1 caso su 187) e non si osserva alcun superamento nelle stazioni industriali e in quelle rurali, dove si registrano mediamente i livelli più bassi.

¹ agglomerato: zona costituita da un'area urbana o da un insieme di aree urbane che distano tra loro non più di qualche chilometro oppure da un'area urbana principale e dall'insieme delle aree urbane minori

che dipendono da quella principale sul piano demografico, dei servizi e dei flussi di persone e merci, avente:

¹⁾ una popolazione superiore a 250.000 abitanti oppure;

²⁾ una popolazione inferiore a 250.000 abitanti e una densità di popolazione per km 2 superiore a 3.000 abitanti;

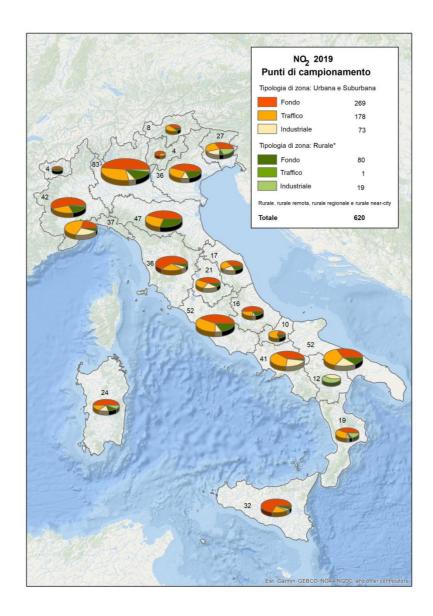


Figura 5.1. NO₂. Classificazione dei punti di campionamento secondo i criteri di ubicazione su macroscala di cui all'Allegato III, D.Lgs.155/2010 (2019).

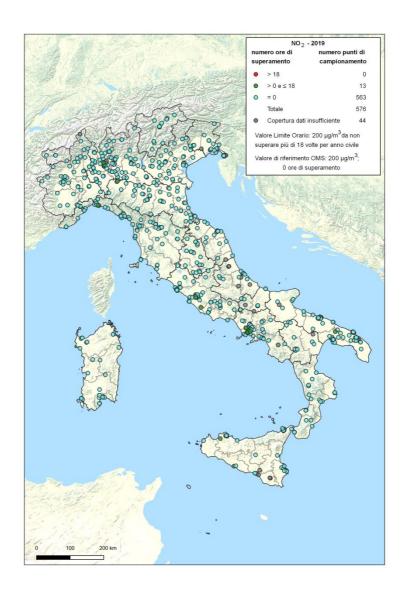


Figura 5.2. NO₂. Stazioni di monitoraggio e superamenti del valore limite orario per la protezione della salute (2019). Fonte: Elaborazioni ISPRA su dati ARPA/APPA

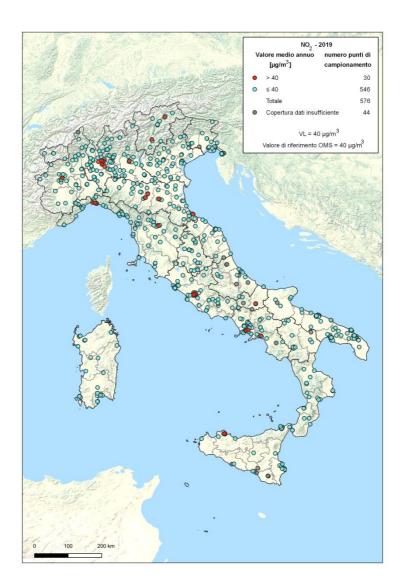


Figura 5.3. NO₂. Stazioni di monitoraggio e superamenti del valore limite annuale per la protezione della salute (2019). Fonte: Elaborazioni ISPRA su dati ARPA/APPA

Tabella 5.2: NO₂. Zone dove si è verificato il superamento del valore limite annuale in almeno una stazione (2019)

Regione	Codice zona	Nome zona	Tipo zona
PIEMONTE	IT0118	Agglomerato	agg
LOMBARDIA	IT0306	Agglomerato di Milano	agg
LOMBARDIA	IT0308	Agglomerato di Brescia	agg
LOMBARDIA	IT0309	Zona A- Pianura ad elevata urbanizzazione	noagg
PA_TRENTO	IT0403	fondovalle	noagg
PA_BOLZANO	IT0445	South Tyrol	noagg
LIGURIA	IT0711	Agglomerato Genova	agg
EMILIA_ROMAGNA	IT0890	Agglomerato	agg
EMILIA_ROMAGNA	IT0892	Pianura Ovest	noagg
EMILIA_ROMAGNA	IT0893	Pianura Est	noagg
TOSCANA	IT0906	Agglomerato di Firenze	agg
LAZIO	IT1215	Zona Agglomerato di Roma	agg
MOLISE	IT1403	Pianura	noagg
CAMPANIA	IT1507	Agglomerato Napoli_Caserta	agg
CAMPANIA	IT1508	Zona costiera_collinare	noagg
SICILIA	IT1911	Agglomerato Palermo	agg

Nota: Se si è verificato nell'anno in esame un superamento del valore limite in almeno una delle stazioni facenti parte del programma di valutazione della zona, o questo è stato individuato anche mediante l'uso di modelli, misure indicative o stime obiettive, l'intera zona è considerata in superamento. L'effettiva area di superamento (area, ricadente all'interno di una zona o di un agglomerato, nella quale è stato valutato il superamento di un valore limite o di un valore obiettivo), può essere individuata sulla base della rappresentatività delle misurazioni in siti fissi o indicative o sulla base delle tecniche di modellizzazione dalle Regioni e PP/AA in fase di valutazione della qualità dell'aria, anche al fine di programmare gli interventi di risanamento.

5.5: NO₂ – DETTAGLIO REGIONALE

Per quanto riguarda le condizioni atmosferiche registrate nel 2019 si rimanda alla lettura del capitolo 3. Le condizioni meteorologiche di stabilità atmosferica e inversione termica diurna a bassa quota, che, nel periodo invernale, favoriscono l'accumulo e l'aumento delle concentrazioni di materiale particolato, influenzano in modo analogo le concentrazioni di biossido di azoto. Anche il profilo stagionale è simile, con valori minimi nel periodo estivo.

In Figura 5.4 è riportata la distribuzione delle medie annuali dell'NO₂ per regione. Il grafico riassume complessivamente i valori rilevati e la variabilità osservata sul territorio di ciascuna regione. Un rettangolo piccolo (piccola distanza interquartile, il 50% delle misure ricade all'interno di tale intervallo) indica che tale variabilità è limitata. I segmenti che si estendono dai lati superiore ed inferiore descrivono quanto i livelli si possono discostare dal valore mediano (rappresentato dalla linea interna al rettangolo). Quanto più grande è la distanza tra gli estremi dei due segmenti, tanto maggiore è l'intervallo di variabilità complessiva riscontrato in una

regione. I punti esterni agli estremi dei segmenti sono valori che si discostano significativamente dalle altre osservazioni disponibili. Ciascuna regione ha un numero totale di stazioni di monitoraggio diverso, e differente distribuzione numerica per zona (rurale, urbana e suburbana) e tipo (fondo, traffico, Industriale) che discende dai criteri fissati dalla normativa seguiti nella definizione dei programmi di valutazione regionali, e riflette le caratteristiche di ciascuna regione. Un'ampia distanza interquartile, ad esempio, è indice del fatto che le stazioni sono ubicate in zone molto differenti dal punto di vista orografico, climatico e, spesso, dei carichi (montagna, pianura, emissivi zone costiere. agglomerati). Questi grafici non sono quindi da interpretare ai fini del confronto tra le varie regioni, ma piuttosto servono ad evidenziarne le specificità, legate a fattori che rendono ciascuna diversa dalle altre.

In dieci regioni (Valle d'Aosta, Friuli Venezia Giulia, Veneto, Umbria, Marche, Abruzzo, Puglia, Basilicata, Calabria e Sardegna) il valore limite annuale per la protezione della salute umana (40 μg/m³) è rispettato in tutte le stazioni di monitoraggio. In Valle d'Aosta per il terzo anno consecutivo il biossido di azoto, tipico delle combustioni e caratteristico delle emissioni da traffico, diminuisce in ambito urbano, sia in *Aosta piazza Plouves*, sia in *Aosta via Liconi*. La media annuale registrata è compresa tra i 21 e i 23 μg/m³.

In Piemonte le concentrazioni di biossido di azoto (NO₂) presentano nel 2019 una relativa stabilità dei valori misurati, pur in un quadro generale di decremento, attribuibile anche alle riduzioni sul lungo periodo delle emissioni degli impianti produttivi, per i quali sono stati introdotti limiti stringenti alle emissioni a camino.

I valori più elevati di NO_2 sono stati misurati prevalentemente nelle stazioni di traffico e il superamento del valore limite si è verificato, come lo scorso anno, nel capoluogo piemontese, nella stazione da traffico urbano di *Torino-Consolata* (53 μ g/m³), mentre in tutti gli altri punti di misura il valore limite è stato rispettato.

In Lombardia il biossido di azoto (NO₂) nel 2019 ha fatto registrare un andamento complessivamente in miglioramento su base pluriennale, con concentrazioni medie annue che sono oscillate intorno (e spesso sono state inferiori) a quelle del 2018, sebbene superamenti del valore limite annuale siano ancora presenti, in particolare in stazioni da traffico degli agglomerati urbani di Milano, compreso Monza, e Brescia e della zona di Pianura ad Elevata Urbanizzazione.

In **provincia di Bolzano** il 2019 è stato caratterizzato da concentrazioni medie leggermente inferiori rispetto al 2018. La valutazione sulla meteorologia, che ha senz'altro contribuito a tale miglioramento, è riportata nel paragrafo 3.5.

In **provincia di Trento** è stato registrato un superamento nel capoluogo, in una stazione di traffico urbano (Trento VBZ, $43 \mu g/m^3$).

Analogamente in **Liguria**, si sono verificati tre superamenti nelle stazioni di traffico urbano dell'agglomerato di Genova (Multedo – Pegli 46 μ g/m³; Corso Europa 57 μ g/m³; Via Buozzi 50 μ g/m³).

In **Veneto** non si sono registrati superamenti del valore limite annuale per il biossido di azoto (NO₂) nel 2019, analogamente a quanto accaduto nel 2018.

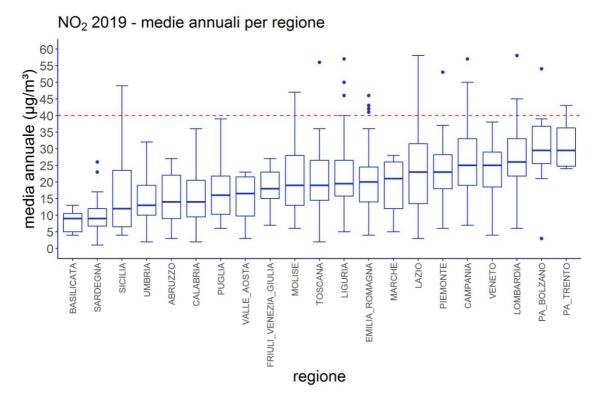


Figura 5.4. NO₂ (2019). Distribuzione delle medie annuali per regione. La linea rossa rappresenta il valore limite annuale, che coincide con il valore di riferimento dell'OMS.

<u>Legenda:</u> nel grafico box-plot per ciascuna distribuzione: il lato inferiore del rettangolo coincide con il primo quartile (25° percentile) della distribuzione; il lato superiore del rettangolo coincide con il terzo quartile (75° percentile). La linea interna al rettangolo coincide con la mediana. Il punto blu coincide con la media. I segmenti a partire dal lato superiore ed inferiore del box sono chiamati "baffi".

Il "baffo" inferiore assume il valore L=Q1-1,5IQR (dove Q1 è il primo quartile e IQR è il range interquartile, cioè la differenza tra 3° e 1° quartile) o il valore minimo, se maggiore di L.

Il "baffo" superiore assume il valore R=Q3+1,5IQR (dove Q3 è il terzo quartile e IQR è il range interquartile) o il valore massimo, se inferiore a R. I punti celesti sono valori esterni all'intervallo definito dai baffi superiore ed inferiore.

Fonte: Elaborazioni ISPRA su dati ARPA/APPA

In Emilia-Romagna la media annuale di biossido di azoto (NO₂) su tutte le stazioni mostra valori in linea con quelle dell'anno precedente. Il valore limite annuale è stato superato in 4 delle 47 stazioni che misurano l'inquinante, di cui 2 sono le stesse dello scorso anno (Fiorano Modenese – Circ. S. Francesco con 43 e Bologna – P. San Felice con 46), sebbene per queste

siano stati osservati valori medi annuali inferiori. Se ne aggiungono 2, *Modena - Giardini e Rimini - Flaminia*, i cui valori medi annuali, rispettivamente di 41 e 42 sono comunque di poco superiori rispetto a quelli osservati nel 2018, quando erano prossimi al superamento del valore limite (40 *Giardini* e 39 *Flaminia*).

In **Toscana** permane l'ampio superamento del valore limite annuale nella stazione di traffico di *Fl-Gramsci*; i valori medi registrati presso i siti di traffico sono stati nettamente maggiori dei valori del fondo, con media complessiva superiore al doppio di quella delle stazioni di fondo.

Nel Lazio le criticità rilevate per il biossido di azoto sono relative al solo agglomerato di Roma: la concentrazione media annuale supera il valore prescritto dalla legge nelle stazioni di *Arenula, Fermi, Francia, Magna Grecia* e *Tiburtina*.

In Campania si conferma l'impatto di questo inquinante sulla qualità dell'aria soprattutto nei centri urbani mediograndi, caratterizzati da significativi volumi di traffico ed elevata urbanizzazione, con valore medio annuo superiore al limite di legge per alcune stazioni situate nelle città di Napoli e Salerno.

In Molise è stato registrato un unico superamento nella stazione da traffico installata nel capoluogo di regione

denominata *Campobasso1*. Questa stazione non fa parte del Programma di Valutazione della Regione Molise, ma è ancora attiva per monitorare i livelli di inquinamento a seguito di superamento dello stesso parametro nel 2017.

In Sicilia sono stati registrati due superamenti del valore limite annuale di NO₂ nell'Agglomerato di Palermo nelle stazioni di traffico urbano PA-Castelnuovo e PA-Di Blasi confermando il traffico veicolare come la principale sorgente emissiva degli ossidi di azoto negli agglomerati urbani. In Sardegna si registrano medie annue molto basse che variano tra 1 μ g/m³ (CENSE0) e 10 μ g/m³ (CESG11) nella zona rurale, tra 10 μ g/m³ (CENMO1) e 26 μ g/m³ (CENCA1) nell'agglomerato di Cagliari, tra 11 μ g/m³ (CENS16) e 23 μ g/m³ (CENS12) nella zona urbana di Sassari e Olbia e tra 3 μ g/m³ (CENPS6) e 16 μ g/m³ (CENAS9) nella zona industriale.

5.6: NO₂ – ANALISI DEI TREND

Le emissioni di NO $_{\rm X}$ mostrano un trend decrescente nel periodo 1990 – 2018, da 2123 Gg a 669 Gg con un decremento pari al 68% dal 1990 e al 48% rispetto al 2005. Le emissioni dovute al trasporto su strada (principale fonte di NO $_{\rm X}$ con una quota pari a circa il 43% del totale nel 2018) mostrano una riduzione del 71% rispetto al 1990 e del 54% rispetto al 2005. Le emissioni di tutti gli altri settori risultano in diminuzione, sia rispetto al 1990 sia rispetto al 2005, ad eccezione ancora una volta del settore della combustione non industriale che presenta un incremento del 12% rispetto al 2005.

La riduzione degli ossidi di azoto è importante in quanto si riflette sulle concentrazioni di biossido di azoto osservate in aria ambiente, sia pur considerando la natura "secondaria" di tale inquinante i cui meccanismi di formazione/trasformazione e deplezione rendono complesso il legame con le emissioni da fonti primarie di ossidi di azoto.

Inoltre va ricordato che gli ossidi di azoto sono precursori del particolato inorganico secondario e dell'ozono troposferico, quindi il controllo e la riduzione delle emissioni è un fattore chiave nelle strategie di riduzione dell'inquinamento atmosferico.

Nella Figura 5.5 è riportata la distribuzione delle concentrazioni medie annuali del biossid di azoto determinate nel periodo studiato (2010 – 2019). Si può osservare qualitativamente la riduzione complessiva dei livelli medi annuali, e una tendenza alla riduzione della variabilità spaziale, che è indicata dalla distanza interquartile, e dalla distanza tra l'estremo superiore e

inferiore della distribuzione che tendono a ridursi negli anni.

L'andamento generale, rappresentato dalla media delle medie annuali, distinto per tipo di stazione è riportato in Figura 5.6. Come nel caso del PM₁₀, non sembrano emergere tendenze diverse per tipo di stazione, l'andamento generale delle stazioni di fondo urbano e suburbano segue in modo fedele il profilo dell'andamento delle stazioni di traffico urbano e suburbano.

L'analisi statistica condotta con il metodo di Mann-Kendall corretto per la stagionalità, i cui risultati sono riportati sinteticamente in tabella 5.3 e in Figura 5.5, ha permesso di evidenziare un trend decrescente statisticamente significativo nel 79% dei casi (331 stazioni di monitoraggio su 421; variazione annuale media stimata: -1,0 μ g/m³y [-4,5 μ g/m³y ÷ -0,1 μ g/m³y]). Un trend crescente statisticamente significativo è stato individuato nel 3% dei casi (13 stazioni di monitoraggio su 421; variazione annuale media stimata: +0,6 μ g/m³y [+0,2 μ g/m³y ÷ +2,0 μ g/m³y]). Nel restante 18% dei casi (77 stazioni di monitoraggio su 421) non è stato possibile escludere l'ipotesi nulla (assenza di trend) per il dato livello di confidenza (95%).

Si osserva una riduzione media annuale sulla porzione di campione considerato per il quale è stato individuato un trend decrescente statisticamente significativo (331 casi su 421) del 3,2% (-13% \div -0,5%), corrispondente a una riduzione media in termini di concentrazione di 1,0 μ g/m³ (-4,5 μ g/m³ \div -0,1 μ g/m³) indicativa dell'esistenza di una tendenza di fondo alla riduzione delle concentrazioni di NO₂ in Italia.

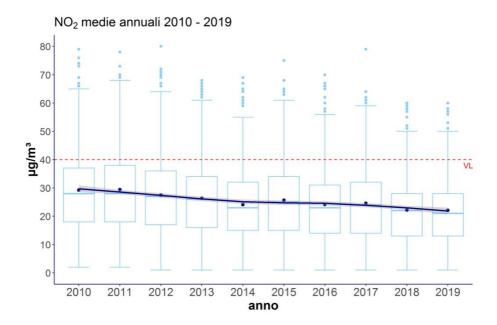


Figura 5.5. NO₂, 2010 - 2019. Media annua - Statistiche descrittive calcolate su una selezione di 421 stazioni di monitoraggio distribuite sul territorio nazionale. I punti blu rappresentano la media delle medie annuali. La linea blu interpola le medie delle medie annuali con il metodo LOESS (local scatter plot smoother).

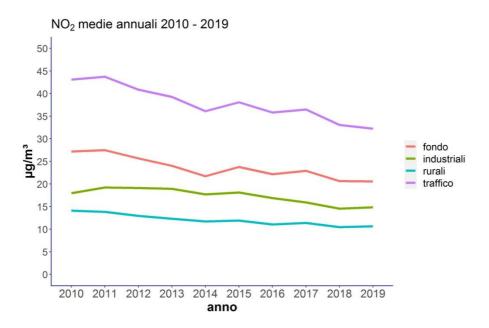


Figura 5.6. NO₂, 2010 - 2019. Andamento della media delle media annuali calcolata su un campione di 421 stazioni, per tipo di stazione. Fondo = stazioni di fondo urbano e suburbano (190 stazioni); industriali = stazioni industriali urbane, suburbane e rurali (51 stazioni); traffico = stazioni di traffico urbano, suburbano (127 stazioni); rurali: stazioni rurali di fondo, nearcity, e remote (53 stazioni).

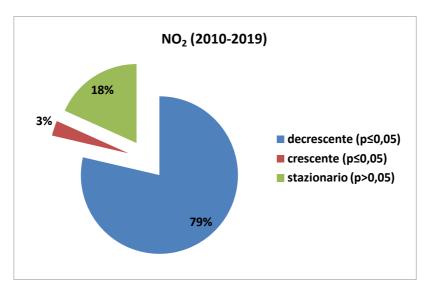


Figura 5.7. Sintesi dei risultati dell'analisi del trend (2010 – 2019) con il test di Kendall corretto per la stagionalità delle concentrazioni di NO₂ in Italia su una selezione di 421 stazioni di monitoraggio distribuite sul territorio nazionale.

 $Tabella\ 5.3.\ sintesi\ dei\ risultati\ dell'analisi\ del\ trend\ (2010-2019)\ con\ il\ test\ di\ Kendall\ corretto\ per\ la\ stagionalità\ delle\ concentrazioni\ di\ NO_2\ in$

Italia su una selezione di 421 stazioni di monitoraggio distribuite sul territorio nazionale.

NO ₂	Tren	d decrescente	Trer	nd crescente	Trend non significativo	
	(p≤0,05)		(p≤0,05)		(p>0,05)	
	n	Δ _y (μg m ⁻³ y ⁻¹)	n	Δ _y (μg m ⁻³ y ⁻¹)	n	
2010 - 2019 (421 stazioni)	331	-1,0 [-4,5 ÷ -0,1]	13	0,6 [0,2 ÷ 2,0]	77	

Legenda:

p≤ 0,05: il trend osservato è statisticamente significativo

p>0,05: non può essere esclusa l'ipotesi nulla (assenza di trend)

Δy: variazione media annuale stimata sulla base dei risultati del test di Kendall corretto per la stagionalità

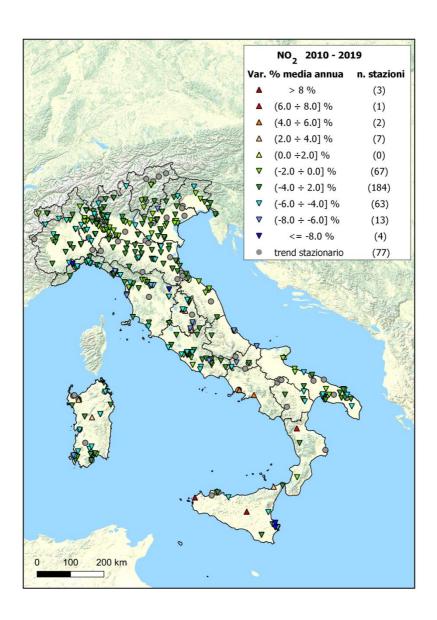


Figura 5.8. NO₂, 2010 - 2019. Risultati dell'analisi del trend con il test di Kendall corretto per la stagionalità su un campione di 421 stazioni. Distribuzione sul territorio delle stazioni analizzate e variazione percentuale media annua stimata della concentrazione.

6: OZONO

6.1: CARATTERISTICHE CHIMICO FISICHE

L'ozono (O₃) è un gas costituito da tre atomi di ossigeno, forte agente ossidante, dotato chimicamente di un'alta reattività legata alla particolare conformazione molecolare, caratterizzata da spiccata instabilità.

Le concentrazioni medie giornaliere a livello troposferico, variano da poche unità di parti per miliardo (ppb) fino a superare in alcune zone nel periodo estivo 100 ppb. Si stima che le concentrazioni medie in zone rurali in Europa siano raddoppiate rispetto all'epoca preindustriale (EC, 1999a).

L'accumulo di O₃ nella troposfera in un dato intervallo di tempo, fenomeno legato allo "smog fotochimico", dipende in modo complesso dal contemporaneo verificarsi di una serie di condizioni:

- l'emissione di inquinanti primari (cioè direttamente emessi dalle fonti) in una data zona, in particolare l'emissione di specie chimiche dotate di particolare reattività quali il monossido di azoto (NO) e i composti organici volatili (COV). Tra questi, quelli insaturi (COV contenenti almeno un doppio legame) sono i più reattivi ai fini della formazione dell'ozono; tuttavia anche COV scarsamente reattivi come il metano, ma la cui concentrazione in aria ha subito un notevole aumento a livello globale negli ultimi 100 anni, determinano un contributo rilevante all'aumento delle concentrazioni medie di ozono nelle zone rurali e sulla superficie degli oceani;
- l'esistenza delle condizioni necessarie per il trasporto di tali sostanze e per la persistenza delle stesse in atmosfera per il tempo necessario affinché le reazioni chimiche che costituiscono il ciclo di formazione dell'ozono possano procedere;

- l'entità della radiazione solare, dal momento che diversi stadi intermedi di reazione necessitano della radiazione nel campo dell'UV per procedere:
- il verificarsi delle condizioni per cui la maggior parte dell'NO emesso dalle fonti primarie sia stato ossidato a NO₂ per effetto delle reazioni chimiche cui partecipano i COV.

Non è possibile individuare una relazione di tipo lineare tra produzione dei precursori e concentrazione di ozono nella troposfera. Questa complessità, determinata dall'esistenza di un "ciclo" dell'ozono, si riflette sulla distribuzione spaziale e temporale dei livelli di ozono. A livello spaziale le concentrazioni di O3 salgono più facilmente a distanza dalle sorgenti dei precursori essendo favorite quelle zone dove le concentrazioni di questi ultimi siano sostenute da un apporto costante, ma dove gli stessi non hanno modo di accumularsi (divenendo essi stessi responsabili del consumo dell'O₃). A livello temporale, nelle zone di pianura o a livello del mare, le concentrazioni di O₃ seguono abbastanza bene il profilo dell'intensità della radiazione solare (tendendo quindi ad aumentare nelle ore di massima insolazione e a diminuire nella notte).

La complessità dei meccanismi di formazionedeplezione in gioco e il ruolo dei fattori climatici rende arduo apprezzare gli effetti delle misure intraprese per limitare le emissioni dei precursori, sui livelli di ozono misurati al suolo.

Non c'è dubbio tuttavia che al fine di ridurre gli effetti sulla salute e sull'ecosistema determinati da elevati livelli di O₃ nell'aria troposferica, occorra agire sulle fonti dei precursori sui quali l'uomo può esercitare un controllo. In questo senso le fonti dei precursori più rilevanti sono le emissioni da trasporto su strada, la produzione e l'utilizzo di solventi organici o di preparati che li contengano, i

processi di combustione nella produzione di energia e nell'industria (con riferimento in particolare alle emissioni di monossido di azoto). A livello internazionale la comunità scientifica concorda generalmente sul fatto che il fenomeno dell'inquinamento da O₃, in considerazione della peculiarità dei fenomeni che lo determinano, abbia una rilevanza per lo meno regionale.

elementi di incertezza nella valutazione dell'esposizione della popolazione sono legati alla relazione tra esposizione outdoor e indoor. In generale diversi studi hanno evidenziato che i dati determinati all'aperto sono maggiormente rappresentativi dell'esposizione reale della popolazione in quei contesti dove la percentuale di tempo spesa all'esterno è maggiore (Weschler, 2006); tale abitudine è tuttavia poco aderente alla realtà della maggior parte della popolazione occidentale e in particolare di quella dei paesi del centro e del nord Europa. I dati disponibili sono relativi per la gran parte a livelli misurati o stimati all'aperto e non è facile individuare correlazioni significative tra questi livelli e quelli in ambienti chiusi, in ragione dell'elevata reattività dell' O3 che rapidamente tende a degradarsi a contatto con le superfici.

6.2: FFFFTTI SULLA SALUTE

Numerosi studi sono stati condotti con l'obiettivo di evidenziare gli effetti acuti e cronici dell'esposizione ad O₃. Sono stati esplorati gli effetti acuti sul sistema polmonare e sul sistema cardiovascolare attraverso studi epidemiologici sulla morbilità e sulla mortalità della popolazione esposta. Riguardo agli effetti cronici le principali evidenze sono emerse riguardo alla riduzione della funzionalità polmonare, allo sviluppo di

arteriosclerosi ed asma e alla riduzione della speranza di vita.

6.3: VALORI OBIETTIVO, VALORI A LUNGO TERMINE, SOGLIE DI INFORMAZIONE E DI ALLARME E VALORI DI RIFERIMENTO OMS

Le soglie di informazione e di allarme per la protezione della salute umana, i valori obiettivo e gli obiettivi a lungo termine per la protezione della salute umana e della vegetazione dell'ozono nell'aria ambiente ai sensi del D.Lgs. 155/2010 sono riportati nella Tabella 6.1.

Le informazioni sugli effetti sulla salute sono state raccolte ed organizzate in maniera sintetica nelle linee guida sulla qualità dell'aria dell'Organizzazione Mondiale della Sanità (OMS, 2006; OMS, 2000). Sulla base di tali informazioni la OMS individua diversi livelli, basati sullo stesso indicatore di esposizione, il valore medio massimo giornaliero su otto ore calcolato sulla base delle medie consecutive di otto ore (Tabella 6.2).

Le linee guida e i valori obiettivo possono essere utilizzati al fine di stimare, con gli strumenti propri dell'epidemiologia ambientale, gli effetti sanitari attribuibili all'esposizione a breve-medio termine all'ozono. L'OMS ritiene che le evidenze relative agli effetti cronici legati all'esposizione a lungo termine all'ozono non siano sufficienti per raccomandare linee guida riferite a un valore medio su base annua.

Tabella 6.1: O₃: Soglia di informazione, soglia di allarme, valore obiettivo e obiettivo a lungo termine per la protezione della salute umana ai sensi del D.Lgs.155/2010

Fonte: D.Lgs.155/2010

Finalità	Indicatori	Periodo di mediazione	Valore	Data entro la quale deve essere raggiunto il valore obiettivo
	Soglia di informazione	1 ora	180 μg/m³	-
	Soglia di allarme	1 ora	240 μg/m³ (1)	-
protezione della salute umana	Valore obiettivo	Media massima giornaliera calcolata su 8 ore (media su tre anni)	120 µg/m³ da non superare più di 25 volte per anno civile come media su tre anni	01/01/2010
	Obiettivo a lungo termine (OLT)	Media massima giornaliera calcolata su 8 ore	120 μg/m³	Non definito

⁽¹⁾ Per l'applicazione dell'articolo 10 (Piani per la riduzione del rischio di superamento dei valori limite, dei valori obiettivo e delle soglie di allarme), comma 1 (recante adozione di azioni in caso di superamenti della soglia di allarme) del D.Lgs. 155/2010, deve essere misurato o previsto un superamento per tre ore consecutive.

Tabella 6.2: Linee guida OMS per l'esposizione ad ozono

Fonte: adattata da Air quality guidelines - globale update. OMS, 2006.

Indicatori OMS	Media massima di otto ore	effetti
High level	240 μg/m³	Effetti significativi sulla salute rilevanti per una significativa
		porzione di popolazione esposta
OMS interim target 1	160 μg/m³	Effetti importanti sulla salute; il rispetto di tale livello non è sufficiente a garantire una adeguata protezione della salute
		pubblica
OMS air quality guideline	100 µg/m³	Livello al di sotto del quale è prevedibile un'adeguata protezione della salute pubblica sebbene effetti avversi per la salute non possono essere del tutto esclusi (non è possibile individuare con certezza una soglia di non effetto)

6.4: O3 - SINTESI DEI LIVELLI SU SCALA NAZIONALE

Per l' O_3 i dati sono relativi a 351 stazioni. 322 di queste (pari al 91%) hanno raggiunto la copertura temporale minima prevista dall'Allegato I del D.Lgs.155/2010 per l'ozono (90% di dati validi in estate e il 75% di dati validi in inverno al netto delle perdite dovute alla taratura periodica o alla manutenzione ordinaria).

La classificazione delle stazioni di monitoraggio di O_3 secondi i criteri di ubicazione su macroscala previsti dalla normativa è rappresentata in Figura 6.1.

Nel 2019 l'obiettivo a lungo termine per la protezione della salute umana (OLT) è stato superato in 296 stazioni su 322 pari al 92% delle stazioni con copertura temporale sufficiente; l'OLT è stato superato per più di 25 giorni in 179 stazioni (56%, Figura 6.2). Le 26 stazioni in cui non sono stati registrati superamenti dell'OLT sono localizzate prevalentemente in siti urbani e suburbani.

Le soglie di informazione e di allarme sono state superate rispettivamente in 161 (50%) e 34 stazioni (4%)

su 322. I valori di concentrazione più elevati si registrano prevalentemente nel Nord Italia.

L'intero territorio nazionale è suddiviso in zone e agglomerati ai fini della valutazione della qualità dell'aria ambiente ai sensi del D.Lgs. 155/2010. Contrariamente a quanto previsto per gli altri inquinanti, per l'ozono le zone non sono classificate rispetto a determinate soglie ma rispetto ai superamenti dell'obiettivo a lungo termine in almeno uno sui cinque anni civili precedenti; in assenza di superamenti in tutti i 5 anni civili precedenti, il numero delle stazioni di misurazione dell'ozono può essere ridotto secondo i criteri di cui all'allegato IX, punto 4 del D.Lgs. 155/2010. Nel 2019 i superamenti dell'obiettivo a lungo termine per la protezione della salute umana (OLT) hanno interessato 61 zone su 64.

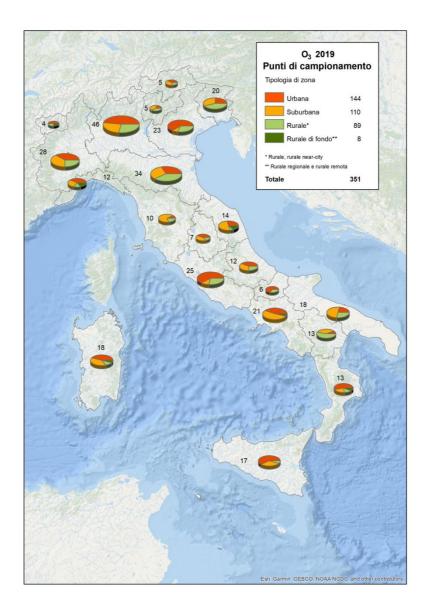


Figura 6.1. O₃. Classificazione dei punti di campionamento secondo i criteri di ubicazione su macroscala di cui all'Allegato VIII, D.Lgs.155/2010 (2019).

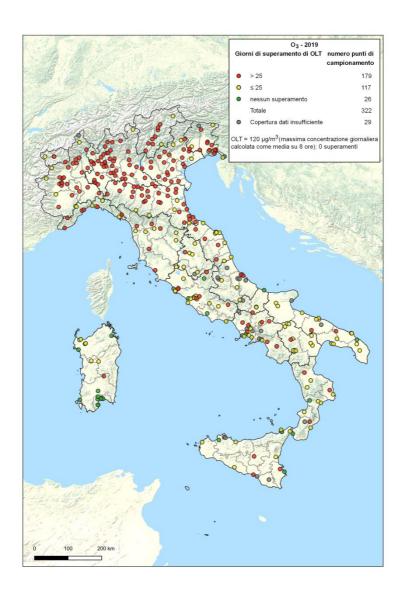


Figura 6.2: O₃. Stazioni di monitoraggio e superamenti dell'obiettivo a lungo termine per la protezione della salute (2019).

6.5: O₃ - DETTAGLIO REGIONALE

In Figura 6.3 è riportata la distribuzione del numero di giorni di superamento dell'obiettivo a lungo termine (120 µg/m³ come media massima giornaliera calcolata su 8 ore) per regione. Il grafico riassume complessivamente i valori rilevati e la variabilità osservata sul territorio di ciascuna regione. Un rettangolo piccolo (piccola distanza interquartile, il 50% delle misure ricade all'interno di tale intervallo) indica che tale variabilità è limitata. I segmenti che si estendono dai lati superiore ed inferiore descrivono quanto i livelli si possono discostare dal valore mediano (rappresentato dalla linea interna al rettangolo). Quanto più grande è la distanza tra gli estremi dei due segmenti, tanto maggiore è l'intervallo di variabilità complessiva riscontrato in una regione. I punti esterni agli estremi dei segmenti sono valori che si discostano significativamente dalle altre osservazioni disponibili. Ciascuna regione ha un numero totale di stazioni di monitoraggio diverso, e differente distribuzione numerica per zona (rurale, urbana e suburbana) e tipo (fondo, traffico, Industriale) che discende dai criteri fissati dalla normativa seguiti nella definizione dei programmi di valutazione regionali, e riflette le caratteristiche di ciascuna regione. Un'ampia distanza interquartile, ad esempio, è indice del fatto che le stazioni sono ubicate in zone molto differenti dal punto di vista orografico, climatico e, spesso, dei carichi emissivi (montagna, pianura, zone costiere. agglomerati). Questi grafici non sono quindi da interpretare ai fini del confronto tra le varie regioni, ma piuttosto servono ad evidenziarne le specificità, legate a fattori che rendono ciascuna diversa dalle altre.

Nel periodo estivo a causa del forte e prolungato irraggiamento solare si sviluppano forzanti radiative e, a causa dell'attrito tra aria e suolo, si sviluppano forzanti meccaniche che determinano lo sviluppo di moti turbolenti intensi i quali favoriscono le proprietà dispersive del PBL nelle ore diurne. In queste condizioni le concentrazioni degli inquinanti primari, del particolato e del biossido di azoto tendono a raggiungere i valori minimi.

L'accumulo di ozono nella troposfera, dipende in modo complesso dal contemporaneo verificarsi di una serie di condizioni completamente diverse da quelle che governano la variabilità temporale degli altri inquinanti, in cui gioca un ruolo fondamentale l'intensità della radiazione solare, dal momento che diversi stadi intermedi di reazione necessitano della radiazione nel campo dell'UV per procedere. Sotto questo punto di vista le valutazioni sulle condizioni meteorologiche prevalenti che hanno caratterizzato il semestre caldo (aprilesettembre) sembrano indicare complessivamente una prevalenza di situazioni sfavorevoli per la qualità dell'aria, con riferimento all'ozono, per l'anno 2019.

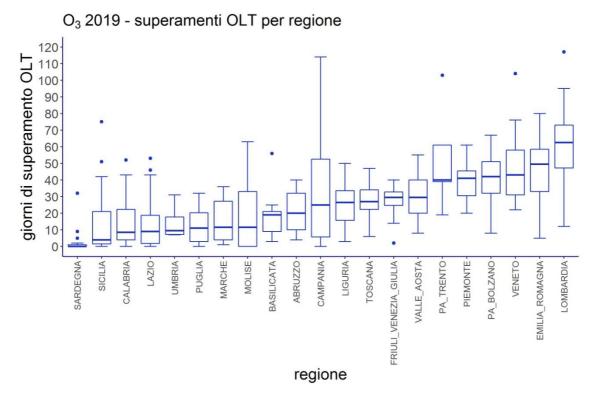


Figura 6.3. O₃ (2019). Distribuzione dei giorni di superamento dell'obiettivo a lungo termine per regione.

<u>Legenda:</u> nel grafico box-plot per ciascuna distribuzione: il lato inferiore del rettangolo coincide con il primo quartile (25° percentile) della distribuzione; il lato superiore del rettangolo coincide con il terzo quartile (75° percentile). La linea interna al rettangolo coincide con la mediana. Il punto blu coincide con la media. I segmenti a partire dal lato superiore ed inferiore del box sono chiamati "baffi".

Il "baffo" inferiore assume il valore L=Q1-1,5IQR (dove Q1 è il primo quartile e IQR è il range interquartile, cioè la differenza tra 3° e 1° quartile) o il valore minimo, se maggiore di L.

Il "baffo" superiore assume il valore R=Q3+1,5IQR (dove Q3 è il terzo quartile e IQR è il range interquartile) o il valore massimo, se inferiore a R. I punti celesti sono valori esterni all'intervallo definito dai baffi superiore ed inferiore.

Fonte: Elaborazioni ISPRA su dati ARPA/APPA

In Valle d'Aosta, oltre agli aspetti meteorologici, un ruolo importante è determinato dalla quota media estremamente elevata della regione. La "Bassa Valle" al confine con la Pianura Padana, inoltre è influenzata da masse d'aria ricche d'ozono provenienti dalle aree urbane piemontesi. L'ozono, supera il valore obiettivo a lungo termine in tutte le stazioni della regione. In

Piemonte si è registrato un leggero incremento della percentuale di stazioni interessate dai superamenti dell'OLT, passata dal 75% del 2018 al 77% del 2019 accompagnato però da una leggera diminuzione dei valori dei superamenti nella maggioranza dei punti di misura. Da segnalare i superamenti del valore della soglia di allarme in tre stazioni della rete regionale situate

nelle province di Novara, Alessandria, Verbano Cusio Ossola e Torino, verificatisi tutti alla fine del mese di giugno, caratterizzato da temperature anormalmente elevate.

Anche in **Lombardia** a differenza degli altri inquinanti, l'ozono non mostra invece un andamento evidente negli anni. Durante il 2019, infatti, si sono registrati diffusi superamenti del valore obiettivo per la protezione della salute. In particolare, il valore obiettivo per la protezione della salute di non più di 25 giorni con la massima media mobile su 8 ore superiore a 120 µg/m³, risulta superato in tutte le zone del territorio lombardo.

Nel 2019, anche le soglie di informazione (180 $\mu g/m^3$ come massima media oraria) e di allarme (240 $\mu g/m^3$ come massima media oraria) sono state superate in un numero significativo di stazioni del programma di valutazione. Basti pensare che la soglia di allarme è stata superata in 20 stazioni (da un minimo di 1 ora a un massimo di 11 ore) su 46 e la soglia di informazione è stata superata per almeno un'ora in 45 stazioni su 46.

In **Veneto** tutte le stazioni hanno fatto registrare superamenti dell'obiettivo a lungo termine per la protezione della popolazione (120 $\mu g/m^3$). La quasi totalità delle stazioni ha oltrepassato i 25 superamenti consentiti nella media sugli ultimi 3 anni del valore obiettivo con l'eccezione di *Area Feltrina* (22). L'obiettivo a lungo termine per la protezione della vegetazione (AOT40, 6000 $\mu g/m^3 \cdot h$) non è stato rispettato in nessuna delle stazioni di fondo utilizzate per la misura di tale parametro.

In Liguria la situazione nel 2019 appare in miglioramento rispetto agli anni precedenti con il superamento della soglia di informazione, per la prima volta, in una sola postazione della rete regionale – Bolano - nello spezzino. Persiste tuttavia il superamento del valore obiettivo per la protezione della salute in molte postazioni di misura sul territorio regionale e dell'obiettivo a lungo termine.

In Emilia-Romagna i superamenti dei valori obiettivo per la protezione della salute umana (120 µg/m³) hanno interessato pressoché l'intera regione. Nel periodo estivo 2019 (aprile-settembre) l'ozono ha superato l'obiettivo a

lungo termine in tutte le stazioni, e la quasi totalità delle stazioni ha oltrepassato i 25 superamenti nella media sugli ultimi 3 anni del valore obiettivo con l'eccezione di *Febbio* (RE), *Castelluccio* (BO) e *Ballirana* (RA). I superamenti del valore obiettivo si sono mantenuti in linea con quelli riscontrati negli anni precedenti.

La soglia di informazione (media oraria di 180 µg/m³, valore per il quale vengono indicati possibili rischi per la salute in soggetti sensibili) è stata superata in 26 stazioni su 34. Questi valori sono superiori rispetto a quelli del 2018 ed uguali a quelli registrati nel 2017. Dal 26 al 28 giugno in tutta la regione sono stati rilevati superamenti diffusi della soglia di informazione, con picchi massimi misurati nella parte occidentale е (Piacenza/Parco Montecucco 236, Besenzone 230, Bologna/Via Chiarini 226 µg/m³). Luglio è stato il mese più critico: dal 1° al 6 il superamento ha visto picchi nella parte occidentale e centrale della regione (208 µg/m³ Bologna/Via Chiarini, 206 µg/m³ Piacenza/Parco Montecucco): dal 22 al 26 sempre le stesse stazioni di rilevamento hanno fatto registrare picchi di 210 (Bologna/Via Chiarini) e 204 (Piacenza/Parco Montecucco) µg/m³. Il mese di agosto non ha registrato episodi acuti di ozono; le concentrazioni riscontrate hanno comunque superato il valore obiettivo di 120 µg/m³, ma non la soglia di informazione.

Nessuna stazione ha fatto rilevare superamenti della soglia di allarme (240 µg/m³).

In Toscana il 50% delle stazioni supera il VO e tutte le zone sono oggetto di superamento. Il valore obiettivo di 25 giorni di superamento della media su 8 ore di 120 µg/m³ non è stato rispettato in 5 stazioni. Nell'Agglomerato fiorentino la stazione di *FI-Settignano* ha registrato 31 superamenti, nella zona delle pianure interne la stazione di *PT-Montale* ha registrato 30 superamenti, nella zona delle pianure costiere la stazione di *LU-Carignano* ha registrato 45 superamenti e la stazione di *GR-Maremma* 47, nella zona collinare e montana la stazione di *PI-Montecerboli* ne ha registrati 35. Inoltre si sono verificati alcuni episodi di superamento della soglia di informazione di 180 µg/m³, rispettivamente 10 per la stazione di *FI-Settignano*, 1 per

la stazione di *PT-Montale* e 2 per la stazione di *LU-Carignano*.

Nel Lazio la soglia di allarme non è stata mai raggiunta mentre la soglia di informazione registra qualche sporadico superamento nella regione.

L'obiettivo a lungo termine per la protezione della salute umana nel 2019 è raggiunto in quattro stazioni di monitoraggio, *Rieti, Latina Tasso, Castel di Guido* e *Cipro*, in cui il numero dei superamenti dei 120 µg/m³ come massimo della media mobile su otto ore è pari a zero.

Il valore obiettivo per la salute umana, media dei superamenti della massima media mobile sulle 8 ore per gli anni 2017-2019 inferiore a 25, non è rispettato in cinque stazioni della rete di misura, *Allumiere e Allumiere Moro* in zona litoranea, *Leonessa* in zona Appenninica, *Largo Perestrello* nell'agglomerato di Roma e *Fontechiari* in Valle del Sacco.

In Campania l'ozono rappresenta una criticità soprattutto nelle zone interne del territorio e a quote più elevate. I dati 2019 evidenziano numerosi superamenti dell'obiettivo a lungo termine sia nelle zone pianeggianti, con particolare riferimento alla piana anti-appenninica della Terra di Lavoro, che nelle aree ad alta quota dell'Appennino Campano e del Cilento. Le temperature mediamente più elevate registrate nella stagione estiva del 2019 hanno favorito la formazione dell'ozono, con numerosi superamenti del valore della soglia di informazione per le stazioni di San Vitaliano, Avellino e Ariano Irpino. I mesi più caldi dell'anno 2019 sono stati giugno, luglio e agosto seguiti da settembre e ottobre. Nella zona costiera le temperature nei mesi di novembre e dicembre sono risultate confrontabili con quelle dei mesi primaverili, diversamente da quanto si osserva nelle zone più interne, sia in pianura che sui rilievi, dove risultano invece più basse di quelle primaverili.

In **Basilicata**, l'ozono rappresenta una delle poche criticità estese a tutta la regione, infatti l'OLT è superato in tutte le stazioni della rete mentre non si registrano superamenti della soglia di informazione e la soglia di allarme.

In Sicilia sono stati registrati superamenti dell'obiettivo a lungo termine per la protezione della salute umana (120 µg/m³) in quasi tutte le stazioni; nelle stazioni di Gela-Capo Soprano, di Melilli e di Enna sono stati registrati rispettivamente 42, 75 e 51 superamenti. Sono stati registrati 13 superamenti della soglia di informazione (SI) (180 µg/m³), distribuiti in 6 giorni tra giugno ed agosto, nella stazione Melilli della zona Aree Industriali; il superamento del valore obiettivo per la protezione della salute umana (VO) è stato registrato nella stazione di Melilli, di Gela-Capo, di Soprano ed di Enna.

In Sardegna non si registra nessun superamento dell'obiettivo a lungo termine nell'agglomerato di Cagliari, mentre si registrano diversi superamenti nelle altre zone, con particolare evidenza nella stazione di Seulo, classificata fondo rurale regionale, inserita nella rete nazionale per la misura dell'ozono nei siti rurali, con 32 superamenti dell'OLT.

6.6: O₃ - ANALISI DEI TREND

Sono descritti nel seguito i risultati dell'analisi dei trend delle concentrazioni di O₃ determinate dal 2010 al 2019 in 224 stazioni di monitoraggio sul territorio nazionale.

Il campione è omogeneo, ovvero tutte queste stazioni hanno prodotto dati continuo per almeno otto anni su dieci, con una copertura annuale pari almeno al 75%.

Nella Figura 6.4 è riportata la distribuzione dei valori dell'indicatore SOMO0 determinati dal 2010 al 2019 nelle 224 stazioni di monitoraggio sul territorio nazionale, dalla quale non sembra emergere una tendenza generale. Analogamente, dalla Figura 6.5, che riporta l'andamento medio del SOMO0 per tipo di stazione (urbana, suburbana e rurale) non si evince una diversa tendenza in funzione della classificazione della stazione.

I risultati dell'analisi dei trend dell'indicatore SOMO0 rilevati nel periodo 2010 – 2019 riportati nella Figura 6.6 confermano le osservazioni qualitative emerse dall'analisi delle statistiche descrittive.

Infatti dall'analisi statistica condotta con il metodo di Mann-Kendall corretto per la stagionalità, emerge che

nella maggioranza delle stazioni (195 su 224) non è possibile individuare un trend statisticamente tendenza appare significativo: la fondo sostanzialmente monotona, e le oscillazioni interannuali sono attribuibili alle naturali fluttuazioni della componente stagionale. Non è stato dunque possibile escludere l'ipotesi nulla (assenza di trend) per il dato livello di confidenza (95%). Nella Figura 6.7 sono riportati su mappa i risultati dell'analisi dei trend per ciascuna stazione di monitoraggio considerata.

Non esiste una relazione lineare tra le concentrazioni di ozono nella bassa atmosfera e le emissioni dei precursori. La riduzione delle emissioni di quest'ultimi non corrisponde a una proporzionale riduzione dei livelli di ozono troposferico. Alcune ipotesi sono state proposte, per spiegare il ridotto impatto delle misure di risanamento, rivolte alla riduzione dei precursori dell'ozono troposferico.

Il contributo alla dispersione in aria di VOCNM e NOx fornito dalle emissioni biogeniche e quello dovuto alla combustione di biomassa volontaria, accidentale e naturale (gli incendi boschivi intensi e frequenti nel periodo estivo ad esempio) potrebbe avere un ruolo importante difficilmente quantificabile (EEA, 2012). Un'altra possibile spiegazione potrebbe essere l'aumento dei livelli di metano aerodisperso, che contribuirebbe a mantenere elevati i livelli di ozono (Duglokencky et al., 2009).

È stato evidenziato recentemente un trend crescente dei livelli di ozono nelle stazioni di monitoraggio europee posizionate in aree urbane in prossimità di importanti arterie stradali. Questo fatto è stato attribuito alla diminuzione delle emissioni di ossidi di azoto che determinerebbe un minore consumo di ozono (de Leeuw, 2012).

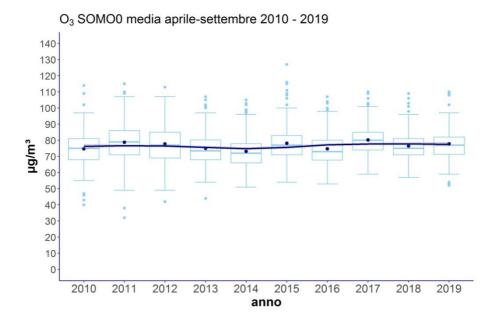


Figura 6.4. Ozono (SOMO0), 2010 – 2019. - Statistiche descrittive calcolate su una selezione di 224 stazioni di monitoraggio distribuite sul territorio nazionale.

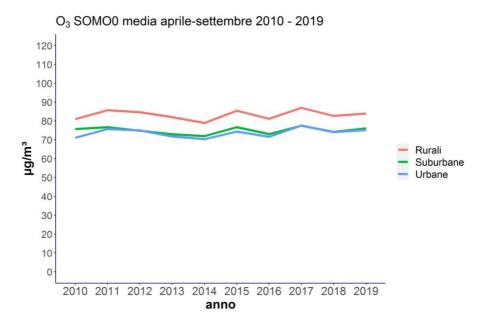


Figura 6.5. O₃, SOMOO, 2010 – 2019. Andamento della media delle media mobili massime giornaliere di otto ore delle concentrazioni di ozono calcolata su un campione di 224 stazioni, per tipo di stazione.

Legenda: Rurale: stazioni di tipo rurale (57); Suburbana: stazioni di tipo suburbano (63); Urbana; stazioni di tipo urbano (104)

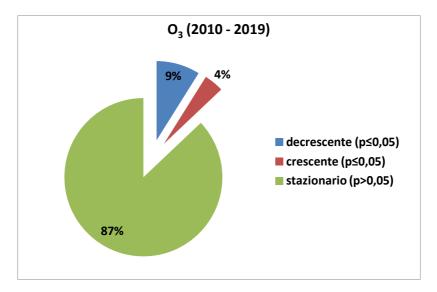


Figura 6.6. Sintesi dei risultati dell'analisi del trend (2010 - 2019) con il test di Kendall corretto per la stagionalità delle concentrazioni di O₃ (SOMO0) in Italia su una selezione di 224 stazioni di monitoraggio distribuite sul territorio nazionale.

Tabella 6.3. sIntesi dei risultati dell'analisi del trend (2010 - 2019) con il test di Kendall corretto per la stagionalità delle concentrazioni di O₃ (SOMO0) in Italia su una selezione di 224 stazioni di monitoraggio distribuite sul territorio nazionale.

O ₃	Trend decrescente		Trend crescente		Trend non significativo
		(p<0,05)		(p<0,05)	
	n	Δy (μg m ⁻³ y ⁻¹)	n	Δ _y (μg m ⁻³ y ⁻¹)	n
2010 – 2019 (224 stazioni)	20	-2,1 [-4,4 ÷ -1,1]	9	2,1 [1,3 ÷ 3,8]	195

Legenda:

SOMO0: media delle medie mobili massime giornaliere di otto ore delle concentrazioni di ozono. L'analisi dei trend è stata effettuata a partire dalle medie mensili dell'indicatore calcolate per il semestre aprile – settembre di ciascun anno.

p≤ 0,05: il trend osservato è statisticamente significativo

p>0,05: non può essere esclusa l'ipotesi nulla (assenza di trend)

Δ_y: variazione media stimata sulla base dei risultati del test di kendall corretto per la stagionalità.

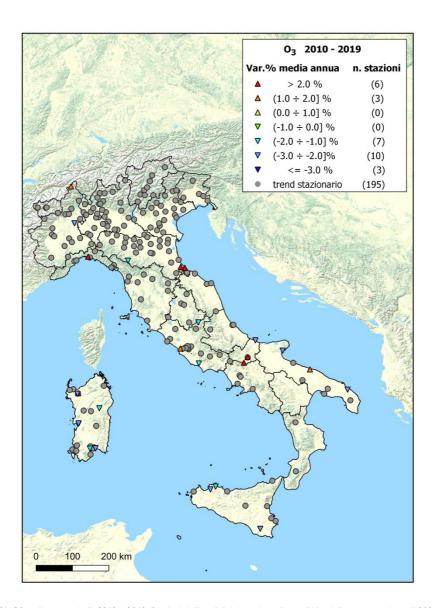


Figura 6.7. O₃ (SOMO0 aprile-settembre), 2010 – 2019. Risultati dell'analisi del trend con il test di Kendall su un campione di 200 stazioni. Distribuzione sul territorio delle stazioni analizzate e variazione percentuale media annua stimata della concentrazione.

7. BENZO[A]PIRENE

7.1: CARATTERISTICHE CHIMICO-FISICHE E SORGENTI.

La combustione incompleta di materiali organici determina l'emissione in atmosfera di idrocarburi policiclici aromatici (IPA) quasi totalmente adsorbiti sul materiale particolato.

Si stima che nel 2016 in Italia siano state emesse 81,5 tonnellate di IPA e le sorgenti principali sono gli impianti di combustione non industriale (56,6 tonnellate), i processi produttivi nell'industria del ferro e dell'acciaio (9,4 tonnellate) e incenerimento dei rifiuti agricoli all'aperto (6,8 tonnellate).

Sebbene le emissioni stimate da trasporto su strada siano inferiori rispetto a quelle citate (2,0 tonnellate nel 2016) nelle aree urbane ad alta densità di traffico è possibile rilevare livelli di concentrazione elevati dovuti principalmente a tale fonte.

Livelli elevati di IPA sono rilevabili durante la stagione invernale in relazione all'utilizzo generatori di calore (caldaie, stufe, camini e altri apparecchi domestici) alimentati con legna da ardere, carbone di legna e biomasse combustibili (e.g. cippato e pellet). Negli ultimi 15 anni si è verificata una forte penetrazione nel mercato dell'uso di dispositivi alimentati a legna o derivati, sostenuta dalle politiche europee per ridurre gli impatti delle emissioni di sostanze climalteranti, poiché la legna è considerata una fonte rinnovabile, determinata anche dalla competitività economica per l'utente finale rispetto ad altre fonti. Le politiche per il clima sono risultate in questo caso antisinergiche rispetto a quelle per la lotta all'inquinamento atmosferico, con il risultato che le

emissioni di IPA per questo settore sono cresciute in Italia del 49% tra il 2005 e il 2016, rappresentando oggi il settore più importante con una quota del 69% sulle emissioni totali (ISPRA, 2018).

7.2: EFFETTI SULLA SALUTE

Gli idrocarburi policiclici aromatici (IPA) sono prodotti nei processi di combustione incompleta di materiali organici e sono emessi in atmosfera quasi totalmente adsorbiti sul materiale particolato. Molti composti sono cancerogeni, anche se l'evidenza di cancerogenicità sull'uomo relativa a singoli IPA è estremamente difficile, poiché in condizioni reali si verifica sempre una esposizione simultanea a miscele complesse di molte decine di IPA. La IARC (IARC, 2012) ha classificato in particolare il benzo(a)pirene (B(a)P), come cancerogeno per l'uomo (categoria 1).

Il B(a)P è ritenuto un buon indicatore di rischio cancerogeno per la classe degli IPA valutati; è stato stimato un rischio incrementale pari a 9 casi di cancro polmonare ogni 100.000 persone esposte per tutta la vita ad una concentrazione media di 1 ng/m³ di B(a)P. La OMS ha quindi raccomandato un valore guida di 1 ng/m³ per la concentrazione media annuale di B(a)P (OMS, 2000).

7.3: LEGISLAZIONE

Il valore guida raccomandato dalla OMS coincide con il valore obiettivo fissato dal D.Lgs 155/2010 (Tabella 7.1). Sono poi riportate le soglie di valutazione per la classificazione di zone e agglomerati ai fini della valutazione della qualità dell'aria ambiente (Tabella 7.2).

Tabella 7.1. Benzo(a)pirene- Valore obiettivo ai sensi del D.Lgs.155/2010

Periodo di mediazione	Valore obiettivo ⁽¹⁾ D.Lgs. 155/2010	Rischio relativo stimato (OMS) ⁽²⁾
Anno civile	1,0 ng/m³	0,12 ng/m³

⁽¹⁾ livello fissato al fine di evitare, prevenire o ridurre effetti nocivi per la salute umana o per l'ambiente nel suo complesso, da conseguire, ove possibile, entro una data prestabilita. Il valore obiettivo è riferito al tenore totale di B(a)P presente nella frazione PM₁₀ del materiale particolato, calcolato come media su un anno civile.

7.4: SINTESI DEI LIVELLI SU SCALA NAZIONALE

Le stazioni di monitoraggio che hanno misurato e comunicato dati di B(a)P sono 171 nel 2019. Di queste, 164 (96%) rispettano i criteri di copertura temporale di cui all'allegato I del D.Lgs. 155/2010 (al netto delle perdite di dati dovute alla taratura periodica o alla manutenzione ordinaria).

La classificazione delle stazioni di monitoraggio di B(a)P secondo i criteri di ubicazione su macroscala previsti dalla normativa è rappresentata in Figura 7.1.

Il valore obiettivo (1,0 ng/m³), è stato superato in 16 stazioni (10% dei casi). (Figura 7.2).

7.5: DETTAGLIO REGIONALE

I superamenti del valore obiettivo hanno interessato 9 zone su 77 distribuite in 4 Regioni (Lombardia, Veneto, Liguria e Lazio) e una provincia autonoma (Bolzano).

La metà dei casi di superamento è stato registrato in stazioni di fondo urbano (4), suburbano (2) o rurale (1).

Si tratta di zone (bacino padano e zone pedemontane appenniniche e alpine) dove è maggiore il consumo di biomassa legnosa per il riscaldamento civile e le condizioni meteorologiche invernali favoriscono l'accumulo degli inquinanti.

Nell'agglomerato di Padova i superamenti hanno interessato tutte e tre le stazioni di monitoraggio.

Un caso di superamento è stato registrato anche nell'agglomerato di Milano, nel comune di Meda.

Alcuni degli altri superamenti, nel Savonese in Liguria (3) e negli agglomerati di Venezia (1) e Padova (1), potrebbero avere come concausa le emissioni degli impianti industriali posizionati sottovento ai punti di misura.

Nel Lazio l'unico superamento è stato registrato nella Valle del Sacco, nel comune di Frosinone. In questo caso le condizioni meteo sfavorevoli unite alle emissioni dovute alla combustione di biomassa legnosa nel periodo invernale possono determinare le condizioni per il verificarsi dei superamenti.

⁽²⁾ Stimato a partire dal rischio unitario (esposizione per tutta la vita alla concentrazione di) considerando come accettabile un eccesso addizionale di casi pari a 1 su 100.000 esposti.

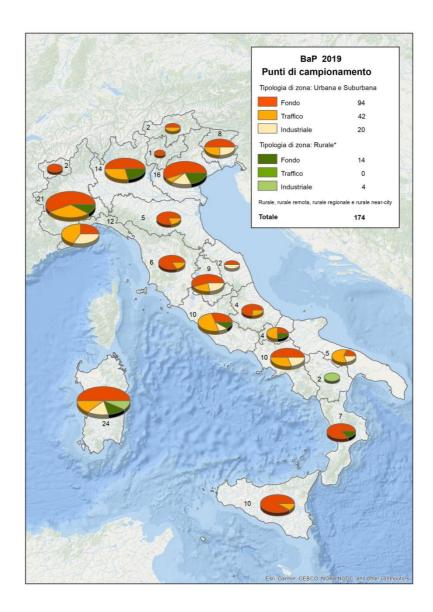


Figura 7.1. B(a)P. Classificazione dei punti di campionamento secondo i criteri di ubicazione su macroscala di cui all'Allegato III, D.Lgs.155/2010 (2019).

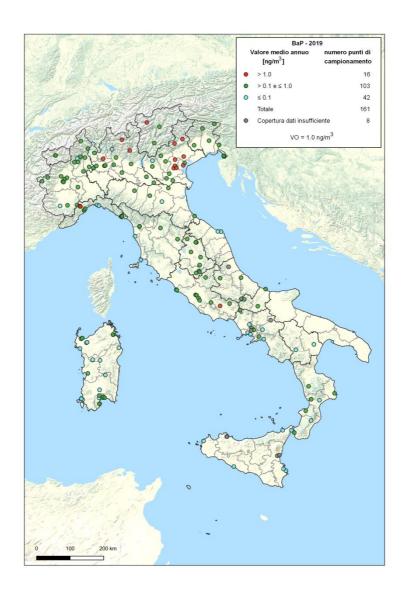


Figura 7.2. - B(a)P - Stazioni di monitoraggio e superamenti del valore obiettivo per la protezione della salute (2019).

8. PIOMBO, CADMIO, NICHEL E ARSENICO

8.1. CARATTERISTICHE CHIMICO-FISICHE SORGENTI.

I metalli, i semimetalli e i loro composti sono immessi nell'atmosfera sia da sorgenti antropiche (quali i processi di combustione da sorgenti stazionarie, l'industria del ferro e dell'acciaio. l'industria dei metalli non ferrosi, le combustioni da sorgenti mobili), che da sorgenti naturali (quali eruzioni vulcaniche, risollevamento dal suolo, trasporto a lunga distanza di sabbie sahariane). Essi si ritrovano essenzialmente distribuiti nella massa delle varie frazioni dimensionali del materiale particolato nell'atmosfera. Possono essere associati in misura variabile, in funzione del tipo e della sorgente, alla frazione coarse (particelle con diametro aerodinamico compreso tra 10 e 2,5 m) e/o alla frazione fine (PM_{2,5}). in cui si presentano generalmente sotto forma di composti chimici diversi, e in diversi stati di ossidazione. Le diverse specie possono differire in modo considerevole tra loro, riguardo la tossicità, il potere cancerogeno, la solubilità, la distribuzione nelle varie frazioni dimensionali del materiale particellare. Permangono per tempi variabili in atmosfera in funzione delle dimensioni delle particelle, dello stato di ossidazione e della solubilità dei composti in cui sono presenti, finché non sono rimossi da diversi processi di deposizione. Questi processi comportano il trasferimento degli elementi dall'aria alle superfici (suolo, vegetazione, acqua) e l'inserimento degli stessi nei cicli biogeologici e nella catena alimentare (Veron et al., 1993).

I metalli e i semimetalli emessi in aria dai processi di combustione hanno in genere solubilità e reattività relativamente alta, a causa delle piccole dimensioni delle particelle su cui sono trasportati (Nriagu, 1984); perciò essi si dissolvono facilmente nella pioggia, specialmente in condizioni di basso pH (Migon et al., 1997).

Tra i metalli e i semimetalli che possono essere liberati in atmosfera, particolare rilevanza assumono piombo, cadmio, nichel e arsenico (vedi paragrafo "effetti per la salute" e "legislazione").

Il cadmio non si trova libero in natura e non esistono minerali in cui sia conglobato e da cui si possa estrarre. Le sorgenti antropogeniche di inquinamento sono: gli stabilizzanti, i pigmenti, l'uso di leghe e miscele, i fanghi, le batterie. Le operazioni di rifusione degli acciai e l'incenerimento di fanghi e di rifiuti solidi urbani sono, inoltre, tra i maggiori responsabili della presenza di cadmio nell'aria.

Il nichel è un elemento ubiquitario rilevato in diversi comparti della biosfera. Le sue principali fonti naturali sono rappresentate dagli aerosol continuamente prodotti dalla superficie oceanica, dalle polveri del terreno trasportate dal vento, dalle ceneri vulcaniche e in quantità minore dagli incendi di foreste. Le fonti principali di emissioni nell'ambiente sono l'uso di carbone e di olii combustibili per la produzione di calore ed energia elettrica, l'incenerimento dei rifiuti, la produzione di leghe resistenti alla corrosione: molti residui vengono dispersi nelle acque. Il trasporto e la distribuzione del nichel in particellare dipendono strettamente dalle dimensioni delle particelle stesse e dalle condizioni atmosferiche. Le dimensioni delle particelle dipendono principalmente, invece, dalle fonti di emissione: in genere quelle emesse da fonti antropogeniche risultano più piccole.

L'arsenico è un semimetallo che può formare una grande varietà di composti in cui esso è presente negli stati di ossidazione -3, +3, +5. I composti più comuni nel comparto ambientale sono quelli dell'arsenico (III) e dell'arsenico (V), arseniti e arseniati. Le sorgenti naturali più importanti sono rappresentate dai depositi naturali di

pirite (da cui possono essere rimossi e dispersi nell'ambiente attraverso i fenomeni atmosferici) e dalle emissioni di origine vulcanica (con rilascio di composti solforati). L'arsenico di origine antropogenica deriva prevalentemente dagli impianti siderurgici e dalla combustione dei combustibili fossili con liberazione di arseniti e arseniati (EC, 2001).

Il contributo di piombo proveniente da fonti naturali nell'ambiente è piuttosto limitato; riferendosi all'esposizione umana, queste fonti sono trascurabili.

Le principali sorgenti antropogeniche del piombo nell'ambiente derivano dal suo uso nel settore industriale e tecnologico.

La fonte principale di inquinamento è stata la combustione delle benzine contenenti additivi al Pbalchile, fino al 2000, quando è stata proibita in tutta l'Unione europea la commercializzazione delle benzine contenenti piombo (UE, 1998).

8.2: EFFETTI SULLA SALUTE

In base all'evidenza scientifica esistente, piombo, cadmio, nichel e arsenico (spesso in dipendenza dello stato di ossidazione in cui si trovano) possono avere un ruolo attivo diretto o indiretto nei meccanismi di azione biologica. Tuttavia diversi fattori chimico-fisici, quali l'idrosolubilità, la distribuzione dimensionale e l'arricchimento superficiale o l'inglobamento nelle particelle di aerosol, possono influenzare la loro biodisponibilità.

Il potenziale rilievo sanitario dei metalli e dei semimetalli presi in considerazione è associato all'esposizione inalatoria alle due frazioni componenti il PM₁₀ (fine e coarse), in cui essi si possono distribuire in proporzioni diverse. Presentando capacità di deposizione differenziata nelle diverse Regioni dell'apparato respiratorio, essi possono esprimere una diversa e specifica azione biologica. Tuttavia la principale via di esposizione per l'arsenico, il cadmio e il nichel è rappresentata dall'ingestione, in quanto essi una volta dispersi nell'ambiente diventano biodisponibili attraverso i cicli biogeochimici, con rilevanti fenomeni di

biomagnificazione. L'esposizione diretta per inalazione, per la popolazione generale (escludendo l'esposizione negli ambienti di lavoro) risulta essere di pochi punti percentuali rispetto alla dose totale assorbita mediamente. Un fattore che può aumentare in modo rilevante la dose di cadmio e nichel, assorbita per via inalatoria, è rappresentata dal fumo di sigaretta. L'organo bersaglio per i composti inorganici dell'arsenico è la pelle. Evidenze di incremento di mortalità per problemi cardiovascolari e di neuropatie sono state derivate da studi epidemiologici su lavoratori professionalmente esposti. Il rene è l'organo bersaglio del cadmio, gli effetti sono in genere derivati dall'accumulo conseguente a esposizioni croniche a lungo termine. Gli effetti noncancerogeni noti per il nichel sono stati osservati sul tratto respiratorio, il sistema immunitario, e il sistema endocrino. Reazioni allergiche in seguito ad inalazione e per contatto cutaneo sono ampiamente descritte in caso di esposizione professionale.

La IARC e l'Unione Europea hanno classificato il cadmio e i suoi composti, l'arsenico e i suoi composti e alcuni composti del nichel come cancerogeni umani.

Il piombo inorganico è assorbito per via respiratoria e attraverso il tubo digerente (solo il piombo organico è assorbito anche attraverso la cute). Sono assorbite più facilmente (per circa il 50 %) le particelle fini formate da composti solubili del metallo. Nei soggetti adulti, circa il 5-10% del piombo ingerito è assorbito, mentre la parte restante viene eliminata con le feci. Circa il 90-95% del metallo presente nel sangue è legato ai globuli rossi. Il 90% del piombo presente nell'organismo si deposita, legato al fosforo ed al calcio, nelle ossa.

Il piombo si accumula in modo relativamente elevato anche nei reni ed in minor misura nel fegato (organi di escrezione dove il metallo può formare delle caratteristiche inclusioni nucleari). Il piombo si accumula anche nel sistema nervoso, specie in quello dei bambini, in cui la barriera ematoencefalica non è completamente sviluppata.

Nei tessuti molli il piombo ha un metabolismo ed uno scambio abbastanza rapido, mentre tende invece a

depositarsi nelle ossa e nei denti formando composti stabili. In conseguenza di esposizione a piombo sono stati in passato abbondantemente descritti effetti sul sistema ematopoietico (il piombo induce anemia in parte con un effetto mieloinibitorio), effetti sul sistema immunitario, intossicazione cronica con ipertensione arteriosclerosi e/o arteriosa e/o nefrosclerosi. intossicazione cronica con encefalopatia e neuropatia. impregnazione saturnina o da piombo, fino alla colica saturnina (grave forma di intossicazione dell'adulto della durata di alcuni giorni, non più documentata da decenni in Italia) (EC, 1997c; EC, 2001; OMS, 2000).

8.3: LEGISLAZIONE

Sono riportati nella Tabella 8. 1 i valori obiettivo stabiliti dalla Direttiva 2004/107/CE per arsenico cadmio e nichel e il valore limite stabilito dalla Direttiva 2008/50/CE per il piombo (tutti recepiti nel D.Lgs 155/2010). Questi sono riferiti al tenore totale di ciascun inquinante presente nella frazione PM₁₀ del materiale particolato, calcolato come media su un anno civile.

Tabella 8. 1. Valori obiettivo (arsenico, cadmio, nichel) e valore limite (piombo) ai sensi del D.Lgs.155/2010

	Valore limite	Valori obiettivo	Da raggiungere
Arsenico	-	6,0 ng/m ³	
Cadmio	-	5,0 ng/m³ En	
Nichel	-	20 ng/m³	
Piombo	0,5 μg/m ³	-	01/01/20051

¹Tale valore limite poteva essere raggiunto più tardi (entro il 1° gennaio 2010) in caso di aree poste nelle immediate vicinanze delle fonti industriali localizzate presso siti contaminati da decenni di attività industriali. In tali casi il valore limite che doveva essere rispettato fino al 1° gennaio 2010 era pari a 1,0 μg/m³.

8.4: SINTESI DEI LIVELLI SU SCALA NAZIONALE

Nel 2019 il valore limite per il piombo e i valori obiettivo per il nichel e per il cadmio sono stati rispettati in tutte le stazioni di monitoraggio.

Per l'arsenico un caso di superamento è stato osservato in una stazione della Sicilia (a Priolo Gargallo, in provincia di Sicuracusa, nei pressi del Polo petrolchimico). La stazione fa parte della zona "Aree industriali".

Livelli localmente significativi di nichel, cadmio e arsenico sono stati recentemente documentati nelle aree di massima ricaduta delle emissioni industriali diffuse e convogliate degli impianti di produzione e lavorazione degli acciai, in uno studio focalizzato sui siti di Aosta, Terni e Vicenza (ARPA VALLE D'AOSTA, ARPA VENETO, ARPA UMBRIA, 2018).

L'origine industriale dell'inquinamento da metalli è confermato dai livelli localmente significativi (superiori alle soglie di valutazione superiore) ma inferiori ai rispettivi valori obiettivo registrati:

- per l'arsenico, presso il sito industriale di Portoscuso (Sardegna);

- per il nichel, a Sondrio (VIA PARIBELLI, Lombardia), a Terni (Namo Scalo, Umbria) e a Napoli (San Vitaliano Scuola Elementare Marconi, Campania);
- per il cadmio, a Venezia (VE Sacca Fisola, Veneto), e nei siti industriali di Priolo Gargallo (Priolo, Sicilia) e di Portoscuso (CENPS7, CENPS4, Sardegna).

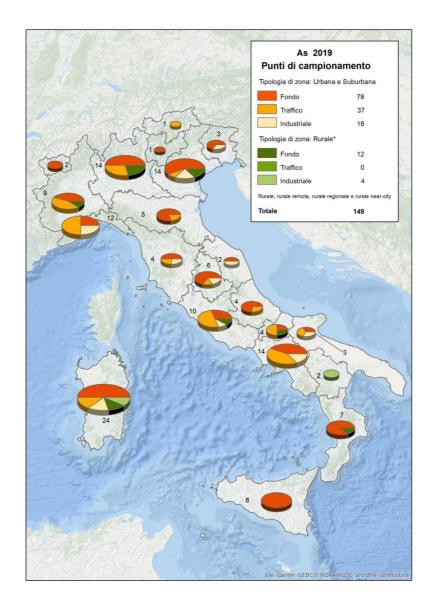


Figura 8.1. Arsenico - Classificazione dei punti di campionamento secondo i criteri di ubicazione su macroscala di cui all'Allegato III, D.Lgs.155/2010 (2019).

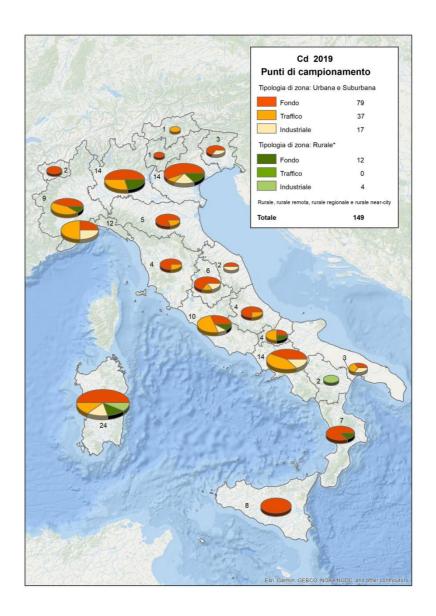


Figura 8.2. Cadmio - Classificazione dei punti di campionamento secondo i criteri di ubicazione su macroscala di cui all'Allegato III, D.Lgs.155/2010 (2019).

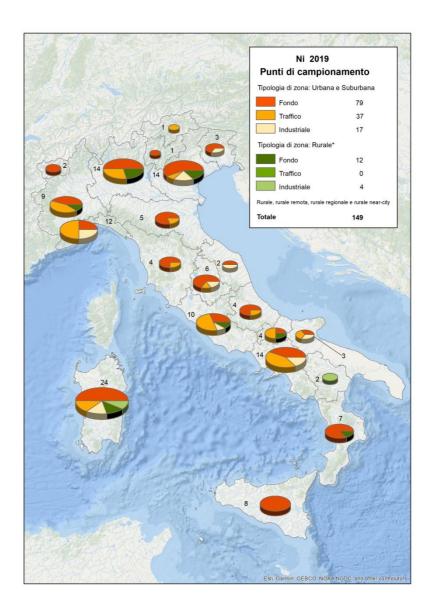


Figura 8.3. Nichel - Classificazione dei punti di campionamento secondo i criteri di ubicazione su macroscala di cui all'Allegato III, D.Lgs.155/2010 (2019).

Figura 8.4. Piombo - Classificazione dei punti di campionamento secondo i criteri di ubicazione su macroscala di cui all'Allegato III, D.Lgs.155/2010 (2019).

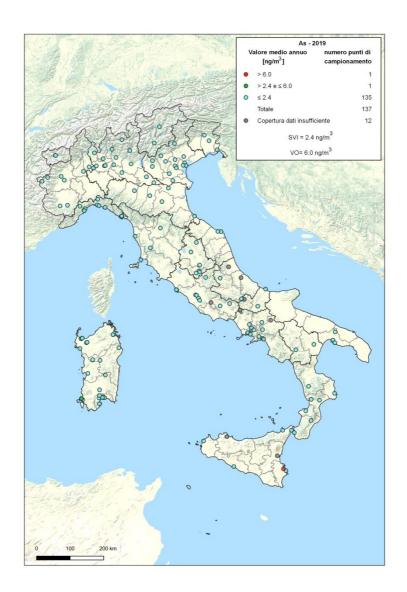


Figura 8.5. Arsenico - Stazioni di monitoraggio e superamenti del valore obiettivo per la protezione della salute (2019). Fonte: Elaborazioni ISPRA su dati ARPA/APPA

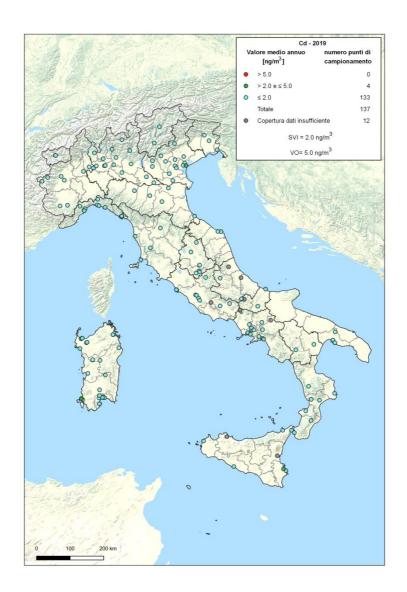


Figura 8.6. Cadmio - Stazioni di monitoraggio e superamenti del valore obiettivo per la protezione della salute (2019).

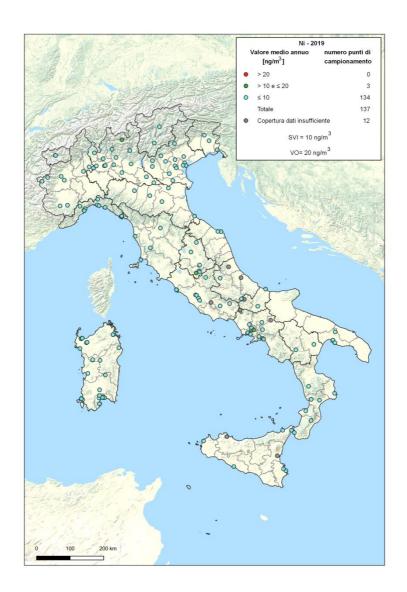


Figura 8.7. Nichel - Stazioni di monitoraggio e superamenti del valore obiettivo per la protezione della salute (2019).

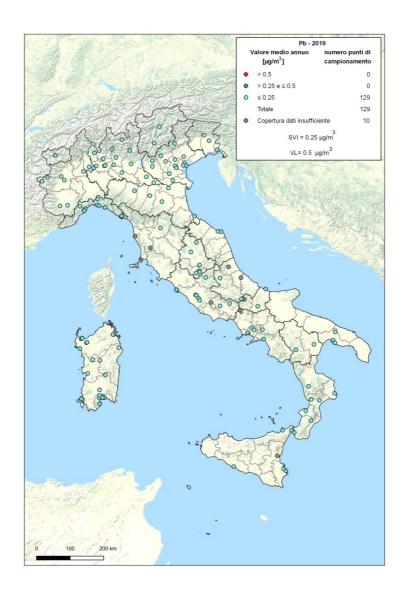


Figura 8.8. Piombo - Stazioni di monitoraggio e superamenti del valore limite per la protezione della salute (2019).

9: ALTRI INQUINANTI GASSOSI

9.1: CARATTERISTICHE CHIMICO-FISICHE SORGENTI.

9.1.1.Monossido di carbonio

Il monossido di carbonio (CO) è un gas incolore, insapore e inodore. È caratterizzato da una scarsa reattività e bassa solubilità in acqua. Si forma in qualsiasi processo di combustione in conseguenza di un'incompleta ossidazione del materiale combustibile contenente carbonio.

Le principali emissioni da attività umane sono determinate dall'uso di combustibili fossili nei trasporti, nei processi industriali, nella produzione di energia elettrica, nel riscaldamento civile, oltre che dal trattamento dei rifiuti mediante incenerimento (EC, 1999b).

Le principali emissioni di origine naturale derivano da combustioni delle aree boschive ed eruzioni vulcaniche.

Il monossido di carbonio oltre che essere emesso direttamente in atmosfera dai processi sopra citati, può essere formato in atmosfera attraverso le reazioni chimiche del ciclo di ossidazione degli idrocarburi e in particolare del metano. Quest'ultimo è presente in atmosfera da fonti antropiche (uso di carbone, petrolio e gas naturale) e da fonti naturali (decomposizione anaerobica di sostanze contenenti carbonio).

9.1.2.Biossido di zolfo

Il biossido di zolfo (SO₂) e i suoi prodotti di ossidazione (triossido di zolfo, SO₃, acido solforico, H₂SO₄, e solfati, SO₄²⁻ sotto forma di aerosol) sono comunemente indicati con il termine generico di "ossidi di zolfo" (SO_x). L'SO₂ è un gas incolore, non infiammabile, molto solubile in acqua e dall'odore pungente. Le sorgenti antropiche principali sono i processi di combustione delle sostanze

che contengono zolfo (principalmente i combustibili fossili come il carbone e gli oli combustibili utilizzati nei processi industriali, nella produzione di energia elettrica e nelle attività marittime); un'importante sorgente è costituita dalle attività estrattive. I vulcani attivi e l'aerosol marino costituiscono le sorgenti naturali principali. L'SO2 e i sui prodotti di ossidazione possono essere trasportati dalle masse d'aria in movimento a grande distanza dal punto di emissione, prima di essere rimossi dall'atmosfera attraverso processi di deposizione secca e umida, potendo costituire così un elemento di inquinamento a lunga distanza, anche transfrontaliero (EC, 1997b).

9.1.3.Benzene

Il benzene è un idrocarburo aromatico con formula C₆H₆. incolore, liquido a temperatura ambiente con un punto di ebollizione di 80,1 °C, dall'odore caratteristico con una soglia olfattiva di 1,5 ppm v/v. È presente nell'aria principalmente nella fase vapore, con tempi di permanenza che variano da alcune ore ad alcuni giorni, in dipendenza dell'ambiente, del clima e della concentrazione degli altri inquinanti. La reazione con i radicali idrossilici nell'aria è il modo più importante di degradazione. Le precipitazioni atmosferiche provocano la rimozione del benzene nell'aria. Le emissioni di benzene originano prevalentemente dai processi di combustione per la produzione di energia e per i trasporti, dal riscaldamento domestico e dai processi evaporativi presso i siti produttivi, i siti di distribuzione e gli utenti finali (in particolare dagli autoveicoli).

La fonte di emissione principale di questo inquinante è costituita dal traffico veicolare; un contributo significativo è dovuto ad alcuni processi industriali e all'impiego di solventi e agenti sgrassanti (EC, 1998).

9.2: EFFETTI SULLA SALUTE

9.2.1.Monossido di carbonio

Il monossido di carbonio una volta inalato giunge a contatto con la membrana alveolo-capillare, dove avviene lo scambio gassoso aria - sangue. Nel sangue il CO si lega con l'atomo di ferro presente nell'eme dell'emoglobina, dando luogo alla formazione di carbossiemoglobina. Nel compartimento extravascolare, prevalentemente nel cuore e nel muscolo scheletrico, il CO presente è quasi totalmente legato alla mioglobina (Luomanmaki et al., 1969) e solo una piccola quantità è legata ai citocromi ed ai metallo-enzimi, come la citocromo-ossidasi.

Gli effetti dell'esposizione al monossido di carbonio sono sostanzialmente dovuti alla ipoossigenazione tissutale che interessa in particolare il cuore ed il sistema nervoso centrale. Numerosi studi epidemiologici hanno evidenziato una associazione statisticamente significativa tra le concentrazioni atmosferiche medie di CO e l'aumento della mortalità totale e per cause cardiovascolari. Una forte correlazione è stata evidenziata anche tra le concentrazioni ambientali di CO e i ricoveri ospedalieri per malattie cardiovascolari, anche a basse concentrazioni ambientali di CO (1,2 – 5,6 ppm) (OMS 2000).

Le correnti linee guida della OMS per il CO sono basate sull'equazione esponenziale di Coburn-Foster-Kane e, al fine di non eccedere il livello di 2,5% di carbossiemoglobina (COHb) nel sangue, livello che si ritiene protettivo per la popolazione generale e per i soggetti suscettibili, sono raccomandati i seguenti valori soglia per esposizioni di breve periodo:

- •100 mg/m³ (90 ppm) per esposizioni di 15 minuti
- •60 mg/m³ (50 ppm) per esposizioni di 30 minuti
- •30 mg/m³ (25 ppm) per esposizioni di 1 ora
- •10 mg/m³ (10 ppm) per esposizioni di 8 ore

9.2.2.Biossido di zolfo

Sono noti effetti sulla salute associati al SO_2 e ai composti che si possono formare in aria a partire da esso, sia in relazione ad esposizioni a breve termine che in relazione ad esposizioni a lungo termine. Gli effetti prevalenti riguardano la funzionalità respiratoria, in particolare a carico dei soggetti particolarmente suscettibili, quali asmatici, anziani e bambini.

La OMS (OMS, 2006) raccomanda pertanto due valori guida diversi in relazione alla durata dell'esposizione:

- •500 µg/m³ per esposizioni di 10 minuti
- •20 µg/m³ per esposizioni di 24 ore

Sono inoltre riconosciuti effetti dannosi su ecosistemi, materiali e beni culturali correlati con le proprietà chimico-fisiche dello stesso SO₂ e dei suoi prodotti di ossidazione.

9.2.3.Benzene

In conseguenza di una esposizione prolungata nel tempo sono accertati effetti avversi gravi quali emotossicità, genotossicità e cancerogenicità. Il benzene è stato classificato dalla IARC nel gruppo 1 - cancerogeno accertato per l'uomo: vi è sufficiente evidenza di cancerogenicità nell'uomo in studi epidemiologici adeguati (IARC, 2018). Secondo la OMS in conseguenza della accertata cancerogenicità del benzene non è possibile stabilire livelli di esposizione al di sotto dei quali non c'è rischio di sviluppo degli effetti avversi citati.

9.3: LEGISLAZIONE

Sono riportati nella Tabella 9.1 i valori limite di legge per il monossido di carbonio, il biossido di zolfo e per il benzene.

Tabella 9.1. CO, SO₂, Benzene - Valori limite e soglie d'allarme ai sensi del D.Lgs.155/2010

Inquinante	Parametro	Valore	Data alla quale il valore di legge deve essere raggiunto
Monossido di carbonio CO	Valore limite giornaliero Media massima giornaliera su 8 ore		1° gennaio 2005
Biossido di zolfo SO ₂	Soglia di allarme	500 µg/m³ Su tre ore consecutive	-
	Valore limite orario	350 µg/m³ da non superare più di 24 volte per anno civile	1° gennaio 2005
	Valore limite giornaliero	125 µg/m³ da non superare più di 3 volte per anno civile	1° gennaio 2005
Benzene C ₆ H ₆	I Valore limite annuale 1.5 () Lid/m ³		1° gennaio 2010

9.4. SINTESI DEI LIVELLI SU SCALA NAZIONALE

Le stazioni di monitoraggio che hanno misurato e comunicato dati di CO sono 227 nel 2019. Di queste, 207 (91%) hanno copertura temporale minima del 90% (al netto delle perdite di dati dovute alla taratura periodica o alla manutenzione ordinaria). La classificazione delle stazioni di monitoraggio di CO secondo i criteri di ubicazione su macroscala previsti dalla normativa è rappresentata in Figura 9.1.

Le stazioni di monitoraggio che hanno misurato e comunicato dati di SO_2 sono 227. Di queste, 205 (90%) hanno copertura temporale minima del 90% (al netto delle perdite di dati dovute alla taratura periodica o alla manutenzione ordinaria). La classificazione delle stazioni di monitoraggio di SO_2 secondo i criteri di

ubicazione su macroscala previsti dalla normativa è rappresentata in Figura 9.2.

Le stazioni di monitoraggio che hanno misurato e comunicato dati di C_6H_6 sono 250. Di queste, 243 (97%) hanno copertura temporale minima del 90% (al netto delle perdite di dati dovute alla taratura periodica o alla manutenzione ordinaria). La classificazione delle stazioni di monitoraggio di C_6H_6 secondo i criteri di ubicazione su macroscala previsti dalla normativa è rappresentata rispettivamente in Figura 9.3.

Si stima che in Italia nel 2018 siano stati emessi complessivamente 2,310 Gg di CO; le principali sorgenti sono gli impianti di combustione non industriale (1423 Gg) e il trasporto su strada (473 Gg). Le emissioni di CO da attività antropiche sono diminuite significativamente

negli ultimi 26 anni (ammontavano nel 1990 a 7210 Gg) (ISPRA, 2020a).

Le emissioni degli ossidi di zolfo sono diminuite di circa il 94% nel periodo 1990 – 2018; il trend decrescente è confermato anche nel periodo 2005 – 2018: le emissioni sono passate da 409 a 110 Gg, con una riduzione del 73%. Di fatto il dato del 2018 è già al di sotto dell'obiettivo di riduzione al 2030. I processi produttivi e le combustioni nelle attività industriali sono attualmente le principali sorgenti emissive.

La riduzione delle emissioni si riflette in modo diretto sulle concentrazioni osservate in aria per questi inquinanti essenzialmente primari. Le osservazioni condotte in Europa e in Italia negli ultimi vent'anni mostrano una costante e coerente diminuzione delle concentrazioni di SO₂, CO, C₆H₆, più marcata per quest'ultimi, nei siti di misura collocati in prossimità delle principali arterie di traffico veicolare (siti di traffico urbano; e.g. ISPRA, 2014; Cattani et al. 2010); i livelli di questi inquinanti sono ormai ben al di sotto dei limiti vigenti.

Nel 2019 non sono stati registrati superamenti dei valori limite per nessuno dei tre inquinanti (Figura 9.4; Figura 9.5; Figura 9.6).

Relativamente al benzene, per il quale in nessuna stazione è stato registrato il superamento del limite di concentrazione come media annua, ARPA Sicilia ha effettuato nel 2019 una indagine sulle concentrazioni medie orarie registrate nelle stazioni della zona Aree Industriali e degli agglomerati urbani. E' stato evidenziato che nelle stazioni della zona Aree Industriali si sono registrati dei ripetuti incrementi orari di concentrazione superiore a 20 µg/m³, soprattutto nella stazione Priolo sita nell'Area ad Elevato Rischio di Crisi Ambientale di Siracusa dove sono stati registrati 31 superamenti.

Nelle stazioni ME-Boccetta e PA-Boccadifalco, rispettivamente negli agglomerati di Messina e Palermo, non si evidenziano analoghi incrementi consistenti rispetto la rispettiva concentrazione media annua.

La concentrazione oraria di benzene registrata nelle stazioni della zona Aree industriali risente delle attività industriali che per loro natura possono essere caratterizzate da discontinuità emissive, anche di breve durata, che possono essere alla base dei picchi di concentrazione riscontrati in tali aree.

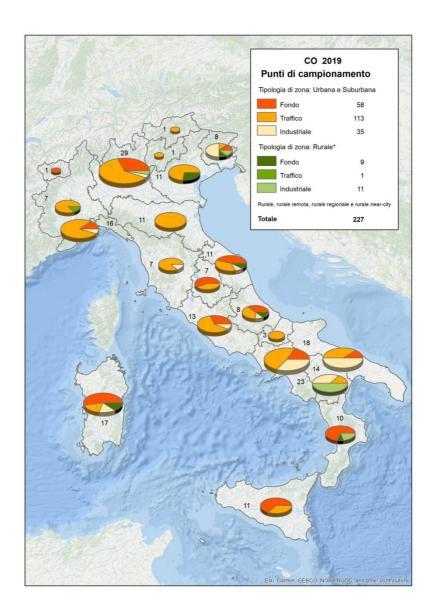


Figura 9.1. CO. Classificazione dei punti di campionamento secondo i criteri di ubicazione su macroscala di cui all'Allegato III, D.Lgs.155/2010 (2019).

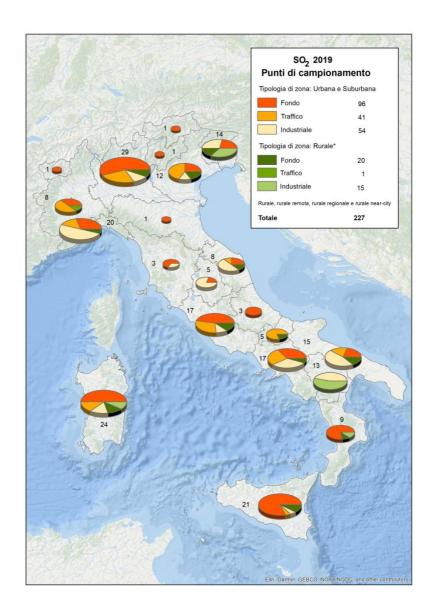


Figura 9.2. SO₂. Classificazione dei punti di campionamento secondo i criteri di ubicazione su macroscala di cui all'Allegato III, D.Lgs.155/2010 (2019).

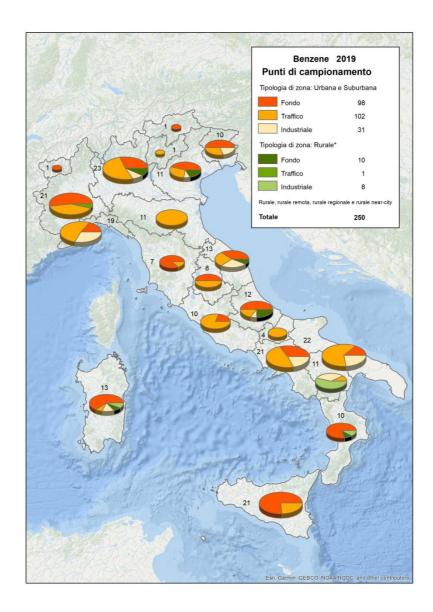


Figura 9.3. C₆H₆. Classificazione dei punti di campionamento secondo i criteri di ubicazione su macroscala di cui all'Allegato III, D.Lgs.155/2010 (2019).

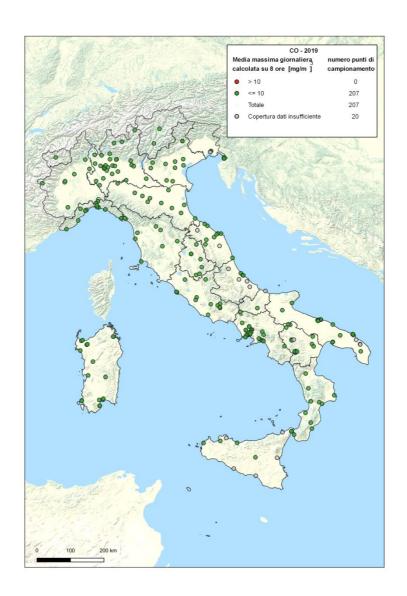
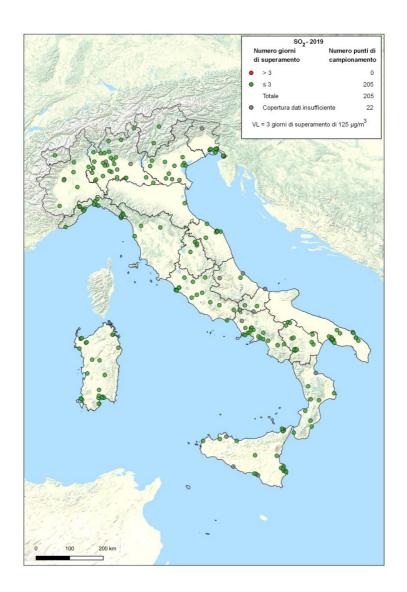



Figura 9.4. CO - Stazioni di monitoraggio e superamenti del valore limite (media massima giornaliera su 8 ore) (2019). Fonte: Elaborazioni ISPRA su dati ARPA/APPA

Figura 9.5. SO₂ - Stazioni di monitoraggio e superamenti del valore limite orario per la protezione della salute (2019). Fonte: Elaborazioni ISPRA su dati ARPA/APPA

 $\label{eq:control_solution} \mbox{Figura 9.6. SO}_2 - \mbox{Stazioni di monitoraggio e superamenti del valore limite giornaliero per la protezione della salute (2019).}$

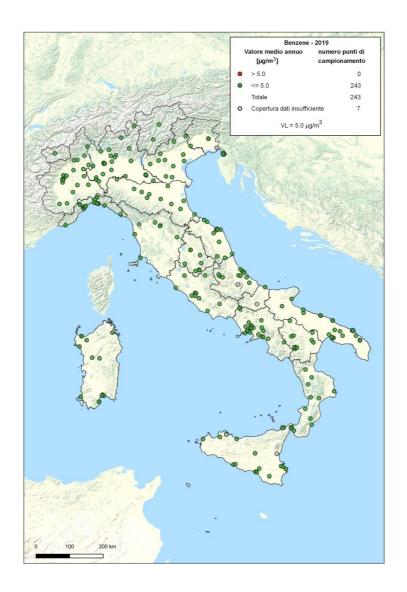


Figura 9.7. C_6H_6 - Stazioni di monitoraggio e superamenti del valore limite annuale per la protezione della salute (2019). Fonte: Elaborazioni ISPRA su dati ARPA/APPA

10. VALUTAZIONE DELLA QUALITA' DELL'ARIA AI FINI DELLA PROTEZIONE DELLA VEGETAZIONE

10.1. INQUINANTI DANNOSI PER LA VEGETAZIONE, CARATTERISTICHE CHIMICO-FISICHE E SORGENTI.

Alcuni inquinanti come gli ossidi di azoto e di zolfo e l'ozono sono riconosciuti come potenzialmente dannosi per la vegetazione.

È noto infatti che gli ossidi di azoto presenti in aria, entrando a contatto con le superfici delle piante, possono penetrare nelle stesse. Essi infatti sciogliendosi nell'acqua della cavità degli stomi formano nitriti e nitrati; attraverso successive fasi di riduzione fino ad ammoniaca finiscono per entrare nel metabolismo dell'azoto. (es. Wellburn, A.R., Wilson, J., Aldrige, P.H. 1980). L'assorbimento prolungato nel tempo può determinare danni acuti sotto forma di necrosi. Si presume che le membrane biologiche (ad esempio Mudd et al.1984) e i cloroplasti possano subire danni (Wellburn et al.1972). Vari effetti legati all'esposizione a lungo termine sono descritti nella letteratura scientifica (e.g. Guderian and Tingey, 1987).

Anche il biossido di zolfo può influire direttamente sulla vegetazione a causa del suo assorbimento attraverso le parti delle piante che si trovano sopra il terreno con effetti diretti sulle foglie, variabili in funzione dalle concentrazioni in aria.

Gli effetti biochimici e fisiologici che si verificano nel tessuto vegetale a seconda della quantità di SO₂ assorbita per unità di tempo sono vari; questi includono la degradazione della clorofilla, ridotta fotosintesi, aumento della frequenza respiratoria e cambiamenti nel metabolismo delle proteine. Le piante inferiori come

licheni e muschi, a causa della loro struttura presentano una particolare sensibilità all'SO₂.

Anche l'ozono, alle concentrazioni normalmente rilevate in Italia e in Europa, può determinare una serie di danni che vanno da effetti necrotici visibili sulle foglie, riduzione della crescita e della resa dei raccolti (e.g. Avnery et al., 2011), alterazione della sensibilità delle piante agli stress biotici ed abiotici.

10.2. LEGISLAZIONE

La legislazione vigente prevede che siano individuati dei siti fissi di campionamento in cui si valuta la qualità dell'aria ambiente ai fini della protezione della vegetazione e degli ecosistemi naturali.

Per quanto riguarda l'ozono la valutazione va eseguita presso i punti di misura individuati e classificati come suburbani, rurali e rurali di fondo i cui criteri di rappresentatività e di ubicazione su macroscala, sono riportati nell' allegato VIII del D.Lgs. 155/2010. Il criterio generale è quello di rappresentare l'esposizione ai livelli più alti di ecosistemi naturali, foreste o colture (seguendo un principio di cautela nella valutazione del rischio) attraverso punti di misura che abbiano, per quanto possibile, una rappresentatività spaziale elevata (da alcune decine ad alcune migliaia di km²).

Alcune indicazioni generali sono riportate nel D.Lgs. 155/2010 sebbene tali condizioni possono comunque essere oggetto di deroga alla luce delle condizioni geografiche o dell'opportunità di tutelare zone particolarmente vulnerabili.

In particolare le stazioni di misurazione devono essere localizzate ad oltre 20 km dalle aree urbane e ad oltre 5 km da altre zone edificate, impianti industriali, autostrade o strade principali con conteggi di traffico superiori a 50.000 veicoli al giorno.

L'area di rappresentatività delle stazioni di misurazione deve essere pari ad almeno 1.000 km². I siti fissi di campionamento devono essere individuati anche sulle isole ove necessario ai fini della protezione della vegetazione e degli ecosistemi naturali.

Tali indicazioni valgono per tutti gli inquinati citati (ossidi di azoto, ossidi di zolfo ed ozono).

Per gli ossidi di azoto e gli ossidi di zolfo, sulla base di una valutazione preliminare analoga a quella effettuata per gli altri inquinanti, sono stabilite zone, anche sovra regionali, ai fini della valutazione della qualità dell'aria, in modo da confrontare i livelli registrati con i rispettivi obiettivi ambientali.

Sulla base di questa valutazione preliminare è fissato il numero minimo di punti di misura da utilizzare che deve essere pari almeno a 1 ogni 20 000 km² se dalla valutazione risulta che la soglia di valutazione superiore è superata, ovvero pari a 1 ogni 40 000 km² nel caso i livelli risultino compresi tra la soglia di valutazione inferiore e quella superiore.

La zonizzazione relativa alla valutazione della qualità dell'aria con riferimento alla vegetazione ed agli ecosistemi non corrisponde necessariamente a quella relativa alla valutazione della qualità dell'aria con riferimento alla salute umana. Ai fini di tale zonizzazione le regioni e le province autonome individuano zone sovraregionali ai sensi dell'articolo 3, comma 4.

La particolare conformazione orografica del nostro Paese rende difficile, in molte parti del territorio, rispettare i requisiti di ubicazione su macroscala previsti dalla direttiva. Non sono state ancora individuate zone sovra regionali, sebbene siano state fatte diverse valutazioni nell'ambito del coordinamento stabilito ex art. 20 D.Lgs. 155/2010. La maggior parte delle regioni, stante tale difficoltà, non hanno individuato specifiche zone per la protezione della vegetazione pur effettuando tutte il monitoraggio presso i punti di misura stabiliti ai fini della protezione della salute umana anche per gli inquinanti rilevanti ai fini della protezione della vegetazione. I dati rilevati sono trasmessi regolarmente alla Commissione Europea dalle regioni e province autonome, per il tramite del MATTM, ai sensi della Decisione 2011/850/EU.

È auspicabile che sia realizzata una zonizzazione sovra regionale per ovviare a tale problema e per far sì che la valutazione della qualità qualità dell'aria ai fini della protezione della vegetazione sia pienamente conforme al dettato legislativo.

In questo rapporto si vuole rappresentare il risultato di questi monitoraggi e il quadro complessivo che emerge da esso, al solo fine di descrivere il fenomeno e la diversa rilevanza che oggi possono avere i livelli di NO_X , SO_2 e O_3 per la vegetazione e gli ecosistemi del Paese.

In base alle conoscenze scientifiche, sono fissati dei livelli critici oltre i quali possono sussistere effetti negativi diretti su recettori quali gli alberi, le altre piante o gli ecosistemi naturali.

Sono riportati nella Tabella 10.1 i livelli critici di legge per il biossido di zolfo e per gli ossidi di azoto e l'obiettivo a lungo termine e il valore obiettivo per l'ozono.

Tabella 10.1: Valore obiettivo, obiettivo a lungo termine e livelli critici per la protezione della vegetazione ai sensi del D.Lgs.155/2010

Fonte: D.Lgs.155/2010

Finalità	Indicatori	Periodo di mediazione	Valore	Data entro la quale deve essere raggiunto il valore obiettivo
Ozono - protezione della vegetazione	Valore obiettivo	1 ora cumulativa da maggio a luglio (media su 5 anni)	18.000 µg/m³*h come media su 5 anni	01/01/2010
	Obiettivo a lungo termine (AOT40v)	1 ora cumulativa da maggio a luglio	6.000 µg/m³*h	Non definito
Biossido di zolfo	Livello critico	Anno civile	20 μg/m³	Non definito
	Livello critico invernale	Ottobre - marzo	20 μg/m³	Non definito
Ossidi di azoto ⁽¹⁾	Livello critico	Anno civile	30 μg/m³	Nessuno

⁽¹⁾ come somma di ossido di azoto (NO) e biossido di azoto (NO₂).

10.3. SINTESI DEI LIVELLI SU SCALA NAZIONALE

Sulla base dei dati osservati presso le stazioni suburbane, rurali e rurali di fondo dove viene effettuato il monitoraggio dell'ozono, emerge un quadro di generale mancato rispetto degli obiettivi individuati ai fini della protezione della vegetazione.

In particolare le stazioni che rispettano la percentuale minima richiesta per il calcolo dell'obiettivo a lungo termine per la protezione della vegetazione (AOT40v) sono 93 su 106.

L'obiettivo a lungo termine per la protezione della vegetazione (AOT40v) è stato superato in 88 stazioni su 94 (94%) con valori molto superiori all'obiettivo a lungo termine (6000 µg/m³*h). In 66 stazioni è stato superato

anche il valore obiettivo (18.000 μg/m³*h, come media su 5 anni).

Per quanto riguarda gli ossidi di azoto, emerge un quadro opposto: il livello critico è stato superato solo in una stazione su 50 (2%).

Le stazioni che rispettano la percentuale minima richiesta per il calcolo del livello critico per la protezione della vegetazione sono 50 su 56 (Figura 10.2).

Per quanto riguarda il biossido di zolfo non è stato registrato nessun superamento del livello critico e del livello critico invernale in continuità con quanto osservato negli ultimi anni.

10.1. O₃ - Stazioni di monitoraggio e superamenti dell'obiettivo a lungo termine per la protezione della vegetazione (2019). Fonte: Elaborazioni ISPRA su dati ARPA/APPA

= 141

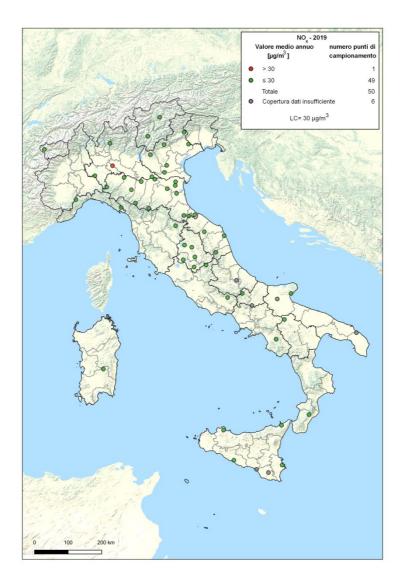


Figura 10.2. NO_X - Stazioni di monitoraggio e superamenti del livello critico annuale per la protezione della vegetazione (2019). Fonte: Elaborazioni ISPRA su dati ARPA/APPA

11. IMPATTO DI SPECIFICHE SORGENTI E SOURCE APPORTIONMENT

11.1 L'IMPATTO DELLE EMISSIONI DOVUTE ALLA COMBUSTIONE DI BIOMASSA SULLA CONCENTRAZIONE DI PM IN VALLE D'AOSTA

Tombolato I.², Diémoz H.¹, Zublena M.¹, Tarricone C.¹, Magri T.¹, Pession G.¹, Ferrero L.³ ¹ARPA VALLE D'AOSTA, ²COLLABORATORE ARPA VALLE D'AOSTA ³UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA, DISAT, CENTRO GEMMA

RIASSUNTO

In questo lavoro vengono presentati i risultati di una campagna di misura effettuata in Valle d'Aosta in cui sono quantificati, per la prima volta in questa regione, gli della combustione di biomassa sulla impatti concentrazione di particolato atmosferico. Le misure sono state condotte in due siti (rurale e urbano) attrezzati per la misura di PM₁₀ (determinazioni gravimetriche e automatiche mediante assorbimento beta) e per la misura di Black Carbon (BC) tramite etalometro. Inoltre. sono state determinate le concentrazioni di idrocarburi policiclici aromatici (IPA), levoglucosano, anioni e cationi solubili inorganici, carbonio elementare (EC) e organico (OC) su PM₁₀. Il set-up strumentale ha consentito di determinare la quota di PM dovuta alla combustione di biomassa attraverso due approcci indipendenti: il primo metodo, "ottico", utilizza i dati di BC da etalometro a partire da un modello tarato sulla base delle determinazioni di OC e di levoglucosano, mentre il secondo impiega la speciazione chimica completa del PM, analizzata con la tecnica statistica Positive Matrix Factorization (PMF). I due metodi danno risultati confrontabili ed evidenziano notevoli differenze tra il sito rurale e il sito urbano, essendo quest'ultimo maggiormente influenzato dalle emissioni di combustibili fossili. Inoltre, il primo metodo, una volta validato rispetto al secondo, consente di dedurre in modo automatizzato la quota di PM da combustione di biomassa dalle sole misure in continuo e ad alta frequenza di BC e di PM₁₀. senza ricorrere alle numerose e onerose determinazioni analitiche su PM₁₀. La validazione del metodo ha valenza sito-specifica e va ripetuta solo nel caso di variazioni sostanziali del contesto emissivo. Questo studio, di cui alcune indagini sono state sviluppate nell'ambito di due progetti a finanziamento europeo, BBCLEAN-Alpine Space e PREPAIR-LIFE, può aiutare nella valutazione dell'impatto di specifiche sorgenti emissive caratteristiche dell'arco alpino e nello sviluppo di piani di mitigazione a scala locale, regionale e globale tanto per la qualità dell'aria quanto per gli effetti sul clima.

Parole chiave: biomass burning, source apportionment, PM. Black Carbon

ABSTRACT

This study presents the results of a measurement campaign performed in the Aosta Valley in order to quantify, for the first time in this region, the impact of biomass burning on particle matter (PM) concentrations. Measures were carried out at two sites (rural and suburban) equipped for the measurement of PM₁₀ (gravimetric and automatic beta absorption determinations) and for the measurement of Black Carbon (BC) using an aethalometer. In addition, concentrations of polycyclic aromatic hydrocarbons (PAH), levoglucosan, inorganic soluble anions and cations, elementary (EC) and organic carbon (OC) on PM₁₀ were also determined. The instrumental set-up allowed to estimate the amount of PM due to biomass. burning, using two independent approaches; the first method, 'optical ' one, uses BC data from the aethalometer, based on a model specifically calibrated on OC and levoglucosan analyses, while the second one takes into consideration the complete chemical PM speciation data through the statistical technique Positive Matrix Factorization (PMF). The two methods provide comparable results and show noticeable differences in the biomass burning contributions between the rural site and the urban area, this latter being affected by local traffic and urban emissions. Furthermore, the first method, once validated with respect to the second one, allows to automatically infer the amount of biomass burning PM from the continuous and high-frequency measurements of BC and PM₁₀, without relying on the several and time-consuming analytical determinations on PM₁₀. The validation of the method has a site-specific value and should be reassessed only when significant emissive changes occur.

This study, of which some investigations have been carried out as part of two European-funded projects, BBCLEAN-Alpine Space and PREPAIR-LIFE, can be helpful in identifying the impact of some specific Alpine emission sources and in developing local, regional and global mitigation plans for both air quality and climate effects.

Keywords: biomass burning, source apportionment, PM. Black Carbon

Introduzione

La combustione della biomassa è ampiamente utilizzata nella regione alpina per il riscaldamento domestico, fino a raggiungere il 90% della domanda di calore nei piccoli comuni montani. Il suo sempre più frequente uso, in sostituzione dei combustibili fossili (GPL, metano, gasolio), deriva sia dalla sua economicità, sia dall'essere considerata una fonte di energia rinnovabile ed, in quanto tale, incentivata dalle politiche nazionali e regionali di lotta ai cambiamenti climatici. Per quanto riguarda la Valle d'Aosta, i risultati dell'indagine condotta nel 2011 nell'ambito del progetto RENERFOR hanno mostrato come nei comuni valdostani situati tra 600 e 900 m di altitudine, il 53% degli utenti disponeva di un apparecchio od impianto secondario (ausiliario) per il riscaldamento domestico alimentato a biomassa legnosa, con una preponderanza di stufe a legna (per l'80% a ciocchi di legna) e di caldaie a pellet.

Come però molti studi hanno evidenziato, la combustione di biomassa, oltre ad essere spesso inefficiente dal punto di vista energetico, sfortunatamente comporta aspetti critici legati al suo impatto negativo non solo sulla qualità dell'aria, ma anche, attraverso effetti

radiativi diretti, sul clima (Putaud et al, 2014). Dal punto di vista della qualità dell'aria essa comporta infatti, soprattutto in condizioni di combustione incompleta, emissioni di particolato atmosferico (PM), idrocarburi policiclici aromatici (IPA) e composti organici volatili (VOC). L'inquinamento diventa più intenso nelle aree alpine poiché le condizioni ambientali, l'orografia e il freddo intenso degli inverni favoriscono il ristagno a livello del suolo degli inquinanti emessi.

La combustione di biomassa per il riscaldamento residenziale ha anche un impatto sul clima attraverso le interazioni radiazione-aerosol. In effetti, la combustione della biomassa è una sorgente di "dark aerosols" ossia di Black carbon (BC) e Brown carbon (BrC) in grado di assorbire luce con lunghezza d'onda caratteristica nello spettro dell'ultravioletto e visibile (380÷760 nm); tali particelle e composti, in questo modo, trasformano l'energia elettromagnetica della radiazione solare in calore, influenzando così il bilancio radiativo in atmosfera, e, una volta depositatisi in superficie, sono in grado di ridurre la riflessione del suolo (ad esempio, in presenza di neve e ghiaccio).

Particolare importanza riveste quindi l'approfondimento della conoscenza sulla tematica del particolato atmosferico, al fine di arricchire la base informativa utile per definire politiche e strategie di riduzione di tali emissioni. In quest'ottica, ARPA Valle d'Aosta partecipa a due progetti UE che affrontano in modo specifico questa tematica:

- il progetto PREPAIR, che vede coinvolte tutte le regioni del Bacino Padano, per individuare le azioni più vantaggiose per mitigare le emissioni in un'area dove le concentrazioni di particolato sono particolarmente critiche e su cui sono state avviate specifiche e approfondite campagne di misura diffuse in tutto il dominio di progetto. In tale contesto si inserisce proprio l'attività di cui al presente report;
- un secondo progetto, BBCLEAN ALPINE SPACE, riunisce diverse regioni dell'area alpina per studiare i vari aspetti ed impatti della combustione della biomassa, con particolare riferimento alla valutazione del contributo di

questa sorgente sul materiale particolato, al fine di sviluppare strumenti per ridurre al minimo gli impatti ambientali.

Scopo di questo studio specifico è quello di quantificare per la prima volta l'impatto delle emissioni dalla combustione di biomassa sulle concentrazioni di PM in Valle d'Aosta, una regione posta nel cuore delle Alpi ma non lontano dalla Pianura Padana, con un'orografia complessa e un'altitudine media superiore a 2000 m slm, caratteristiche che innescano anche complessi fenomeni meteorologici.

Dati e Metodi

Siti di misura

I dati sono stati raccolti in due diversi ambienti: urbano (nell'area di fondovalle - Plaine di Aosta) e rurale (nel comune di Saint-Marcel). Le campagne di monitoraggio e di studio si sono svolte in tempi differenti, pur coprendo

entrambe una intera annualità e permettendo così di apprezzare le variazioni stagionali dei diversi inquinanti e delle diverse sorgenti studiate.

La Plaine di Aosta è l'area del fondo della valle centrale che si sviluppa attorno al capoluogo della regione, Aosta, una città di circa 34.000 abitanti le cui principali sorgenti di inquinamento sono il riscaldamento domestico, il traffico e le emissioni industriali (acciaieria). Per il presente studio sono stati utilizzati sia i dati raccolti nella stazione di fondo urbano di Aosta-Piazza Plouves (facente parte della Rete regionale di Monitoraggio della Qualità dell'Aria gestita da ARPA Valle d'Aosta) sia da strumentazione appositamente posizionata presso la sede di ARPA Valle d'Aosta, in contesto suburbano in prossimità del sito di fondo urbano (Figura 11.1.1).

Figura 11.1.1. Siti di misura nella Plaine di Aosta – nelle foto a sin. vista della Plaine di Aosta; in centro la stazione di fondo urbano della Rete regionale di Monitoraggio della qualità dell'aria RMQA e a destra il sito in zona suburbana.

Il sito rurale di Saint-Marcel, un comune di poco meno di 1.400 abitanti, (Figura 11.1.2), è stato scelto perché è rappresentativo dei comuni della Valle centrale dove, sulla base dell'inventario regionale delle emissioni e dei dati dell'indagine conoscitiva RENERFOR sopracitata, il numero di apparecchi a biomassa legnosa in ambito domestico è rilevante, potendosi quindi aspettare che il contributo della combustione di biomassa al particolato atmosferico sia qui dominante.

Nell'ambito delle attività del progetto BBCLEAN, è stato svolto un accurato censimento (2019) dei combustibili utilizzati per il riscaldamento domestico che ha mostrato come il 94% della domanda di energia è prodotta da biomassa e derivati, mentre il 4,4% da gasolio e l'1,6% da GPL.

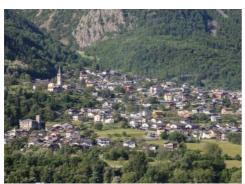


Figura 11.1.2. Sito di misura rurale di Saint-Marcel: visuale dell'abitato e dettaglio del sito di misura allestito per la campagna di monitoraggio

Misure

Nei siti di indagine sono state effettuate misure di concentrazione di particolato atmosferico e determinazioni analitiche di composti del particolato utili a ricostruire la componente da biomassa. Inoltre, si è sperimentato l'utilizzo di misure da etalometro. In tabella 1 è riportato il dettaglio del setup operativo e dei parametri monitorati nei siti di indagine.

L'indagine presso il sito urbano della Plaine di Aosta è stata svolta nell'ambito di una collaborazione tra ARPA Valle d'Aosta e l'Università di Milano-Bicocca.

L'etalometro è uno strumento che consente di misurare in continuo su apposito nastro filtrante il coefficiente di assorbimento dell'aerosol a 7 lunghezze d'onda, dall'UV all'IR (370 -950 nm).

Da queste misure ottiche di assorbimento, è possibile misurare la concentrazione di BC equivalente ed il suo source apportionment tra contributo dei combustibili fossili (traffico e riscaldamento domestico), contrassegnato nel seguito come BCff, e contributo della combustione di biomassa (riscaldamento domestico), contrassegnata nel seguito come BCbb. Metodi per la stima del contributo della combustione della biomassa legnosa alle emissioni di PM10

Nell'ambito di questo studio, anche sulla base degli obiettivi del progetto BB-CLEAN, si è deciso di testare due metodi indipendenti, descritti in modo approfondito

nel seguito, per stimare le sorgenti del particolato e, nello specifico, il contributo della combustione del legno alla formazione del PM (in seguito chiamato PMbb).

Metodo 1

Il primo approccio, di tipo "ottico", consiste nella stima del PMbb a partire dalle misurazioni di BC con l'etalometro. Il principale vantaggio dell'uso di questo strumento è rappresentato dalla possibilità di automatizzare l'intero processo di misura e di rilevare le concentrazioni di PMbb a una elevata frequenza, ad esempio oraria. Il metodo necessita, tuttavia, di una fase preliminare di "taratura", per ogni sito, basata su determinazioni analitiche, come descritto nel seguito:

1. si ottiene la relazione tra la concentrazione di OC attribuibile alla combustione di biomassa (OCbb) e la concentrazione di levoglucosano. Quest'ultimo viene impiegato universalmente in letteratura come tracciante delle emissioni da combustione di biomassa, in quanto prodotto della pirolisi della cellulosa e considerato relativamente stabile in atmosfera. Poiché l'OC può essere prodotto da diverse sorgenti, al fine di isolare il contributo dovuto alla combustione di biomassa (OCbb), si prende in considerazione il minimo del rapporto delle concentrazioni di OC e di levoglucosano, entrambe ottenute dalle analisi giornaliere su filtro. Questo primo passo permette di utilizzare il levoglucosano come proxy dell'OCbb. La relazione è sito-specifica, in quanto

dipendente dal tipo di biomassa bruciata e dall'età del particolato;

2. poiché la variabile di interesse nel presente studio non è la concentrazione di OCbb, ma la concentrazione di tutto il particolato emesso, nel suo complesso, dalla combustione di biomassa, occorre convertire l'OCbb in PMbb. Tale conversione, difficile da determinare

sperimentalmente, viene effettuata sulla base di fattori ottenuti da precedenti studi e riportati nella letteratura scientifica (Turpin et al., 2001; Puxbaum et al., 2004; Aiken et al., 2008; Puxbaum et al., 2007; Favez et al., 2019).

Tabella 11.1.1 – Parametri misurati nei due siti di indagine, con l'indicazione della strumentazione e /o dei metodi utilizzati per la loro determinazione

Sito della Plaine di Aosta		Sito rurale di Saint-Marcel	
Parametro	Analizzatore /strumento	Parametro	Analizzatore /strumento
PM ₁₀ (sito fondo urbano)	OPSIS SM200 Campionatore MCZ a basso volume (2,3 m₃/h) campionamento sulle 24 ore	PM ₁₀	Campionatore MCZ a basso volume (2,3 m ₃ /h) campionamento sulle 24 ore
PM2,5 (sito suburbano)	Campionatore MCZ a basso volume (2,3 m ₃ /h) campionamento sulle 12 ore		
BC BCbb (da combustione di biomassa) BCff (da combustibili fossili)	Etalometro AE31 - Magee Scientific (sito suburbano)	BC BCbb (da combustione di biomassa) BCff (da combustibili fossili)	Etalometro AE33 - Magee Scientific
Speciazione chimica del particolato			
Parametro	Metodi e strumentazione	Parametro	Metodi e strumentazione
OC/EC	Metodo di analisi UNI EN 16909:2017 Analizzatore Sunset Laboratory inc.	OC/EC	Metodo di analisi UNI EN 16909:2017 Analizzatore Sunset Laboratory inc.
IPA	Estrazione in acetonitrile + HPLC fluorimetro Sistema HPLC SHIMADZU Nexera-i Mod LC-2040C Plus e Fluorimetro RF- 20AxS	IPA	Estrazione in acetonitrile + HPLC fluorimetro Sistema HPLC SHIMADZU Nexera-i Mod LC-2040C Plus e Fluorimetro RF-20AxS
Levoglucosano	GC/FID Trace1300 Thermo Scientific	Levoglucosano	GC/FID Trace1300 Thermo Scientific
Ioni (Anioni /Cationi)	Cromatografia ionica con Moduli AQUION/ICS-1000	Ioni (Anioni /Cationi)	Cromatografia ionica con Moduli AQUION/ICS-1000

Questo secondo passaggio, unito al primo, permette, così, di stimare il PMbb a partire dal levoglucosano. La formula che otteniamo nel complesso risulta la seguente:

PMbb = f x [levoglucosano]

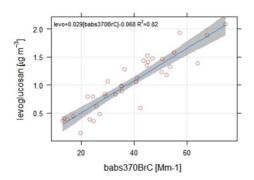
3. al fine di bypassare le analisi chimiche, si determina a questo punto la relazione tra la concentrazione di levoglucosano e le proprietà ottiche del particolato osservate con l'etalometro nella banda ultravioletta (BrC, a una lunghezza d'onda di 370 nm). Tale determinazione, detta source apportionment ottico, è descritta in modo approfondito, tra gli altri, da Sandradewi ad al. (2008) e Massabò et al. (2015). Insieme ai passi precedenti, questo terzo punto consente di stimare la concentrazione di PMbb utilizzando unicamente misure di tipo ottico. Ciò permette, inoltre, di

ottenere informazioni sulla combustione di biomassa a frequenza oraria (anziché giornaliera, come nel caso delle determinazioni analitiche) o addirittura superiore. Pertanto, la formula per la determinazione di PMbb può essere riscritta nel seguente modo:

PMbb = f x m x [babsBrC,370nm]

dove m è il coefficiente di proporzionalità tra levoglucosano e il coefficiente di assorbimento del Brown Carbon a una lunghezza d'onda di 370nm.

Metodo 2


Il secondo approccio si basa sulla speciazione chimica completa del particolato sui campioni raccolti nei siti di indagine e sul metodo statistico della Positive Matrix Factorization (PMF). Quest'ultima tecnica, implementata

nel software EPA 5.0, permette di individuare gruppi di composti chimici che "variano insieme" e che possono dunque essere attribuiti alla stessa sorgente emissiva (Viana et al., 2008).

Risultati

Metodo 1

La Figura 11.1.3 rappresenta la relazione, ottenuta sperimentalmente nei due siti di misura, tra levoglucosano (da analisi su filtri) e proprietà ottiche del particolato da etalometro (BrC), come descritto al passo 3 del paragrafo precedente. Le statistiche di correlazione, con $R^2 > 0.8$, sono ritenute molto buone. Il coefficiente della relazione lineare tra le due variabili (riportato in Figura) è in linea con le stime ottenute in altri studi, in particolare sul territorio francese (Favez et al., 2019).

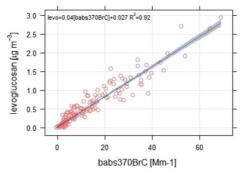


Figura 11.1.3. Correlazione tra le medie giornaliere del coefficiente di assorbimento del BrC ottenuto dalle misurazioni UV dell'etalometro e le concentrazioni medie giornaliere di levoglucosano per il sito urbano di Aosta (a sinistra) e per il sito rurale di Saint-Marcel (a destra)

Tali risultati, ragionevolmente, consentono pertanto di considerare il BrC un buon proxy del levoglucosano, e quindi della sorgente "combustione della biomassa". Pertanto, sulla base delle relazioni empiriche precedentemente riportate, a partire dai dati di assorbimento del BrC, è stato stimato il contributo della combustione di biomassa al PM in entrambi i siti (figure

11.1.4 e 11.1.5). Come previsto, tale contributo risulta maggiore durante la stagione invernale, raggiungendo valori fino a 25 μ g/m³, rispettivamente nei siti rurali e urbani. Il contributo del biomass burning risulta invece trascurabile in estate. Le variazioni giornaliere possono essere ricondotte sia alle emissioni locali che alle condizioni meteorologiche.

PMbb from babs370BrC - rural site

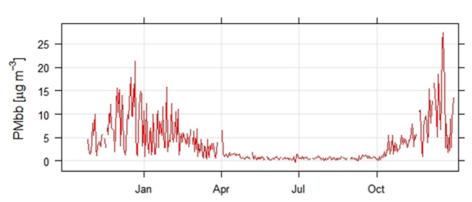


Figura 11.1.4. Concentrazioni medie giornaliere di PMbb ricavate empiricamente dal coefficiente di assorbimento del BrC sulla base dei dati di assorbimento nell'UV nel sito rurale di Saint-Marcel

PMbb from babs370BrC - urban site

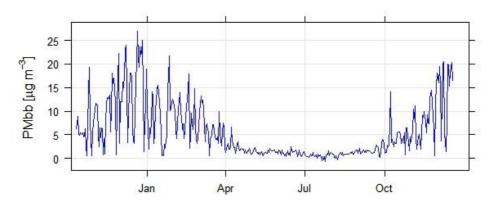
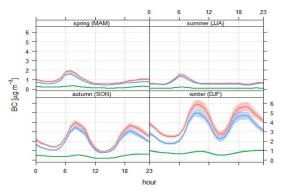


Figura 11.1.5. Concentrazioni medie giornaliere di PMbb ricavate empiricamente dal coefficiente di assorbimento del BrC sulla base dei dati di assorbimento nell'UV nel sito urbano di Aosta

Se si considerano i dati di contributo percentuale del PMbb alle concentrazioni di particolato PM10 misurato, raggruppati per stagioni (Figura 11.1.6), si osserva come i valori più elevati sono misurati nei mesi più freddi. Ciò si traduce in contributi relativi durante l'inverno della

combustione di biomassa del 40% per il sito urbano, mentre si ottiene per il sito rurale un contributo medio invernale del 50%, raggiungendo qui picchi di oltre l'80%.


PMbb from babs370BrC - urban site

PMbb from babs370BrC - rural site

Figura 11.1.6. Contributo percentuale medio giornaliero del PMbb ricavato nei due siti di misura. Nei grafici sono riportati i dati di PMbb% ricavati dalle misure di assorbimento del BrC per i due siti, raggruppati per stagioni.

Si riportano ora gli andamenti dei cicli giornalieri, suddivisi per stagione (Figura 11.1.7), delle concentrazioni di BC e delle sue due componenti, fossil fuel e biomass burning (da source apportionment ottico).

Si noti che l'identificazione del ciclo giornaliero è reso possibile dall'utilizzo di misure ottiche ad alta frequenza, nel nostro caso mediate sull'ora.

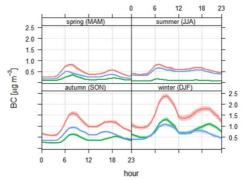
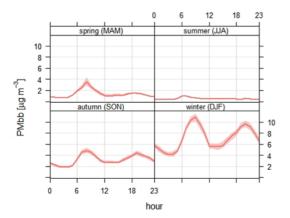



Figura 11.1.7. Andamento giornaliero delle concentrazioni di BC totale e delle sue frazioni BCff e BCbb, levoglucosano per il sito urbano di Aosta (a sinistra) e per il sito rurale di Saint-Marcel (a destra). In blu sono riportate le concentrazioni di BCff (BC da fonti fossili), in verde le concentrazioni di BCbb (BC da combustione di biomassa), in rosso le concentrazioni di BC totale.

I due picchi giornalieri, seppur con scale di concentrazione diverse nei due siti, sono influenzati sia dalle emissioni del traffico durante le ore di punta o di riscaldamento, sia dalle variazioni dell'altezza dello strato di rimescolamento dell'atmosfera. Tuttavia,

possiamo apprezzare il diverso comportamento dei cicli serali delle due frazioni, specialmente nel sito rurale. Infatti, il riscaldamento domestico, durante la notte, dura più ore rispetto al traffico. Ciò è evidente anche dall'andamento dei cicli giornalieri medi per stagione

(Figura 11.1.8) della frazione del particolato dovuto alla combustione di biomassa, in gran parte attribuibile, soprattutto in inverno, all'utilizzo dei combustibili legnosi per il riscaldamento domestico.

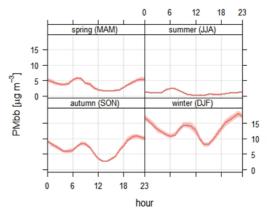


Figura 11.1.8. Andamento giornaliero delle concentrazioni di PMbb legate alla combustione di levoglucosano per il sito urbano di Aosta (a sinistra) e per il sito rurale di Saint-Marcel (a destra)

Metodo 2

Come detto in precedenza, si è voluto validare tali risultati con altre metodiche di source apportionment; combinando i dati di speciazioni chimica del particolato PM₁₀ a disposizione nei due siti, si è potuto isolare la componente legata alla combustione di biomassa.

La PMF nel sito rurale ha individuato 6 modi di variazione, già descritti da Diémoz et al. (2019): una componente ricca in nitrati, una componente relativa al traffico urbano, una ai solfati, una al risollevamento di polveri minerali, una alla combustione di biomassa e,

infine, una alla salatura delle strade in inverno. Modi simili sono stati riscontrati anche nel sito urbano, dove sono state incluse le analisi per i singoli idrocarburi policiclici aromatici determinati sui campioni di particolato atmosferico.

Si riportano in Figura 11.1.9 i grafici delle correlazioni tra le concentrazioni di PMbb ottenuto con i due metodi utilizzati in questo studio. La figura conferma la sostanziale equivalenza delle tecniche.

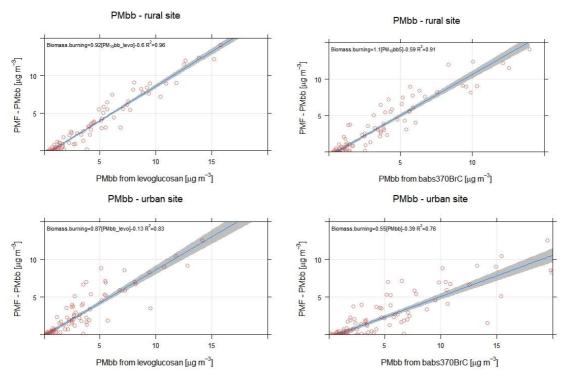


Figura 11.1.9. Correlazione tra le medie giornaliere del PMbb ottenuto attraverso i risultati del source apportionment da PMF e dalle misurazioni di levoglucosano (a sinistra) e dal coefficiente di assorbimento del BrC tramite le misurazioni UV dell'etalometro, per il sito urbano di Aosta (grafici in basso) e per il sito rurale di Saint-Marcel (grafici in alto)

In generale, emerge una molto buona correlazione tra tutte le tecniche utilizzate in questo studio, con $R^2 > 0.75$ per entrambi i siti di indagine, in particolare nel sito rurale, dove il coefficiente di correlazione R^2 è maggiore di 0.91 per il confronto tra PMbb ricavato dal BrC e risultati della PMF. Per il sito urbano, le analisi PMF e le determinazioni di levoglucosano sono state eseguite da campioni raccolti nel sito di fondo urbano, il che può spiegare le correlazioni più deboli.

Conclusioni

È stata condotta una campagna per valutare il contributo della combustione della biomassa all'inquinamento atmosferico nelle Alpi.

Sono stati esplorati diversi metodi per valutare il contributo della combustione della biomassa, basati sia sull'analisi chimica che sulle tecniche di assorbimento della luce. L'utilizzo delle proprietà ottiche del particolato (BC e BrC) ottenute da un misuratore in continuo come l'etalometro offre una valida alternativa alle tecniche di source apportionment analitico (marker specifici o PMF) che richiedono per le Agenzie Ambientali un onere decisamente maggiore dal punto di vista della raccolta dei campioni di particolato e della loro successiva speciazione chimica in laboratorio.

Il contributo relativo della combustione della biomassa alla materia particellare (PM) è risultato maggiore negli ambienti rurali, raggiungendo valori fino all'80% in inverno.

Poiché la combustione della biomassa (legna e pellet) rimane una pratica diffusa nelle regioni alpine, si prevede che il contributo della biomassa svolgerà un ruolo sempre più importante sull'inquinamento atmosferico in quest'area. Sarà necessario definire piani di mitigazione a livello locale e regionale per l'utilizzo di questa fondamentale fonte di energia rinnovabile per ridurre al minimo gli svantaggi.

Ringraziamenti

Gli autori ringraziano Alessandra Brunier, Giuliana Lupato, Sara Pittavino, Paolo Proment, Maria Cristina Gibellino (ARPA Valle d'Aosta) per le analisi chimiche; Marco Pignet, Stefano Drigo (ARPA Valle d'Aosta) per i campionamenti e per i dati dalla rete di monitoraggio di qualità dell'aria.

La partecipazione allo studio del Dott. Luca Ferrero si è svolta nell'ambito delle attività del Progetto MIUR "Dipartimenti di Eccellenza 2018-2022".'

Bibliografia

Aiken et al., O/C and OM/OC ratios of primary, secondary and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environmental Science and Technology, 42, 4478-4485, 2008.

Diémoz et al., Transport of Po Valley aerosol pollution to the northwestern Alps – Part 2: Long-term impact on air quality, Atmos. Chem. Phys., 19, 10129–10160, 2019.

Favez et al,: Bilan des travaux 2014-2015 du programme CARA. Rapport LCSQA 2015. Ref. : LCSQA-INERIS-DRC-16-152341-05992A.

Favez, O., Albinet, A., Aujay, R.: Impact de la combustion de biomasse sur les concentrations de PM₁₀ dans 10 agglomerations du Programme CARA au cours de l'hiver 2014-2015. Ref. LCSQA-INERIS: DRC-16-152341-05991A / programme CARA.

Favez O.: Estimation des concentrations de PM liées à la combustion de biomasse à partir des mesures d'absorption par le Brown Carbon (BrC). Ref. INERIS: DRC-18-167619-02994A / Prog. CARA 2017 - Etudes de sources PM en temps réel.

Favez et al., Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France). Atmospheric Chemistry and Physics, 10, 5295-5314, 2010.

Massabo, D., Caponi, L., Bernardoni, V., Bove, M.C., Brotto, P., Calzolai, G., Cassola, F., Chiari, M., Fedi, M.E., Fermo, P., Giannoni, M., Lucarelli, F., Nava, S., Piazzalunga, A., Valli, G., Vecchi, R., Prati, P., 2015. Multi-wavelength optical determination of black and brown carbon in atmospheric aerosols. Atmos. Environ. 108, 1-12.

Petit et al., Submicron aerosol source apportionment of wintertime pollution in Paris, France by double positive matrix factorization (PMF²) using an aerosol chemical speciation monitor (ACSM) and a multi-wavelength Aethalometer. Atmospheric Chemistry and Physics, 14, 13773-13787, 2014.

Putaud J. P., Cavalli F., Martins dos Santos S., Dell'Acqua, A., 2014. Long-term trends in aerosol optical characteristics in the Po Valley, Atmos. Chem. Phys., 14, 9129–9136, doi:10.5194/acp-14-9129-2014.

Puxbaum, H., B. Gomiscek, M. Kalina, H. Bauer, A. Salam, S. Stopper, O. Preining, and H. Hauck (2004), A dual site study of PM_{2,5} and PM₁₀ aerosol chemistry in the larger region of Vienna, Austria, Atmos. Environ., 38, 3949–3958.

Puxbaum, H., A. Caseiro, A. Sanchez-Ochoa, A. Kasper-Giebl, M. Claeys, A. Gelencser, M. Legrand, S. Preunkert, and C. Pio (2007), Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background, J. Geophys. Res., 112, D23S05, doi:10.1029/2006JD008114.

Sabatier T., Paci A., Lac C., Canut G., Largeron Y., Masson V., 2019. Semi-idealized simulations of wintertime flows and pollutant transport in an Alpine valley: Origins of local circulations (Part I), Q J R Meteorol Soc. 2020;146:807–826., doi: 10.1002/qj.3727.

Sabatier T., Paci A., Lac C., Canut G., Largeron Y., Masson V., Rodier Q., 2019. Semi-idealized simulations of wintertime flows and pollutant transport in an Alpine valley. Part II: Passive tracer tracking, Q J R Meteorol Soc. 2020;146:827–845., doi: 10.1002/qj.3710.

Sandradewi, J., Prevot, A. S. H., Weingartner, E., Schmidhauser, R., Gysel, M., and Baltensperger, U.: A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer, Atmos. Environ., 42, 101–112, doi:10.1016/j.atmosenv.2007.09.034, 2008b.

Turpin & Lim, Species contribution to PM_{2,5} mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Science and Technology, 35, 602-610, 2001.

Viana M., Kuhlbusch T.A.J., Querol X., Alastuey A., Harrison R.M., Hopke P.K., Winiwarter W., Vallius M., Szidat S., Prévôt A.S.H., Hueglin C., Bloemen H., Wåhlin P., Vecchi R., Miranda A.I., Kasper-Giebl A., Maenhaut W., Hitzenberger R., 2013. Source apportionment of particulate matter in Europe: A review of methods and results, Journal of Aerosol Science, 39(10):827-849.

11.2 ANALISI DI UN EVENTO DI TRASPORTO DI POLVERE SAHARIANA IN REGIONE CAMPANIA MEDIANTE OSSERVAZIONE DI UNA COMBINAZIONE DI SATELLITI, MONITORAGGIO DATI AL SUOLO E MODELLI DI SIMULAZIONE CHIMERE

D'amore D.1, Budillon G1, Buccolieri R.2, Autorino J.3, D'Ambrosio A.3, Onorati G.3

- ¹UNIVERSITÀ DEGLI STUDI DI NAPOLI "PARTHENOPE"
- ² UNIVERSITÀ DEGLI STUDI DI LECCE
- 3ARPA CAMPANIA

RIASSUNTO

Questo articolo è dedicato allo studio di un importante evento di trasporto di polvere sahariana verificatosi nel sud Italia dal 14 al 17 aprile 2018. Il Sahara è la più grande fonte mondiale di polvere del deserto ed influenza la qualità dell'aria, la salute umana, incide sui cambiamenti climatici, sulla dinamica dei nutrienti e sui cicli biogeochimici negli ecosistemi sia terrestri che oceanici. La polvere sahariana si sposta dall'Africa verso l'Europa. l'Asia e l'America attraverso il Mar Mediterraneo, l'Oceano Atlantico ed il Mar Rosso, L'Italia è uno dei Paesi più spesso raggiunti dalla polvere sahariana, in particolare la parte meridionale che è l'area di interesse di questo documento. L'evento viene qui analizzato combinando osservazioni satellitari (MODIS), dati monitorati e simulazioni CHIMERE per la regione Campania. Immagini MODIS e dati monitorati hanno ben evidenziato tale evento, mentre il modello CHIMERE ha permesso di ottenere la distribuzione spaziale delle concentrazioni di PM₁₀ nella regione, sovrastimandone le concentrazioni. Nel complesso, i risultati mostrano che (i) tale evento è stato davvero intenso, in particolar modo nel giorno 16 aprile, in cui è stata riscontrata la più alta concentrazione media giornaliera di PM10 dell'anno (114,9 µg/m³) ed (ii) evidenziano l'importanza di adottare un approccio integrato per valutare l'impatto di guesto tipo di eventi in un'area di interesse.

Parole chiave: polvere sahariana, Campania, modello CHIMERE, immagini MODIS, PM₁₀

ABSTRACT

This paper is devoted to the study of an important Saharan dust event which occurred in southern Italy on April 14th to 17th 2018. The Sahara is the world's larger source of desert dust influencing air quality, human health, climate change, nutrient dynamics and biogeochemical cycles of both terrestrial and oceanic ecosystems. Saharan dust moves from Africa to Europe. Asia and America across the Mediterranean Sea, the Atlantic Ocean and the Red Sea. Italy is one of the Countries more often reached by Saharan dust, especially the southern part which is the area of interest of this paper. The dust event is here analyzed combining satellite observations (by MODIS), monitored data and CHIMERE simulations for the Campania region, MODIS images and monitored data well highlighted such event, while CHIMERE model allowed to get the spatial distribution of the PM₁₀ concentrations in the region, even though concentrations were slightly overestimated. Overall, results show that (i) such event was really intense especially on April 16th, which experienced the highest PM₁₀ daily mean concentration of the year (114.9 µg/m³) and (ii) the importance to employ an integrated approach to evaluate the whole impact of such kind of events in an area of interest.

Keywords: Saharan dust, Campania, CHIMERE model, MODIS images, PM₁₀

Descrizione dell'area di studio

L'area di interesse

La Campania è una delle 20 regioni italiane, situata approssimativamente a LAT 40° N e LON 14° E. Si estende lungo il Mar Mediterraneo, affaccia in particolare sul Mar Tirreno, ed è una delle regioni più piovose. Per il 51% il territorio campano è caratterizzato da colline, per il 34% da montagne e per il restante 15% da pianure alluvionali (Online.scuola.zanichelli.it).

La dorsale appenninica centrale, che si estende da NO a SE, comprende il Monte Matese ,con la vetta più alta della Campania: 2050 m s.l.m., e con i massicci Taburno, Avella, Terminio, Cervialto, Alburno e Cerviati. Inoltre è accompagnato verso est da altopiani e bacini, come Benevento, Montecalvo Irpino e Ariano Irpino.

La Campania è inoltre caratterizzata da quattro importanti edifici vulcanici: Roccamonfina, Vesuvio e Campi Flegrei ed il complesso vulcanico dell'isola d'Ischia lungo la costa tirrenica per raggiungere la massima altitudine a circa 1200 m s.l.m.

La principale struttura geologica della Campania è rappresentata da quattro elementi strutturali di primo ordine (Www.difesa.suolo.regione.campania.it):

- area tirrenica, caratterizzata da crosta continentale assottigliata e, in alcune zone (Tirreno meridionale), da crosta oceanica, formatasi a partire dal Tortoniano superiore Messiniano inferiore in seguito a processi di rifting avvenuti all'interno di una catena preesistentearea tirrenica, caratterizzata da una sottile conchiglia continentale e da una conchiglia oceanica;
- catena appenninica, costituita da coltri di ricoprimento, a convergenza adriatica, e dai depositi di riempimento di bacini che si impostavano sulle coltri di ricoprimento in avanzamento:
- l'avanfossa appenninica, costituita da sedimenti plioquaternari in parte sepolti sotto le falde appenniniche;
- avamPaese, costituito da una potente successione carbonatica mesozoica, impostata su crosta

continentale, in graduale approfondimento verso SW al di sotto delle coltri appenniniche.

Dal punto di vista amministrativo, la Campania è suddivisa in cinque province: Napoli, Caserta, Avellino, Benevento e Salerno. Napoli ha un'altitudine di 148 m s.l.m., Caserta di 68 m s.l.m., Avellino di 348 m s.l.m., Benevento di 13 m s.l.m. e Salerno di 5 m s.l.m.(Http://dipsa.unibo.it/catgis).

Precedenti eventi sulla polvere sahariana in Campania

I principali eventi di trasporto di polvere sahariana sono stati analizzati e segnalati dall'ARPAC a partire dal 2014 (www.meteoarpac.it), indicando la presenza significativa polvere sahariana in Campania almeno tre volte l'anno, come di seguito riportato. Nei mesi di novembre e dicembre del 2014 ci sono stati due eventi di avvezione di polvere sahariana che hanno portato la temperatura dell'aria a 27° C (valore superiore di oltre 10° C alla temperatura media stagionale), polveri Scirocco sostenute dal vento di (www.gmesatmosphere.eu).

Sono stati segnalati anche sei eventi di polvere dal Sahara a febbraio, marzo, aprile e maggio 2015. In particolare nel mese di marzo tra il 24 ed il 26 c'è stato il cosiddetto fenomeno della "nuvola rossa" con nuvole piene o polvere sahariana che ha comportato precipitazioni ricche di polvere. In seguito anche il 14 e 15 maggio si sono verificati altri fenomeni di trasporto di polvere sahariana che hanno determinato un innalzamento della temperatura fino a 30 °C.

Nel 2016 ci sono stati tre eventi a febbraio, giugno e ottobre. In particolare, il 16 e 17 febbraio il cielo è diventato completamente giallo e la temperatura ha raggiunto i 25° C. Il 16 giugno è stato caratterizzato dalla presenza di anticiclone sub-sahariano sulla Libia e una perturbazione dalla Spagna che ha portato polvere sahariana in Campania. In particolare durante questo evento, è stato superato il valore limite delle concentrazioni di PM $_{10}$ di 50 $\mu m/m^3$. Il 15 ottobre c'era un fronte freddo sull'Italia preceduto da un flusso di suolo

proveniente da S-SE con il trasporto di polvere sahariana.

Nel 2017 sono stati segnalati sei eventi relativi alla polvere sahariana in aprile, maggio, agosto, ottobre e dicembre. In aprile 26 e 27 c'è stato un forte vento geostrofico in quota e un centro di bassa pressione in quota al di sopra delle Alpi a supporto del flusso di polvere.

II 3, 4 e 5 agosto, invece, l'anticiclone sull'Europa centrale ha trasportato polvere sahariana dal Marocco e dall'Algeria fino alla Campania. Il 12 e 13 dicembre c'è stato un significativo evento di polvere sahariana su Napoli e Caserta con raggiungimento di valori di concentrazione di PM_{10} di $50~\mu g/m^3$.

Infine, anche per il 2018 possiamo annoverare quattro eventi di polvere sahariana nei mesi di Marzo ed Aprile. Dal 1 al 3 marzo e tra il 4 e 5 di Aprile le concentrazioni di PM_{10} nella città di Napoli hanno raggiunto valori di 100 μ g/m³ a causa dell'ingente contributo di polveri di origine sahariana.

Dal 14 al 17 Aprile la concentrazione di PM_{10} ha raggiunto valori di 70-75 $\mu g/m^3$ ovunque in Campania, con venti che hanno raggiunto i 35 m/s (www.meteoarpac.it). La maggior parte di questi eventi si sono verificati in primavera e in autunno spesso quando i venti da ovest hanno soffiato sul Mar Mediterraneo e il Jet Stream ha raggiunto l'Africa.

Metodologia

Approcci disponibili per lo studio dei fenomeni di trasporto di polvere sahariana

Per la valutazione della dinamica del trasporto della polvere sahariana sono disponibili diversi strumenti come osservazioni satellitari, tecniche di modellizzazione e stazioni di monitoraggio, brevemente riassunti di seguito:

Osservazioni satellitari: consentono una ricostruzione accurata della distribuzione areale della polvere per l'intera area mediterranea. I satelliti più utili sono quelli con adeguata copertura temporale e buona risoluzione

spaziale. Le osservazioni satellitari forniscono un punto di vista unico dal quale studiare il sistema terrestre. Forniscono infatti una vasta gamma di osservazioni, dalle misurazioni della circolazione atmosferica e oceanica alle misurazioni delle temperature dello strato più alto dell'atmosfera, fino a rappresentare sentinelle del sistema globale nello spazio. Consentono di osservare cambiamenti rapidi, tempeste significative, inondazioni e persino fioriture dannose di fitoplancton nell'oceano costiero (Consiglio Nazionale delle Ricerche, 2003). MODIS (Spettroradiometro per immagini a risoluzione moderata) è uno strumento della NASA che utilizza sensori collocati su due satelliti che forniscono una completa copertura giornaliera della terra. I dati hanno una varietà di risoluzioni spettrale, spaziale e temporale. Poiché il sensore MODIS è presente su entrambi i satelliti Terra e Aqua, in genere è possibile ottenere immagini al mattino (Terra) e al pomeriggio (Aqua) per qualsiasi posto del globo terreste. I dati notturni sono disponibili anche nello spettro dell'infrarosso (Yceo.yale.edu/whatmodis).

I satelliti Aqua e Terra fanno parte di EOS (Earth Observation System) programma della NASA e, con altri satelliti, forniscono osservazioni globali a lungo termine della superficie terrestre, biosfera, atmosfera e oceani. Grazie ad Aqua è possibile studiare precipitazioni, evaporazione e ciclo dell'acqua, invece Terra esplora le connessioni tra l'atmosfera del pianeta, terra, neve e ghiaccio, oceano ed equilibrio energetico per comprendere clima e cambiamenti climatici e per valutare sia l'impatto sull'essere umano che l'impatto delle catastrofi naturali su comunità ed ecosistemi (www.nasa.gov).

Simulazioni modellistiche: per lungo tempo, i modelli a traiettoria sono stati usati quasi esclusivamente per studiare i movimenti della polvere nell'atmosfera (ad es. Merril et al. 1985; Reiff et al. 1986; Martin et al. 1990). Ma la modellizzazione a traiettoria è incapace di quantificare la distribuzione spaziale della concentrazione di polvere nell'atmosfera. I modelli euleriani sonosicuramente l'alternativa più sofisticata. in grado di stimare il campo di concentrazione della polvere (Nickovich, 1996). Numerosi modelli di dispersione atmosferica sono stati

sviluppati da molti centri meteorologici mondiali come il Barcelona Dust Forecast Center, l'Università dell'Aquila con il modello FORECHEM, COPERNICUS (Global Monitoring for Environment and Security) ed il CEMEC (Centro meteorologico della Campania) che utilizza il modello CHIMERE.

CHIMERE è un modello di trasporto chimico euleriano sviluppato dall'Istituto Pierre Simon Laplace e Lisa (Laboratorio Interuniversitario dei Sistemi Atmosferici) del CNRS (Centre national de la recherche scientifique) e INERIS (Institut national de l'environnement industriel et des risques). Può essere implementato su diversi domini integrati sia su scala continentale (migliaia di miglia) che su scala regionale (100-200 km) con una risoluzione orizzontale tra 100 km e 1-2 km. CHIMERE riproduce i principali fenomeni chimico-fisici degli inquinanti atmosferici (emissione, diffusione, trasporto, reazioni e deposizioni chimiche e fotochimiche) e fornisce previsioni giornaliere di concentrazioni di ozono. polveri sottili e di altri inquinanti. In ogni punto della griglia vengono calcolate le concentrazioni medie delle celle che non tengono conto degli effetti locali dovuti a processi su piccola scala come canyon urbani o incroci.

Stazioni di monitoraggio: le stazioni fisse e mobili sono caratterizzate dalla presenza di strumentazione automatica (analizzatori) per misurare le concentrazioni di biossido di zolfo, ossido di azoto, ozono, monossido di carbonio e particolato. I campioni d'aria vengono analizzati con specifica frequenza temporale ed ogni strumento fornisce la concentrazione di uno specifico inquinante grazie all'applicazione di una caratteristica formula analitica.

Osservazioni satellitari

Sul sito web della NASA ci sono le immagini dell'area di studio archiviate da MODIS. L'arrivo della polvere sahariana in Sicilia il 13 aprile 2018 può essere visualizzato nella Figura 1a.. Le immagini sono state in particolare estratte dal sito Web MODIS Dust (https://worldview.earthdata.nasa.gov) selezionando l'area di interesse, scegliendo la risoluzione, selezionando il giorno, mese e anno.

Figura 11.2.1. (a) Immagine della polvere MODIS del 13 aprile 2018 alle 13:30, mostra chiaramente la polvere sahariana che giunge dall'Africa alla Sicilia (cerchio rosso), (b) stazioni di monitoraggio ARPAC.

Dati di modellazione CHIMERE

CHIMERE necessita di diversi dati di input quali meteorologia, condizioni al contorno, processori di emissione e risolve le trasformazioni chimico-fisiche e le equazioni di trasporto e diffusione per dare come output le concentrazioni degli inquinanti in atmosfera. Nell'input meteorologico ci sono dati in 3D (vento, temperatura, densità, umidità, livelli di altezza del modello, quantità di vapore acqueo, acqua precipitabile e quantità di ghiaccio) e dati 2D (temperatura a 2m, altezza di miscelazione, velocità di frizione, lunghezza di Monin Obukhov, velocità della scala convettiva, resistenza aerodinamica. flusso di calore latente e sensibile e precipitazioni). Le condizioni al contorno sono i valori di concentrazione degli inquinanti al limite dei domini. Questi valori possono essere acquisiti dagli output di altri modelli su scala sinottica o da output del modello CHIMERE con un dominio più grande dell'attuale dominio di simulazione. I processori che stimano le emissioni sono LANDUSE e BIOFACT per calcolare le emissioni biogeniche, deposizione umida, correzioni meteorologiche urbane, risospensione della polvere e tempo biogenico di emissione (Stortini M., 2006; ARPA-UMBRIA, 2009). I dati del modello CHIMERE in disponibilità di ARPAC sono dati temporali che coprono l'intero territorio regionale. Si tratta di file NetCDF su 25 ore (dalla mezzanotte del giorno corrente all'1 del giorno successivo) per ogni giorno, con tre giorni di anticipo; grazie al modulo NCO (operatore NetCDF) è stato possibile calcolare la concentrazione media giornaliera di PM_{2,5}, PM₁₀ e pDUST in Campania (LAT 41° N, LONG 13° E) dal 14 al 17 aprile 2018 ottenendo mappe di concentrazione che hanno consentito di estrarre dati per confrontarli con le concentrazioni misurate.

Dati monitorati

La rete di monitoraggio della Campania, gestita da ARPAC, è caratterizzata da 41 stazioni automatiche fisse. Venti stazioni di monitoraggio si trovano a Napoli, cinque ad Avellino, quattro a Benevento, sette a Caserta e cinque a Salerno. Le stazioni di monitoraggio sono nate

nel 1994 con l'obiettivo di fornire analisi puntuali per valutare l'esposizione della popolazione alle emissioni inquinanti. Queste stazioni sono state quindi localizzate sulla base di caratteristiche sia orografiche che urbane. Gli inquinanti monitorati sono: bissido di azoto, monossido di carbonio, idrocarburi aromatici come benzene, toluene, xilene, anidride solforosa, ozono e particolato (PM₁₀ e PM_{2.5}). I valori di concentrazione di PM₁₀ sono stati raggruppati in tre classi di concentrazione per valutare la qualità dell'aria:

- 1. 0 50 μg/m³ di buona qualità dell'aria
- 2. 51 75 µg/m³ qualità dell'aria mediocre
- 3. 76 100 µg/m³ pessima qualità dell'aria

In guesto lavoro le concentrazioni di PM₁₀ e PM_{2.5} sono state utilizzate per analizzare la presenza della polvere di origine sahariana dal 14 al 17 aprile 2018 in Campania. I dati sono stati divisi in due categorie, per le stazioni di fondo e le stazioni urbane, per mostrare quanto i valori di concentrazione di PM₁₀ siano influenzati dalle emissioni industriali o dal traffico urbano. I dati sono stati inoltre suddivisi per capoluoghi calcolando la media aritmetica per ciascuno di essi ottenendo cinque grafici per confrontare l'andamento della concentrazione di PM₁₀ e PM_{2.5}. Considerando che le concentrazioni di guesti due inquinanti mostrano solitamente le stesse fluttuazioni è dimostrabile la presenza di polvere sahariana quando la concentrazione del PM₁₀ aumenta mentre quella del PM_{2.5} resta quasi costante. Questo approccio è stato applicato a concentrazioni giornaliere di PM₁₀ e PM_{2,5} per tutti i giorni del mese di aprile 2018 e, con lo stesso metodo, sono stati creati cinque grafici per confrontare la concentrazione di PM₁₀ e PM_{2.5} in ogni capoluogo di provincia ed altri cinque per analizzame le correlazioni. Abbiamo anche analizzato i dati orari delle concentrazioni di PM₁₀ e PM_{2.5} negli ultimi due giorni dell'evento di trasporto di polvere sahariana (16 e 17 aprile) in una stazione in cui il PM10 ha raggiunto valori di concentrazione superiori agli altri capoluoghi.

Risultati

Osservazioni satellitari

Come mostrato nella Figura 11.2.1 il 13 aprile 2018, si è verificato un trasporto di polvere sahariana che dalle coste tunisine ha raggiunto le coste siciliane ed il Mar Tirreno, fenomeno ben documentato dalle immagini di

polvere MODIS. La polvere sahariana ha raggiunto la regione Campania e tutto il Mar Mediterraneo il 15 aprile, come mostrato in Figura 11.2.2.

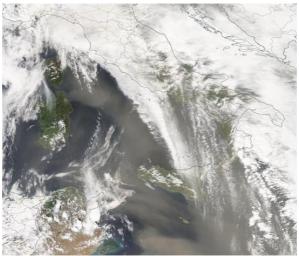


Figura 11.2.2. Immagine della polvere fonte MODIS del 15 aprile 2018 alle 01:30 p.m., mostra chiaramente la polvere sahariana su tutto il Mar Mediterraneo.

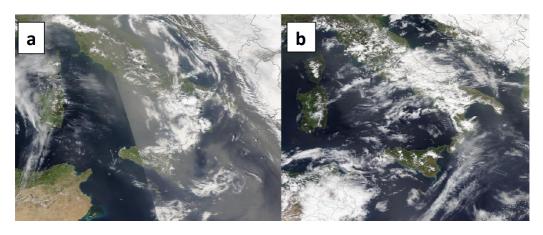


Figura 11.2.3. Immagini della polvere fornite dal MODIS del 17 aprile (a) e (b) 17 aprile 2018, entrambe alle 13:30.

Il 16 e 17 aprile 2018 vi è stato lo sviluppo per poi sopraggiungere la conclusione dell'evento (Fig. 11.2.3a,

11.2.3b). In particolare, il 16 aprile 2018 la polvere sahariana ha attraversato l'Italia meridionale per poi

spostarsi verso est (Fig. 11.2.3a) lasciare la penisola il 17 aprile 2018 (Fig. 11.2.3b).

Lo studio della situazione sinottica è fondamentale per comprendere il comportamento della polvere sahariana grazie all'analisi di superficie e analisi della copertura nuvolosa (osservazioni satellitari con polvere e colore naturale). Il 13 aprile 2018 sia l'Italia che il Nord Africa sono state interessate da un'alta pressione, con un fronte freddo che lasciava l'Italia, per poi spostarsi verso est lasciando un centro di bassa pressione nel Nord Africa il

14 aprile comportando un incremento della copertura nuvolosa in questi due giorni. La bassa pressione ha interessato l'Italia meridionale il 15 aprile, raggiungendo la Sicilia e la Sardegna meridionale con conseguente aumento della copertura nuvolosa sull'Italia. La presenza del Jet Stream (150 / 170 km/h) dall'Africa all'Italia è stata evidenziata anche dalle mappe Jet Stream 300 hPa di www.meteociel.fr (Figura 11.2.4).

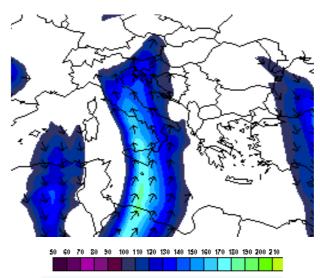


Figura 11.2.4. Mappa del Jet Stream 300 hPa del 15 Aprile 2018 ore 02:00 p.m mostra chiaramente il Jet Stream che si muove dalle coste della Tunisia all'Italia.

C'è stato un flusso di vento da nord partito dal Golfo di Sirte verso la Campania. Il vento alla quota di 600 m ha raggiunto i 35 m/s (126 km/h), come mostrato nelle mappe del vento in quota elaborate a partire dai dati acquisiti dal windprofiler di ARPAC. Il centro di bassa pressione si è trasferito in Italia il 16 aprile, con il suo centro nel Mar Tirreno vicino alle coste della Campania, con una parziale copertura nuvolosa e intense precipitazioni sulla regione. Il 17 aprile il centro di bassa pressione si è spostato verso est sulla costa adriatica con un'elevata copertura nuvolosa sull'Italia centrale e

meridionale ed intense precipitazioni. I valori di temperatura hanno subito un incremento di 4°- 6° C rispetto ai giorni precedenti, raggiungendo i 24° C il 15 aprile (www.wetterzentrale.de; www.meteociel.fr).

Dati monitorati

Dalle 30 stazioni di monitoraggio ARPAC, è stato possibile estrarre i dati medi giornalieri di PM₁₀ e analizzare l'andamento della concentrazione in ciascuna stazione. A riprova dell'evento le concentrazioni medie giornaliere di PM₁₀ nei giorni del 16 e 17 aprile 2018

erano maggiori degli altri giorni, come mostrato in Figura 11.2.5a dove è anche possibile osservare che le concentrazioni di PM₁₀ hanno iniziato ad aumentare rapidamente dal 13 aprile per poi calare alla fine del 17 aprile. Inoltre, la stessa figura mostra la presenza di altri eventi di trasporto di polvere sahariana all'inizio e alla fine del mese. Poiché le concentrazioni di PM₁₀ sono influenzate dal traffico urbano, le stazioni sono state suddivise in stazioni di fondo (undici) e stazioni urbane (diciannove). Le stazioni di fondo sono situate lontano dai centri cittadini e dal traffico automobilistico, quindi si

prevede che PM_{10} sia composto prevalentemente da polvere naturale. Le Figure 11.2.5b, 11.2.5c mostrano valori di concentrazione media giornaliera di PM_{10} elevati in tutte le stazioni dal 14 al 17 aprile. La Fig. 5b mostra il picco più alto del valore di concentrazione di PM_{10} di 114,9 μ g/m³ nella stazione della zona industriale di Acerra. In Fig. 5c c'è un singolo picco alto il 12 aprile con un valore di 149,4 μ g/m³ corrispondente alla stazione ubicata nella zona industriale di Benevento, probabilmente legata solo alle emissioni industriali e non ad un apporto di polvere di origine sahariana.

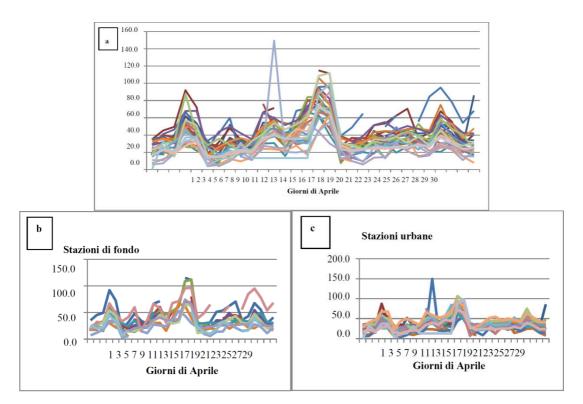


Figura 11.2.5. Concentrazioni medie giornaliere di PM₁₀ ottenute da (a) tutte le 30 stazioni di monitoraggio dell'ARPAC, (b) stazioni di fondo e (c) stazioni urbane.

Inoltre, le stazioni sono state suddivise per capoluoghi per confrontare i valori di concentrazione media giornaliera di PM_{10} e $PM_{2,5}$ come mostrato in Fig. 11.2.6.

Il $PM_{2,5}$ ha mantenuto i suoi valori di concentrazione costanti durante tutto il mese, il PM_{10} invece ha avuto molti picchi ed in ogni capoluogo si è avuto un picco tra

il 14 ed il 17 aprile. A Napoli è stata rilevata una concentrazione media giornaliera di PM₁₀ di 83,3 μg/m³ il 16 aprile e 71,1 μg/m³ il 17 aprile. Altri capoluoghi con valori elevati di concentrazione media giornaliera sono stati Caserta e Salerno, rispettivamente, con 75,7 μg/m³

e 76,7 μ g/m³ il 16 aprile e 66,2 μ g/m³ e 77 μ g/m³ il 17 aprile.

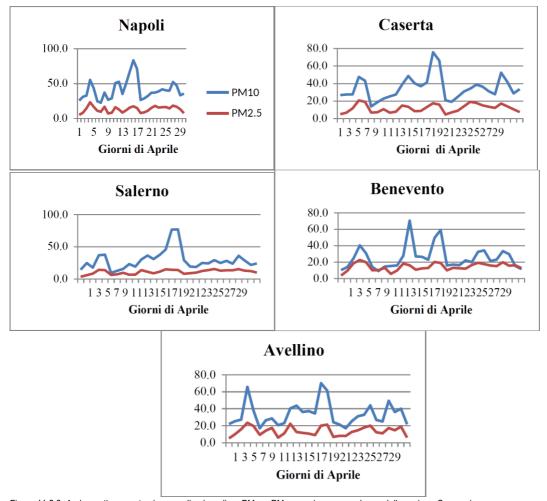


Figura 11.2.6. Andamenti concentrazione media giornaliera PM₁₀ e PM_{2,5} per ciascun capoluogo della regione Campania

A conferma dell'avvento di polvere di origine sahariana è stata calcolata la correlazione tra le concentrazioni di

 PM_{10} e $PM_{2,5}$ in ciascun capoluogo per il mese di Aprile 2018.

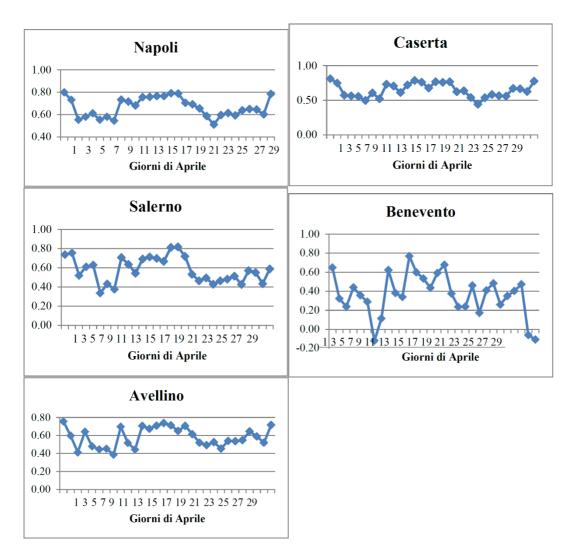


Figura 11.2.7. Correlazione tra PM_{10} e $PM_{2,5}$ Aprile 2018.

La Figura 11.2.7 mostra che la concentrazione giornaliera media di PM_{10} è generalmente maggiore della concentrazione di $PM_{2.5}$, specialmente nei giorni in cui si

è verificato un evento sahariano. In particolare, la correlazione individuata per la città di Napoli mostra che PM_{10} e $PM_{2,5}$ hanno un indice elevato di correlazione

(0,76) già dal 12 aprile, quindi probabilmente una piccola quantità di polvere sahariana è stata trasportata in regione Campania già nei giorni precedenti l'evento considerato.

Simulazioni CHIMERE

Validazione del modello

E stata seguita una procedura di validazione del modello per valutare in che modo CHIMERE abbia simulato le concentrazioni di PM₁₀. A tal fine, sono stati utilizzati alcuni parametri statistici per confrontare dati di concentrazione di PM₁₀ osservati e previsti (Hanna et al., 1991, 1993) come il bias frazionario (FB), il bias medio geometrico (MG), l'errore quadratico medio normalizzato (NMSE), la varianza geometrica (VG), il coefficiente di correlazione (R) e la frazione di previsioni all'interno di un fattore di due delle osservazioni.

$$FB = \frac{\overline{co - cp}}{0.5 (\overline{co} + \overline{cp})}; \quad MG = \exp(\overline{lnCo} - \overline{lnCp});$$

$$NMSE = \frac{\overline{(Co - cp)^{2}}}{\overline{cocp}}; \quad VG =$$

$$\exp[\overline{(lnCo - lnCp)^{2}}]$$

$$R = \frac{\overline{(co - \overline{co})(cp - \overline{cp})}}{\overline{aCoach}}$$

 $FAC2 = frazione \ dei \ dati \ che \ soddisfa \ 0.5 \le \frac{Cp}{Co} \le 2$

dove:

Cp: previsione da modello;

Co: osservazioni;

C: media del set di dati:

 σ : deviazione standard

Un modello perfetto dovrebbe avere MG, VG, R e FAC2 = 1.0; e FB e NMSE = 0,0. Esistono anche altri valori accettabili per questi parametri; FB = 0,67 implicherebbe un fattore medio di sottostima di due, e FB = -0,67 implicherebbe un fattore di sovrastima media di due; un fattore di due distorsioni medie implicherebbe MG = 0,5 o 2,0 ed un fattore di quattro distorsioni medie

implicherebbe che MG = 0,25 o 4,0; l' NMSE = 1.0 implica che l'errore quadratico medio è uguale alla media, mentre se NMSE diventa molto più grande di 1.0, si può dedurre che la distribuzione non è normale ma è più vicina alla distribuzione log-normale; VG esprime la dispersione di una distribuzione lognormale, che può essere espressa come "più o meno il 20%" o "più o meno un fattore di 10". Ad esempio, un fattore di 2 scatter implicherebbe un VG = 1.6 e un fattore di 5 scatter implicherebbe VG = 12 (Chang e Hanna, 2004).

Utilizzando i parametri precedenti, sono stati ottenuti i seguenti risultati:

FB = -0.44; MG = 0.69; NMSE = 0.44; VG = 1.53; R = 0.56; FAC2 = 0.68

I valori di tutti i parametri sono accettabili, sebbene FB implichi un fattore medio di sovrastima.

Mappe Chimere

La Figura 11.2.8 mostra quattro mappe CHIMERE della concentrazione media giornaliera di PM₁₀ dal 14 al 17 aprile 2018 in regione Campania per confrontare qualitativamente i dati osservati con le simulazioni CHIMERE giorno per giorno.

La Figura 11.2.8a mostra che nella regione Campania il 14 aprile 2018 i valori di concentrazione media giornaliera di PM₁₀ erano inferiori a 50 µg/m³ (azzurro), ma è possibile vedere la polvere (gialla) che arriva da sud. Il 15 aprile è sopraggiunta la polvere sahariana con concentrazioni medie giornaliere di PM₁₀ molto elevate. specialmente sulla fascia costiera con valori superiori a 100 µg/m³, mentre è diminuito nella zona settentrionale. La Figura 11.2.8c mostra che la regione Campania è stata quasi totalmente coperta dalla polvere sahariana nel giorno del 16 aprile; le concentrazioni medie giornaliere di PM₁₀ erano superiori a 100 µg/m³ (rosso scuro), ma i valori di concentrazione di PM₁₀ riscontrati erano compresi tra 60 ed 80 µg/m³ (da giallo a rosso chiaro) in alcune stazioni interne. La concentrazione di polvere sahariana è quindi diminuita il 17 aprile, ma si è mantenuta ancora alta lungo le coste della Campania e più bassa invece nelle zone interne.

Le immagini mostrano chiaramente che il modello CHIMERE ha sovrastimato i valori di concentrazione

medi giornalieri di PM₁₀ dal 15 al 17 aprile. Tuttavia, lo sviluppo della polvere sahariana che si è spostato verso est durante l'evento è stato ben rappresentato.

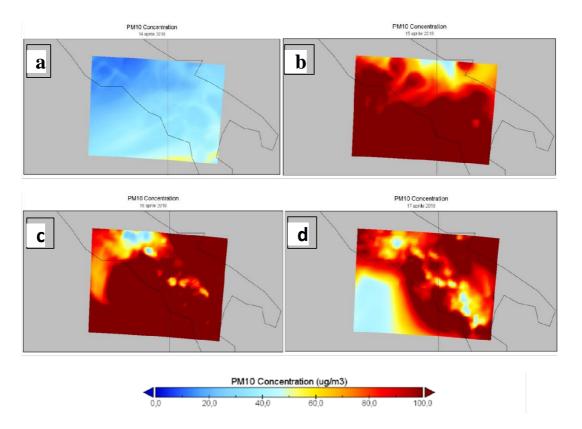


Figura 11.2.8. Mappe di CHIMERE della concentrazione media giornaliera di PM₁₀ nei giorni 14,15, 16 e 17 Aprile del 2018 in regione Campania

Conclusioni

La polvere sahariana trasportata dal Nord Africa alla regione Campania dal 14 al 17 aprile 2018 ha comportato un intenso evento di polvere, maggiore del precedente registrato nella stessa area negli ultimi quattro anni. Il tutto è stato confermato dall'analisi delle

osservazioni satellitari e dei dati monitorati, nonché dalle simulazioni CHIMERE.

L'evento di trasporto di polvere sahariana è iniziato il 13 aprile con lo spostamento delle polveri dalle coste tunisine al Mar Mediterraneo mentre il 14 aprile il Nord Africa era interessato da un campo di bassa pressione. Il trasferimento della polvere è stato anticipato dal centro

di bassa pressione che si è spostato dall'Africa al Mar Mediterraneo il 15 aprile e dall'intenso Jet Stream diretto verso nord. Il 16 aprile il centro di bassa pressione si è avvicinato alle coste della Campania e nel frattempo la regione è stata interessata da intense precipitazioni. Nonostante le intense precipitazioni, i dati monitorati hanno mostrato che le concentrazioni medie giornaliere di PM₁₀ si sono mantenute molto elevate, specialmente il 16 aprile.

Le principali conclusioni raggiunte da questo studio sono:

- dal 13 al 17 aprile 2018 l'evento di polvere sahariana si è verificato nella regione Campania (Italia meridionale) come mostrato da immagini Aqua-MODIS;
- i valori di concentrazione medi giornalieri di PM_{10} , che sono stati misurati nelle stazioni di monitoraggio situate nel territorio regionale, hanno iniziato ad aumentare notevolmente il 15 aprile 2018 con 71,3 μ g/m³

raggiungendo il valore di 114,9 μg/m³ il 16 aprile per poi diminuire il 17 aprile:

- le simulazioni del modello CHIMERE hanno mostrato la distribuzione spaziale della polvere sahariana che aveva interessato tutta la Campania con valori di concentrazione medi giornalieri molto elevati di PM₁₀.

Grazie alla combinazione di diversi approcci è stato possibile valutare sia qualitativamente (attraverso la distribuzione spaziale) che quantitativamente (attraverso i valori assoluti) l'evento della polvere sahariana ed i suoi principali aspetti. Un metodo simile potrebbe essere utilizzato dall'Agenzia regionale per Protezione ambientale ARPAC per avere una panoramica completa dei futuri eventi di polvere sahariana che potrebbero verificarsi nella regione Campania.

Bibliografia

Alpert, P., Kaufman, Y.J., Shay-El, Y., Tanre, D., da Silva, A., Schubert, S., Joseph, J.H., 1998. Quantification of dust-forced heating of the lower troposphere. Nature 395, 367–370

ARPA UMBRIA, 2009, Scenari emissivi e di concentrazione in Umbria. Applicazione modello CHIMERE, relazione tecnica

A.S. Goudie, N.J. Middleton, 2001, Saharan dust storms: nature and consequences, Earth-Science Reviews 56 (2001) 179–204

Bryson, R.A., Barreis, I.A., 1967. Possibilities of major climatic modifications and their implications: northwest India, a case for study. Bulletin of the American Meteorological Society 48, 136–142

Chang J.C. and Hanna S.R., 2004, Air quality model performance evaluation, Meteorol Atmos Phys 87, 167–196 (2004)

Engelestaedter S., Tegen I., Washington R., 2006, North African dust emissions and transport, Earth Sci Rev vol. 79

Hanna SR, Strimaitis DG, Chang JC (1991) Hazard response modeling uncertainty (A quantitative method), vol. I: User's guide for software for evaluating hazardous gas dispersion models; vol. II: Evaluation of commonly-used hazardous gas dispersion models; vol. III: Components of uncertainty in hazardous gas dispersion models. Report no. A119=A120, prepared by Earth Tech, Inc., 196 Baker Avenue, Concord

MA 01742, for Engineering and Services Laboratory, Air Force Engineering and Services Center, Tyndall Air Force Base, FL 32403; and for American Petroleum Institute, 1220 L Street, N.W., Washington, D.C., 20005

Hanna SR, Chang JC, Strimaitis DG (1993) Hazardous gas model evaluation with field observations. Atmos Environ 27A: 2265–2285

Jickells, T.D., Dorling, S., Deuser, W.G., Church, T.M., Arimoto, R., Prospero, J.M., 1998. Air-borne dust fluxes to a deep water sediment trap in the Sargasso Sea. Global Biogeochemical Cycles 12, 311–320

Li, X., Maring, H., Savoie, D., Voss, K., Prospero, J.M., 1996. Dominance of mineral dust in aerosol light- scattering in the North Atlantic trade winds. Nature 380, 416–419.

Maley, J., 1982. Dust, clouds, rain types and climatic variations in tropical north Atlantic. Quaternary Research 18, 1–16.

Martin D., Bergametti G., Strauss B., 1990, On the use of the synoptic vertical velocity in trajectory model: validation by geochemical tracers, Atmos. Environ.

Merril J. T., Black R., Avila L., 1985, Modelling atmospheric transport to the Marshall islands, J. Geophys. Res.

Miller, R.L., Tegen, I., 1998. Climate response to soil dust aerosols. Journal of Climate 11, 3247–3267.

Moulin, C., Guillard, F., Dulac, F. and Lambert, C.E., 1997, Long-term daily monitoring of Saharan dust load over ocean using Meteosat ISCCP-B2 data: 1. Methodology and preliminary results for 1983–1994 in the Mediterranean. Journal of Geophysical Research

National Research Council, 2003, Satellite observations of the Earth's Environment: Accelerating the Transition of Research to Operations. Washington, DC: The National Academies Press.

Nickovich S., 1996, Modelling of dust process for the Saharan and Mediterranean Area, Environmental Science and Tecnology Library

Reiff J., Forbes G.S. Spieksma F.T., Reynders J.J., 1986, African dust reaching Northwestern Europe: a case study to verify trajectory calculations, J. Clim. Appl. Meteorol.

Schollaert, S.E., Merrill, J.T., 1998. Cooler sea surface west of the Sahara Desert correlated to dust events. Geophysical Research Letters 25, 3529–3532.

Schutz, L., Jaenicke, R., Pietrek, H., 1981. Saharan dust transport over the North Atlantic Ocean. In: Pewe,

T.L. (Ed.), Desert Dust. Geological Society of America, Special Paper, vol. 186, pp. 87–100. Stortini M., 2006, La meteorologia e la diffusione degli inquinanti, ARPA SIM

Swap, R., Ulanski, S., Cobbett, M., Garstang, M., 1996. Temporal and spatial characteristics of Saharan dust outbreaks. Journal of Geophysical Research 101 (D2.), 4205–4220.

Xuelei Zhang, Lijing Zhao, Daniel Q. Tong, Guangjian Wu, Mo Dan and Bo Teng, 2016, A systematic Review of Global Desert Dust and Associated Human Health Effects, Atmosphere, 7, 158.

11.3 STUDIO DELL'IMPATTO DELLE ATTIVITÀ DI CAVA SULLA QUALITÀ DELL'ARIA: DUE CASI DI STUDIO Corbella L, Gianelle V, Cuccia E, Dal Santo U, Colombi C, Algieri A.

ARPA LOMBARDIA

RIASSUNTO

L'impatto delle attività di cava sulla qualità dell'aria è legato prevalentemente al risollevamento delle polveri, dovuto sia alle attività di coltivazione che al transito degli automezzi pesanti adibiti al trasporto del materiale estratto.

ARPA Lombardia per approfondire questa tematica ha svolto negli anni due campagne di monitoraggio della qualità dell'aria, la prima a Parabiago (MI) e la seconda a Rezzato (BS), due siti in prossimità di attività estrattive e di lavorazione del marmo.

Sui campioni di particolato raccolti nella campagna di Parabiago sono stati determinati i seguenti composti: componente elementale con Z>11 (ED-XRF), componente ionica (IC), idrocarburi policiclici aromatici (GC-MS). È stato inoltre installato un contatore ottico (OPC) ad alta risoluzione temporale in grado di determinare la concentrazione numerica delle particelle in funzione delle loro dimensioni e stimare così la frazione coarse, generalmente legata alla risospensione di polvere dal suolo.

Le concentrazioni medie giornaliere del PM₁₀ hanno mostrato un andamento settimanale legato al transito dei veicoli pesanti: valori più alti nei giorni feriali e nette diminuzioni nei giorni festivi, indipendenti dalle condizioni meteorologiche in atto. Le concentrazioni delle particelle più fini non hanno evidenziato differenze sostanziali nei giorni festivi rispetto a quelli feriali, mentre la frazione coarse mostra solo nei giorni feriali pronunciati incrementi nelle ore di punta del traffico alla cava. Tali differenze si osservano anche nella composizione chimica; il contributo degli elementi terrigeni, ad esempio, passa dal 30% della massa totale del PM₁₀ nei giorni festivi al 58% nei giorni lavorativi.

Nel caso di Rezzato, la locale centralina della Rete Regionale di rilevamento della Qualità dell'Aria (RRQA) di ARPA Lombardia misura mediamente concentrazioni di PM₁₀ superiori a quelle rilevate presso le altre stazioni della rete, comprese quelle della vicina città di Brescia. Si è quindi deciso di condurre una campagna di approfondimento che ha visto lo studio della composizione chimica del PM₁₀ (componente carboniosa. componente elementale *7*>11 componente ionica). Particolare attenzione è stata posta alla concentrazione di carbonato di calcio (CaCO₃), che è stata calcolata misurando il calcio (Ca) con la tecnica ED-XRF ed il carbonio presente sotto forma di carbonato con la tecnica TOR/TOT. Il contributo del carbonato di calcio, così misurato, è risultato essere in media il 24% del PM₁₀.

Il dataset di speciazione chimica è stato inoltre elaborato attraverso l'applicazione di PMF5 dell'US-EPA e l'andamento del fattore CaCO3 risolto dalla PMF è risultato in ottimo accordo, sia negli andamenti che nei valori assoluti, con le concentrazioni di CaCO3 ricavato dalle misure dando coerenza ai due approcci.

Parole chiave: PM₁₀, cava, risollevamento, composizione chimica, carbonato di calcio

ABSTRACT

The impact of quarry activities on air quality is mainly linked to the resuspension of dust, due to both the cultivation activities and the transit of heavy vehicles used for the transport of the extracted material.

Over the years, ARPA Lombardia carried out two air quality monitoring campaigns: a first one in Parabiago (MI) and a second one in Rezzato (BS), two sites near quarrying and marble processing activities.

The following compounds were determined on the particulate samples collected in the Parabiago campaign: elemental component with Z>11 (ED-XRF), ionic

component (IC) and polycyclic aromatic hydrocarbons (GC-MS).

A high temporal resolution optical particle counter (OPC) has also been installed, in order to determine the numerical concentration of the particles according to their size and thus estimate the coarse fraction, generally linked to the resuspension of dust from the ground.

The PM_{10} daily mean concentrations showed a weekly trend linked to the transit of heavy vehicles: higher values on working days and sharp decreases on holidays, independent of the current weather conditions. The concentrations of the finest particles did not show substantial differences on holidays compared to weekdays, while the coarse fraction showed marked increases only in weekdays in peak hours of traffic at the quarry. These differences are also observed in the chemical composition; the contribution of the terrigenous elements, for example, goes from 30% of the total mass of PM_{10} on holidays to 58% on working days.

In the case of Rezzato, the local control unit of ARPA Lombardia measures on average PM_{10} concentrations higher than those detected at the other stations of the network of Lombardy, including those of the nearby city of Brescia. It was therefore decided to conduct an indepth campaign which included the study of the chemical composition of PM_{10} (carbon component, elemental component $Z\!\!>\!\!11$ and ionic component). Particular attention was paid to the concentration of calcium carbonate (CaCO3), which was calculated by measuring calcium (Ca) with the ED-XRF technique and the carbon present in the form of carbonate with the TOR/TOT technique. The contribution of calcium carbonate, thus measured, was on average 24% of PM_{10} .

The chemical speciation dataset was also elaborated through the application of PMF5 of the US-EPA and the trend of the $CaCO_3$ factor solved by PMF was in excellent agreement, both in trends and in absolute values, with the concentrations of $CaCO_3$ obtained from the measures giving coherence to the two approaches.

Keywords: PM₁₀, cava, resuspantion, chemical composition, calcium carbonate

Introduzione

La Lombardia è la prima regione italiana per numero di aree destinate all'industria estrattiva e per quantità di minerali estratti da cave: sul territorio lombardo sono presenti 466 cave attive, ovvero circa il 10% di quelle italiane e nel 2017 sono state estratte più di 22,6 milioni di tonnellate di minerali, pari al 14,4% del totale nazionale (Istat 2019). Le problematiche ambientali legate alle attività estrattive sono sia di carattere temporaneo che permanente. Fra le pressioni temporanee emerge il potenziale peggioramento della qualità dell'aria. L'impatto delle attività di cava sulla gualità dell'aria è legato prevalentemente al risollevamento delle polveri, dovuto sia alle lavorazioni che al transito degli automezzi pesanti adibiti al trasporto del materiale estratto.

ARPA Lombardia ha svolto due campagne di monitoraggio della qualità dell'aria con lo scopo di indagare e valutare l'impatto di tali attività sul territorio: la prima nel 2009 a Parabiago (MI) e la seconda nel 2017 a Rezzato (BS), due siti in prossimità di attività estrattive e di lavorazione del marmo. Queste due campagne hanno affrontato il tema tramite due approcci diversi: a Parabiago, mediante l'utilizzo di un contatore ottico di particelle, è stata isolata e studiata la frazione grossolana del PM₁₀, legata principalmente a processi di formazione di tipo meccanico e guindi al risollevamento delle polveri dal suolo. A Rezzato invece particolare attenzione è stata posta alla concentrazione di carbonato di calcio. che è stata calcolata sia a partire dai dati analitici sia tramite l'applicazione di tecniche di source apportionment.

Parabiago

Metodi

Dal 3 marzo al 7 aprile 2009, è stata realizzata a Parabiago una campagna di misura con un laboratorio mobile, dotato di strumentazione per il rilevamento in continuo di biossido di zolfo (SO₂), ossidi di azoto (NO_X), monossido di carbonio (CO), ozono (O₃) e di un campionatore sequenziale per la determinazione della concentrazione media giornaliera di PM₁₀ con metodo

gravimetrico, posizionato a circa 30 m dall'imbocco con la strada privata che conduce alla cava (sito A); contemporaneamente è stato installato un secondo campionatore di PM_{10} distante circa 350 m in direzione Nord dal sito A, non direttamente sottoposto all'influenza delle attività di cava ma comunque a tutte le altre sorgenti come riferimento di fondo (sito B).

Sui campioni di particolato raccolti sono stati determinati i seguenti composti: componente elementale con Z>11 (ED-XRF), componente ionica (IC), idrocarburi policiclici aromatici (GC-MS). Inoltre, al fine di ottenere informazioni più specifiche circa l'origine e le caratteristiche del particolato misurato nel sito A, è stato anche installato un Optical Particle Counter (OPC - Grimm mod.107) in grado di determinare la concentrazione numerica delle particelle in funzione delle loro dimensioni.

Risultati

Entrambi i campionatori di PM_{10} sono rimasti in funzione dal 4 marzo al 6 aprile.

Le misure di fondo ambientale (sito B) mostrano una concentrazione media sul periodo di 46 μ g/m³ con un valore massimo giornaliero di 107 μ g/m³, misurato il 15 marzo. L'andamento giornaliero delle concentrazioni è confrontabile con quanto rilevato dalla relativamente

vicina centralina di Magenta e lievemente superiore alla media dei valori rilevati dagli analizzatori automatici installati nelle cabine di Milano (via Pascal, Verziere e via Senato). I superamenti del valore limite giornaliero per la protezione della salute umana (50 μ g/m³) in questo periodo sono stati 10, e le concentrazioni di PM₁0 sono nettamente diminuite in coincidenza dei rinforzi di vento o di eventi piovosi.

Le concentrazioni di PM_{10} misurate invece nel sito A hanno espresso un valore medio sul periodo di $94~\mu g/m^3$ ed un massimo giornaliero di $249~\mu g/m^3$ rilevato il giorno 17 marzo. I giorni di superamento del valore limite normativo sono stati 25~sui~34~di misura. Dalla Figura 11.3.1 appare evidente come la concentrazione media sul periodo e il numero di superamenti osservati presso il sito B di Parabiago siano del tutto confrontabili con quelli rilevati nelle postazioni di confronto, mentre presso il sito A i valori siano significativamente più elevati.

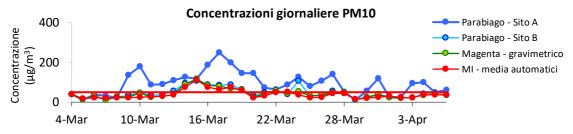


Figura 11.3.1. Concentrazioni medie giornaliere di PM₁₀ a Parabiago e in alcune stazioni della RRQA nel periodo di misura.

L'OPC utilizzato in questa campagna è uno strumento in grado di contare le particelle con dimensioni superiori a 0,25 µm e classificarle in 31 classi dimensionali. Dal numero delle particelle per ogni classe dimensionale, facendo ipotesi sulla densità delle particelle, sono state

calcolate le concentrazioni di massa del PM₁₀, del PM_{2,5} e del PM₁ contemporaneamente e con risoluzione temporale oraria.

In Figura 11.3.2 si riportano a confronto le concentrazioni di massa (Cmassa) rilevate dai campionatori gravimetrici e quelle stimate con l'OPC. Il confronto mostra un'ottima corrispondenza tra le concentrazioni determinate dai due sistemi per quanto riguarda il PM₁₀. I giorni in cui si ha l'abbattimento di PM₁₀ sono giorni di pioggia; i fenomeni ventosi non hanno invece influito sulla massa di PM₁₀,

fatta eccezione per la relativa diminuzione del giorno 25 marzo in cui però la media giornaliera si è mantenuta comunque sopra i limiti (79 µg/m³).

In Figura 11.3.3 sono riportati gli andamenti del giorno tipo di PM_{10} , $PM_{2,5}$, PM_1 e frazione "coarse" (PM_{10} - $PM_{2,5}$) calcolati sull'intero periodo, per i giorni feriali e per le domeniche.

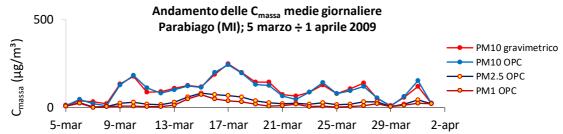


Figura 11.3.2. Concentrazioni medie giornaliere di PM₁₀ misurate con metodo gravimetrico e calcolo delle concentrazioni medie giornaliere dalle misure dell'OPC per il PM₁₀, PM_{2.5} e PM1.

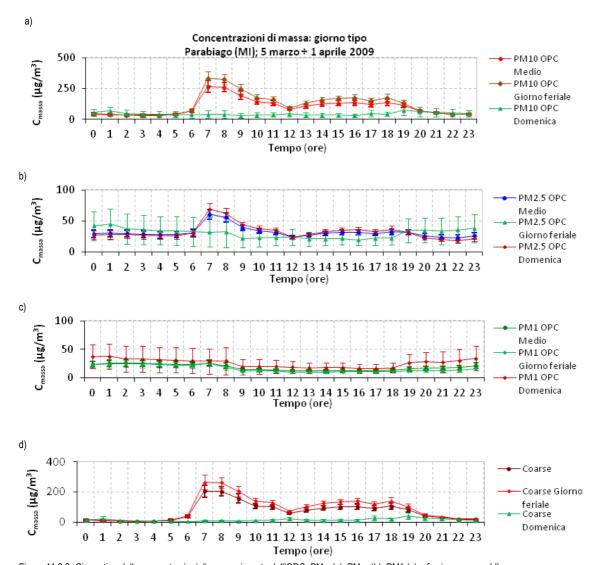


Figura 11.3.3. Giorno tipo delle concentrazioni di massa ricavate dall'OPC: PM10 (a), PM25 (b), PM1 (c) e frazione coarse (d).

L'andamento temporale della frazione coarse mostra due picchi uno intorno alle 8 del mattino e uno alle 16-18, in corrispondenza delle ore di punta del traffico; tale tendenza non si riproduce nel giorno tipo festivo, cioè la

domenica, principalmente per la mancanza di una sorgente antropica specifica. Le particelle che appartengono al PM_{10} ma non al $PM_{2,5}$, ovvero quelle della cosiddetta frazione "coarse" o grossolane, sono

generalmente di origine meccanica (prevalentemente risospensione di polvere dal suolo per azione del vento o per la turbolenza generata dai veicoli sulla pavimentazione stradale). Dai grafici è evidente il diverso comportamento della frazione fine (PM₁) rispetto, soprattutto, alla frazione "coarse". Infatti, mentre le concentrazioni di PM₁ non cambiano sostanzialmente nei giorni festivi rispetto a quelli feriali, e il loro livello nel corso delle 24 ore è essenzialmente modulato dal variare delle capacità dispersive dell'atmosfera, la frazione delle particelle grossolane mostra pronunciati incrementi nelle ore di punta del traffico, soprattutto la mattina. Inoltre, si osserva nel giorno tipo festivo, ovvero la domenica, un abbattimento della concentrazione principalmente dalla mancanza di una sorgente antropica specifica.

Per valutare eventuali fenomeni di trasporto di particelle in relazione alle loro dimensioni, sono state costruite le rose di inquinamento per tre gruppi dimensionali individuati tramite l'analisi a cluster applicata al set di dati di concentrazione numerica delle particelle, ovvero 0,25-0,70 µm, 0,70-10 µm e il terzo cluster costituito dalle particelle con dimensioni superiori a 10 µm. Per ogni cluster dimensionale sono state calcolate le concentrazioni numeriche medie associate alla direzione del vento classificata in otto settori (Figura 11.3.4). Per la direzione del vento si sono considerati i dati rilevati dalla stazione di Arconate

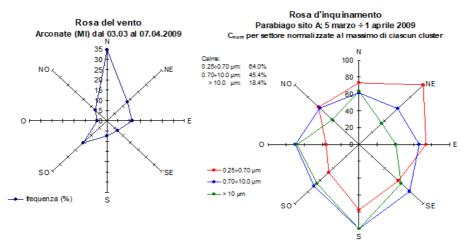


Figura 11.3.4. Grafici della rosa del vento (a sinistra) e della rosa dell'inquinamento (a destra)...

Fatta eccezione per le particelle più fini, la rosa relativa alle altre due classi dimensionali è omogenea ma con un'anisotropia sulla direzione sud, che indica un incremento delle concentrazioni delle frazioni con diametro maggiore di 0,7 µm con vento proveniente da sud. È da considerare che lo strumento era effettivamente installato a nord della strada che conduce alla cava. Questo tipo di elaborazione dimostra come la

concentrazione di particolato maggiore nel sito A dipende essenzialmente da particelle della frazione coarse, prodotte da una sorgente locale mentre quelle fini (submicrometriche) hanno un comportamento spazialmente più omogeneo a causa della diffusione di inquinamento da tutto il bacino padano.

Composizione chimica del particolato

Per poter ricostruire la composizione chimica del particolato atmosferico sono state svolte diverse analisi sui filtri campionati a Parabiago; analisi in spettrometro in fluorescenza X (XRF) per la determinazione della frazione elementare con Z>11, analisi in cromatografia ionica per la determinazione di anioni e cationi e analisi in gas-cromatografia per la determinazione di idrocarburi policiclici aromatici.

La determinazione degli elementi con numero atomico Z>11 ha permesso di valutare il contributo degli elementi legati al risollevamento del suolo (elementi terrigeni) rispetto a tutti i restanti elementi disponibili (non terrigeni): il contributo dei terrigeni nel sito A passa dal 30% della massa totale nei giorni festivi al 58% nei giorni lavorativi mentre nel sito B dal 18% dei giorni festivi al 31% dei giorni lavorativi.

La componente ionica è fondamentale nella valutazione dell'importanza del contributo delle sorgenti da combustione (autoveicoli e riscaldamento) e della componente secondaria. Tra i composti solubili solfati, nitrati e ammonio sono gli ioni maggioritari. Nel particolato atmosferico questi ioni sono presenti principalmente come solfato d'ammonio e nitrato d'ammonio, i quali si formano in atmosfera a partire prevalentemente dalla reazione dell'ammoniaca, emessa soprattutto da attività agricole e dagli allevamenti, con gli ossidi di azoto e di zolfo.

La valutazione del nitrato d'ammonio e del solfato d'ammonio nel PM₁₀ permette quindi la stima del contributo della componente secondaria inorganica del

particolato, meno correlata alle sorgenti strettamente locali e diffusa uniformemente sul territorio.

Si osserva che, a differenza degli elementi terrigeni, le componenti ioniche sono pressoché equivalenti nei due siti.

La determinazione degli Idrocarburi Policiclici Aromatici (IPA), è importante nella valutazione dell'emissione degli autoveicoli pesanti: sebbene sulla massa totale del PM_{10} il loro contributo è comunemente molto basso (0,003 $\mu g/m^3$ e 0,001 $\mu g/m^3$ rispettivamente per il sito A e il sito B), la differenza tra le concentrazioni misurate nei due siti può essere considerata una misura indiretta del contributo degli autoveicoli pesanti.

Chiusura di massa del PM₁₀

Con l'insieme delle specie determinate analiticamente è stato possibile effettuare la chiusura di massa del PM₁₀, cioè la ricostruzione della composizione chimica del particolato atmosferico.

In Figura 11.3.5, si riportano le torte di chiusura di massa riferite alla campagna di Parabiago, per i siti A e B, sia come media del periodo di indagine, sia facendo una distinzione tra giorni lavorativi e giorni festivi. La parte di massa non determinata è dovuta, in particolare, alla mancanza di una componente fondamentale rappresentata dalla materia organica, che in questo contesto non è stata analizzata e, secondariamente, alla presenza di goccioline d'acqua derivanti da residui di umidità, oltre che da altre componenti minoritarie.

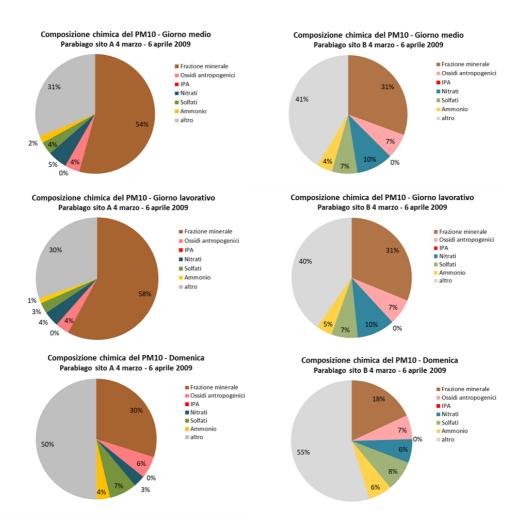


Figura 11.3.5. Torte di composizione della concentrazione media del PM₁₀ nei due siti elaborate per il periodo medio e i giorni tipo: lavorativo e la domenica

Appare evidente la differenza tra i due siti di misura, a conferma di quanto emerso dallo studio dei dati ricavati dall'OPC. Nel punto A, situato in prossimità della cava, la componente maggioritaria risulta essere la materia crostale, legata alla risospensione dal suolo; ciò è attribuibile al passaggio dei mezzi pesanti ed alle attività connesse alla presenza della cava. Al contrario le

componenti dovute alle altre attività antropiche risultano equivalenti nei due siti. La componente risospensione del suolo nel giorno festivo del sito A, essendo nulle le attività connesse alla sorgente locale, è pari a quella nel giorno lavorativo del sito B, nel quale, la domenica, questa componente si riduce ulteriormente. Questo comportamento suggerisce da parte delle attività

estrattive una possibile influenza anche sulla qualità dell'aria nel sito B, seppure in misura molto minore rispetto al sito A.

Rezzato

Metodi

L'approfondimento in merito alle cave presenti a Rezzato si è reso necessario in quanto poco distante dalle cave e anche da un impianto di frantumazione del marmo si trova la centralina di Rezzato facente parte della Rete Regionale di rilevamento della Qualità dell'Aria (RRQA) di ARPA Lombardia, di classificazione suburbana industriale. posta al confine dell'agglomerato residenziale. Spesso le concentrazioni di PM₁₀ misurate a Rezzato sono superiori rispetto a quelle mediamente rilevate presso altre postazioni della RRQA Lombarda. ed in particolare rispetto a quelle misurate presso la vicina città di Brescia. Negli ultimi mesi del 2017 è stata condotta a Rezzato (BS) una campagna di approfondimento, svoltasi in due periodi, dal 5/09/2017 al 06/10/2017 e dal 20/11/2017 al 26/12/2017 per approfondire lo studio della composizione chimica del PM₁₀.

Sui campioni di PM₁₀ sono state eseguite le analisi per la determinazione della componente elementale e della componente ionica, come fatto a Parabiago. In aggiunta, a Rezzato sono state determinate le concentrazioni della componente carboniosa tramite tecnica termo-ottica a

riflessione/trasmissione - TOR/TOT. Particolare attenzione è stata posta alla determinazione del carbonato di calcio, calcolata dalla concentrazione di calcio ottenuta con la tecnica ED-XRF e da quella del carbonio carbonatico misurata con la tecnica TOR/TOT.

La tecnica TOR/TOT permette di misurare il carbonio carbonatico, in quanto quest'ultimo evolve nel quarto step di temperatura, nella fase in atmosfera inerte, ad una temperatura superiore ai 750° (Birch and Cary, 1996); durante l'analisi il campione è infatti sottoposto a diversi step di temperatura che comportano l'evoluzione dei diversi composti carboniosi presenti nel campione; all'evoluzione delle classi dei vari composti corrisponde la presenza di alcuni picchi nel termogramma, denominati per il carbonio organico OC1, OC2, OC3 e OC4. Le concentrazioni del carbonio organico evoluto nella quarta rampa di temperatura della fase inerte (OC4) misurate a Rezzato sono state confrontate con quelle misurate, nello stesso periodo, nella città di Milano (Milano via Pascal, sito di fondo urbano in zona città studi a Milano, di seguito indicato MI-Pascal). Dal confronto effettuato emerge che l'OC4 è presente in concentrazioni significativamente maggiori a Rezzato rispetto a MI-Pascal. Analogamente all'OC4, anche il Ca risulta essere presente a Rezzato in concentrazioni più elevate rispetto a MI-Pascal (Figura 11.3.6).

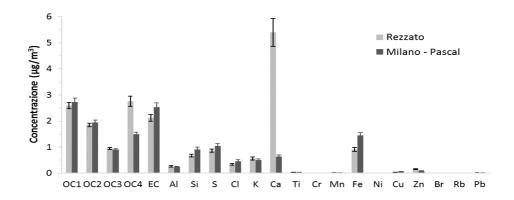


Figura 11.3.6. Confronto tra le concentrazioni medie delle diverse frazioni di OC, dell'EC e degli elementi misurati a Milano - Pascal e a Rezzato durante i due periodi di misura.

Come mostrato in Figura 11.3.7, il Ca e l'OC4 presentano una buona correlazione in entrambe le stagioni; tale correlazione si perde se si considera l'OC nel suo complesso.

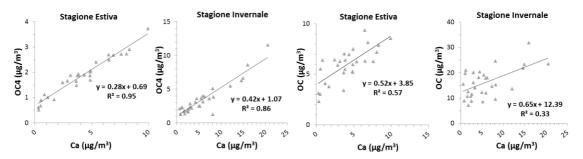


Figura 11.3.7. Correlazione tra le concentrazioni di Ca e OC4 e tra Ca e OC misurati a Rezzato durante i due periodi di misura.

Sia dall'intercetta significativamente non nulla presente nella correlazione tra Ca e OC4, sia dal confronto delle concentrazioni medie di OC4 a MI-Pascal e a Rezzato, emerge che non tutto il carbonio che evolve nella quarta rampa di temperatura della fase inerte (OC4) è in forma di carbonato (CO₃).

Per determinare le concentrazioni di carbonato di calcio si è quindi reso necessario sottrarre alle concentrazioni di OC4 la frazione di carbonio non carbonatico.

La determinazione del carbonato (Figura 11.3.8) è stata quindi effettuata stimando la componente di OC4 non

carbonatica a partire dai rapporti tra le quattro classi di OC in un sito che si ipotizza non essere influenzato da particolari sorgenti di carbonato, come MI-Pascal.

Anche il Ca a Rezzato è composto da una parte terrigena ed una parte legata invece al CaCO3 che devono essere opportunamente separate. La componente di Ca terrigena è stata calcolata a partire dalla concentrazione di silicio tenendo conto della correlazione tra Ca e Si misurata a MI-Pascal.

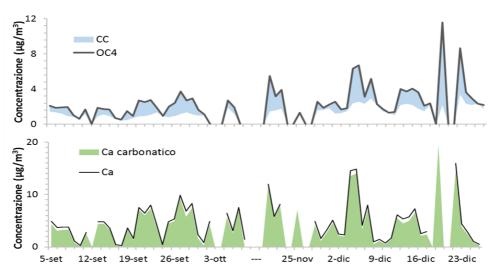


Figura 11.3.8. Andamento giornaliero delle concentrazioni di OC4 e di CC e di Ca carbonatico e Ca totale a Rezzato.

Poiché la tecnica TOR/TOT misura la massa del solo carbonio associato al carbonio carbonatico (CC), quest'ultima è stata trasformata in massa di CO₃ tenendo conto dell'ossigeno.

Gli andamenti delle concentrazioni di Ca carbonatico e di CO₃, così determinate, mostrano, in Figura 11.3.9, un buon accordo tra loro.

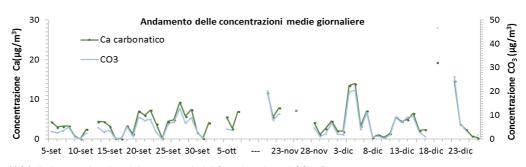


Figura 11.3.9. Andamento giornaliero delle concentrazioni di Ca carbonatico e di CO3 a Rezzato

Questa procedura ha permesso di determinare le concentrazioni giornaliere di CaCO₃ a Rezzato. Tali concentrazioni spiegano le differenze di concentrazione tra il PM₁₀ misurato a Rezzato e quello misurato nella

provincia di Brescia. Il carbonato di calcio presenta una netta diminuzione delle concentrazioni nel weekend ed

è quindi da collegarsi alla movimentazione del materiale proveniente da alcune specifiche attività della zona.

Chiusura di massa del PM₁₀

In Figura 11.3.10 sono rappresentate le torte di composizione chimica determinate per Rezzato, sia come media totale che distinte tra i due periodi di misura.

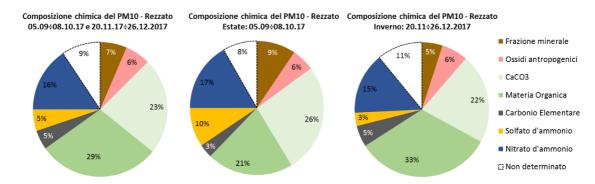


Figura 11.3.10. Caratterizzazione chimica media del PM₁₀, nell'intero periodo e nei due periodi, estivo e invernale.

Nel periodo estivo i costituenti principali del PM₁₀ risultano essere le componenti secondarie (30% di cui 19% di nitrato d'ammonio e 4% di solfato d'ammonio). Durante l'inverno i costituenti principali del PM₁₀ risultano essere la componente organica (29%), legata in questa stagione soprattutto al traffico veicolare ed alla combustione della legna per il riscaldamento domestico, e il nitrato d'ammonio (19%), favorito dalle particolari condizioni atmosferiche, come genericamente si riscontra in tutto il territorio lombardo. Alle sorgenti tipiche si aggiunge, in entrambe le stagioni, il contributo del carbonato di calcio, il quale rappresenta il 30% della

massa del PM₁₀ durante la campagna invernale e il 27% durante la campagna estiva.

Come osservato a Parabiago, anche a Rezzato si evidenzia la presenza di una sorgente antropica specifica, ovvero l'attività estrattiva: il contributo del carbonato di calcio, infatti, presenta una netta diminuzione delle concentrazioni nel weekend, quando si hanno meno attività legate alla movimentazione ed al trasporto dei materiali nella cava (Figura 11.3.11).

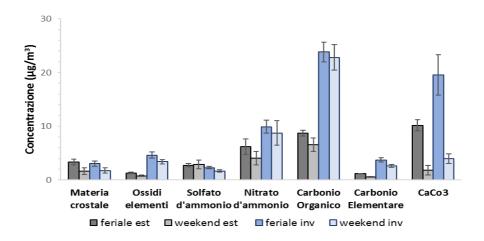


Figura 11.3.11. Concentrazioni medie, in valore assoluto, delle principali componenti del PM₁₀ nei giorni lavorativi e nel weekend, rispettivamente nel periodo estivo ed invernale.

Analisi di Source Apportionment del PM₁₀

Il dataset di speciazione chimica ottenuto per il sito di Rezzato è stato ulteriormente elaborato attraverso l'applicazione di tecniche di source apportionment, che permettono una valutazione anche quantitativa del contributo delle sorgenti, primarie e secondarie, alle concentrazioni di PM rilevate.

È stato applicato il modello a recettore multivariato PMF, nella sua ultima versione PMF5, sviluppato dall'agenzia ambientale americana (U.S. Environmental Protection Agency).

L'applicazione di PMF al database mostra sostanzialmente l'identificazione di sette fattori, che sono stati denominati: Traffico, Solfato Secondario Organico (SSO), Cloruri, Combustione di Biomassa, Suolo, Nitrato Secondario e CaCO3. In particolare, Solfato e Nitrato fanno riferimento alla formazione del particolato secondario inorganico, Cloruri si riferisce alla sorgente marina, Suolo alla componente naturale della risospensione di polveri e CaCO3 tiene conto del carbonato di calcio presente nella zona sia per erosione

diretta del materiale della cava, sia per movimentazione e trasporto del materiale nella cava e nel vicino cementificio e risollevamento da parte dei mezzi che lo trasportano.

In Figura 11.3.12 è mostrato il contributo dei diversi fattori alla massa del PM₁₀ nei due periodi considerati. Durante il periodo estivo il 15% della massa del PM₁₀ è attribuita al traffico (4.8 µg/m³), il 45% al secondario (28% e 8.7 μg/m³ SSO, 17% e 5,2 μg/m³ nitrato secondario), il 27% al CaCO₃ (8,5 µg/m³), il 13% al risollevamento di polvere dal suolo (4,0 µg/m³) e meno dell'1% ai cloruri (0,1 µg/m³). Durante il periodo invernale il 16% della massa del PM₁₀ è attribuita al traffico (10,5 µg/m³), il 24% al secondario (7% e 4,5 μg/m³ SSO, 17% e 11,6 μg/m³ nitrato secondario), il 25% al CaCO₃ (16,7 µg/m³), il 7% al risollevamento di polvere dal suolo (4,9 µg/m³) e meno dell'1% ai cloruri (0,4 µg/m³). Durante la stagione invernale, a dar conto della massa del PM₁₀, si aggiunge anche la combustione di biomassa, che ne spiega il 28% $(18,7 \mu g/m^3)$.

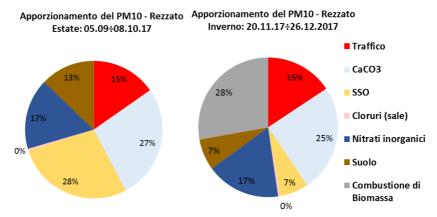


Figura 11.3.12. Contributi delle diverse sorgenti alla massa del PM₁₀, rispettivamente per il periodo estivo ed invernale.

La PMF permette di risolvere l'andamento giornaliero della concentrazione di CaCO3 nei due periodi. Questo andamento è stato confrontato con l'andamento del CaCO3 ricavato a partire dalle concentrazioni di Ca e OC4 misurate. I due andamenti trovati confermano la coerenza dei due approcci utilizzati (Figura 11.3.13) e, in

particolare, confermano la validità del calcolo precedentemente effettuato per la determinazione dell'OC4 non carbonatico.

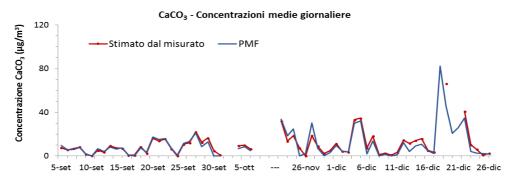


Figura 11.3.13. Andamento giornaliero delle concentrazioni di CaCO3 ricostruito dalla PMF e ricavato dalle misure analitiche.

Conclusioni

Le campagne di monitoraggio svolte a Parabiago e a Rezzato hanno confermato entrambe la rilevanza dell'impatto delle attività estrattive sulla qualità dell'aria. A Parabiago il PM₁₀ misurato nel sito prossimo alla cava mostra in generale valori medi giornalieri molto alti e significativamente superiori rispetto a tutte le altre centraline della provincia. Le concentrazioni delle particelle più fini (PM₁) non hanno evidenziato differenze sostanziali nei giorni festivi rispetto a quelli feriali, mentre la frazione coarse mostra solo nei giorni feriali pronunciati incrementi nelle ore di punta del traffico alla cava. Tali differenze si osservano anche nella composizione chimica; il contributo degli elementi terrigeni, ad esempio, passa nel sito A dal 30% della massa totale del PM₁₀ nei giorni festivi al 58% nei giorni lavorativi mentre nel sito B dal 18% dei giorni festivi al 31% dei giorni lavorativi.

A livello regionale i valori di concentrazione media giornaliera di PM_{10} misurati nella cabina di Rezzato

risultano tra i maggiori delle stazioni della RRQA. Lo studio della composizione chimica del PM₁₀ ha permesso di far emergere la presenza del carbonato di calcio che spiega le differenze di concentrazione tra il PM₁₀ misurato a Rezzato e quello misurato nella provincia di Brescia. Il carbonato di calcio spiega in media il 23% del PM₁₀ di Rezzato.

L'analisi di source apportionment applicata al database conferma il contributo di diverse categorie di sorgenti in proporzioni simili a quanto si trova comunemente in altri centri urbani, con l'aggiunta di una categoria di sorgente specifica legata alle attività di estrazione e di movimentazione dei materiali di cava. L'andamento giornaliero della concentrazione di CaCO3 risolto dalla PMF è stato confrontato con l'andamento del CaCO3 ricavato a partire dalle concentrazioni di Ca e carbonio carbonatico misurate. La compatibilità dei due andamenti conferma la coerenza dei due approcci utilizzati.

Bibliografia

- Birch M. E. & Cary R. A. (1996) Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust, Aerosol Science and Technology, 25:3, 221-241, DOI: 10.1080/02786829608965393
- EPA Positive Matrix Factorization 5.0 Fundamentals and User Guide
- Paatero, P. (1998). User's guide for positive matrix factorization programs PMF2 and PMF3 Part 1: Tutorial. prepared by University of Helsinki, Helsinki, Finland.
- Statistiche report. Attività estrattive da cave e miniere-AnNO2017. Istat, 2019

11.4 MONITORAGGI AEROPORTUALI: DODICI ANNI DI ESPERIENZE AFFRONTATE DA ARPA LOMBARDIA

 $\underline{Colombi\ C}.,\ Algieri\ A.,\ Corbella\ L.,\ Cuccia\ E.,\ Dal\ Santo\ U.,\ Carroccio\ L.,\ De\ Martini\ A.,\ Gianelle\ V.$

ARPA LOMBARDIA

RIASSUNTO

L'interesse per le emissioni di inquinanti atmosferici da parte di aerei e aeroporti ha avuto inizio negli anni '70, in concomitanza con l'aumento del traffico aereo commerciale. In effetti, le emissioni degli aeromobili possono produrre inquinanti atmosferici come ossidi di azoto, idrocarburi, monossido di carbonio e PM, che a loro volta possono comportare problemi ambientali più ampi, relativi all'ozono a livello del suolo e ai cambiamenti climatici e presentare potenziali rischi alla salute pubblica e all'ambiente. Dagli anni '90 sono stati apportati miglioramenti significativi per quanto riguarda l'efficienza dei motori e dei carburanti degli aerei e altri miglioramenti tecnici studiati per ridurre le emissioni. Tuttavia, gli aeromobili sono solo una delle diverse fonti di emissioni in un aeroporto.

Nell'ambito delle attività di monitoraggio, molteplici sono state le occasioni nelle quali ARPA Lombardia si è occupata di effettuare approfondimenti in merito alla qualità dell'aria (QA) nei dintorni di aeroporti, in particolare Milano-Malpensa (VA) e Bergamo-Orio al Serio (BG). Tali approfondimenti, una decina dal 1999 a Malpensa e oltre venti a Orio al Serio a partire dal 2003, sono stati effettuati per soddisfare richieste pervenute dal territorio circostante che nascevano sostanzialmente dalla volontà di comprendere l'impatto delle emissioni aeroportuali e delle attività ad esse connesse sulla QA e. in particolare, comprendere sia l'eventuale esistenza di composti emessi potenzialmente tossici (ad esempio Idrocarburi Policiclici Aromatici, IPA e Composti Organici Volatili, COV) che un aumento sostanziale delle polveri emesse come PM₁₀.

In generale, sebbene sia possibile che i livelli di questi inquinanti nelle aree adiacenti gli aeroporti o all'interno del sedime aeroportuale, siano superiori rispetto alle aree più lontane, tuttavia, essi non sono

apprezzabilmente differenti rispetto agli ambienti urbani. In molti casi, inoltre, è estremamente difficile l'individuazione della sorgente specifica aeroportuale rispetto all'emissione di sorgenti non-aeroportuali, come l'emissione veicolare o una sorgente di combustione stazionaria. Queste considerazioni, note in letterature specifiche (Federal Aviation Administration) e anche maturate a seguito dei vari monitoraggi effettuati, sottolineano le difficoltà nella progettazione di un monitoraggio che nasce con tale scopo.

Per questo motivo, svariati sono stati gli approcci messi a punto nel corso degli anni da ARPA Lombardia, a partire dalle misure di concentrazione degli inquinanti tradizionali (parametri normati dal D. Lgs 155/2010), fino alla misura di IPA, COV e composti atmosferici cosiddetti pericolosi (Hazardous Air Pollutants, HAPs), come ad esempio il naftalene: dalla composizione chimico-fisica del PM₁₀, fino alla misura al minuto della concentrazione numerica delle nanoparticelle (diametro aerodinamico > 6 nm) ed alla loro correlazione con il passaggio degli aerei. Mentre da una parte quest'ultimo approccio, scelto anche in base alle evidenze sperimentali pubblicate in letteratura, è stato l'unico che ha permesso di osservare la sorgente "aeromobile", la discussione dei monitoraggi ove si è andato a misurare la concentrazione degli inquinanti gassosi e non, non ha mostrato in nessun caso evidenze di impatti significativi all'esterno del sedime aeroportuale.

Parole chiave: monitoraggio, aerei, aeroporti, nanoparticelle, composti atmosferici pericolosi.

ABSTRACT

Interest in the emissions of air pollutants from planes and airports began in the 1970s, together with the increase in commercial air traffic. Indeed, aircraft emissions can produce atmospheric contaminants such as nitrogen oxides, hydrocarbons, carbon moNOxide and PM, which can then lead to wider environmental problems related to ground-level ozone and climate change and generate potential risks related to public health and the environment. Since the 1990s, significant improvements have been made regarding the fuel efficiency of the aircrafts and other technical improvements to reduce emissions. However, aircrafts are only one of several sources of emissions at an airport.

As part of the monitoring activities, ARPA Lombardia has been involved in numerous investigation campaigns on air quality (AQ) around airports, in particular Milano-Malpensa (VA) and Bergamo-Orio al Serio (BG). These analyses, a dozen since 1999 at Malpensa and more than twenty at Orio al Serio since 2003, were carried out to satisfy requests received from the surrounding area which arose essentially from the desire to understand the impact of airport emissions and the activities related to them on AQ and, in particular, to understand both the possible existence of potentially toxic compounds (e.g. Polycyclic Aromatic Hydrocarbons, PAHs, and Volatile Organic Compounds, VOCs) and a potential substantial increase in dust emitted as PM₁₀.

In general, although it is possible that the levels of these pollutants in the areas adjacent to the airports or within the airport grounds are higher than in the more distant areas, however, they are not appreciably different compared to urban environments. In many cases, moreover, it is extremely difficult to identify the specific airport source with respect to the emission of non-airport sources, i.e. the vehicle emission rather than a stationary combustion source. These considerations, known in specific literatures (Federal Aviation Administration) and also highlighted as a result of the various monitoring carried out, underline the difficulties in designing a monitoring that arises for this purpose.

For this reason, ARPA Lombardia developed various approaches over the years, starting from the

concentration measurements of traditional pollutants (parameters regulated by Legislative Decree 155/2010), up to the measurement of IPA, VOC and compounds so-called dangerous atmospheric (Hazardous Air Pollutants, HAPs), such as naphthalene; from the chemical-physical composition of PM₁₀, up to the measurement per minute of the numerical concentration of the nanoparticles (aerodynamic diameter> 6 nm) and their correlation with the passage of planes. While on the one hand the latter approach, also chosen on the basis of the experimental evidence published in the literature, was the only one that allowed to observe the "aircraft" source, the discussion of the monitoring where the concentration of pollutants was anyway measured, has not shown evidence of significant impacts outside the airport grounds.

Keywords: monitoring, aircraft, airport, nanoparticles, hazard atmospheric compounds

Introduzione

L'attenzione per le emissioni aeroportuali e il loro contributo all'inquinamento atmosferico è andata aumentando nel corso degli ultimi anni. Gli aeroporti sono importanti risorse, giocando un ruolo chiave nel trasporto di persone e beni, favorendo anche il commercio internazionale. I principali aeroporti sono in genere situati vicino o all'interno di grandi città e quindi potrebbero avere un impatto sull'ambiente circostante, oltre che sul personale esposto dell'aeroporto.

Spesso, la popolazione residente nelle vicinanze di un aeroporto esprime preoccupazione per l'eventuale esposizione a sostanze potenzialmente pericolose provenienti dal traffico aereo. Tuttavia, gli ambienti aeroportuali comprendono un complesso mix di fonti di emissioni oltre a quelle degli aeromobili, ovvero i mezzi di rampa, le attrezzature di supporto e i veicoli di servizio, i veicoli degli stessi passeggeri, l'usura di freni e pneumatici, le turbine di potenza, i mucchi di sabbia e sale in inverno, gli impianti di riscaldamento, le strutture

di deposito del carburante e di manutenzione degli aeromobili. Le immissioni nei dintorni dell'aeroporto rappresentano inoltre le concentrazioni di fondo, che variano con il tempo e con le condizioni meteorologiche e si combinano con le emissioni degli aeroporti per produrre concentrazioni più elevate e un impatto maggiore.

Studi dettagliati di caratterizzazione del pennacchio hanno dimostrato che i motori degli aeromobili hanno i tassi di emissione più alti generalmente in condizioni di spinta e aumento della portata del carburante comunemente associato al decollo (Agrawal et al., 2008; Kinsey et al., 2010; Wey et al., 2006, 2007).

Osservando il decollo degli aerei da terra si nota uno scarico nero emesso dall'aeromobile che un qualunque osservatore può pensare possa causare inquinamento dannoso. Tuttavia, il rapido movimento della sorgente tende ad allungare il pennacchio e, insieme ai movimenti vorticosi della scia dello scarico del getto, a contenerlo, contribuendo anche ad un aumento apparente della densità del pennacchio. Il rapporto tra il tasso di inguinanti emessi da aerei a reazione e la loro concentrazione nei pressi di un aeroporto è determinato dalla miscelazione tra i fumi di scarico e l'atmosfera circostante (J. Heywood 1971). Ci sono dunque diversi fenomeni fisici che agiscono contemporaneamente per determinare le concentrazioni al livello del suolo: il trascinamento dell'aria circostante e la sua miscelazione con i gas di scarico causati dal moto turbolento, la graduale salita dalla pista dovuta al galleggiamento, la miscelazione con l'aria circostante causata dalla turbolenza atmosferica e la convezione dovuta al vento.

Gli inquinanti principalmente emessi dai motori degli aerei sono principalmente quelli legati alle emissioni da traffico in generale, ovvero aerosol atmosferico (PM), monossido di carbonio, idrocarburi, ossidi di azoto e, indirettamente dalla sintesi fotochimica, ozono. Questa caratteristica ne rappresenta anche un forte fattore limitante nel monitoraggio dell'impatto di un aeroporto sulla qualità dell'aria (QA), principalmente a causa dell'elevato numero di fonti che li emettono, rappresentando quindi un problema di discriminazione

delle sorgenti. Nonostante ciò, numerosi sono gli studi condotti all'interno e nelle vicinanze degli aeroporti (B. Lyons et al. 2006; T.P. Nichols et al. 1981; E.K. Bastress 1973; J. Heywood et al. 1971; L. Shabad e G. Smirnov 1971; Tsani-Bazaca et al. 1982; Brown et al., 1996; Barbosa et al., 1999; Herndon et al., 2005). Questi studi mostrano un accordo generale sul fatto che le emissioni degli aeromobili rappresentano solo una piccola percentuale delle emissioni totali provenienti da tutte le fonti urbane. Inoltre, la maggior parte delle indagini sulla qualità dell'aria indica che le concentrazioni degli inquinanti atmosferici nei pressi degli aeroporti sono confrontabili a quelle dell'area metropolitana cui appartengono.

Nella review del 2003 la Federal Aviation Administration (FAA) ha individuato una serie di possibili traccianti delle emissioni dei velivoli, che vengono definiti pericolosi (Hazardous Air Pollutants, HAPs). Fra di essi, i primi dieci composti, da soli, rappresentano ben il 96% delle emissioni totali: aldeidi (formaldeide, acetaldeide e propionaldeide), COV (benzene, toluene, xylene, acroleina), IPA (1,3-butadiene e naftalene) e piombo. Tra le informazioni riportate dalla FAA si evince che, in generale, sebbene sia possibile che i livelli di guesti inquinanti nelle aree adiacenti gli aeroporti siano superiori rispetto ad aree più lontane, tuttavia, essi non sono apprezzabilmente differenti rispetto agli ambienti urbani. In molti casi, inoltre, è estremamente difficile l'individuazione della sorgente specifica aeroportuale rispetto all'emissione di sorgenti non-aeroportuali, ovvero emissione veicolare piuttosto che sorgente di combustione stazionaria, oltre al fatto che eventuali studi di esposizione devono tenere in considerazione il tempo per il quale la popolazione è esposta ad inquinanti HAP, trattandosi in genere di eventi che non hanno una durata sufficiente perché siano rappresentativi di esposizioni a lungo termine e quindi croniche.

Alla luce dei potenziali effetti sulla salute legati al trasporto aereo, un certo numero di studi hanno esaminato le emissioni di combustione dei motori degli aeromobili. Le emissioni di PM da aeromobili sono

caratterizzate da particelle con diametri aerodinamici tipicamente inferiori a 100 nm (Petzold et al., 2003; Mazaheri et al., 2009; Zhu et al., 2011 Lobo et al., 2012), ovvero particelle ultrafini (UFP). La formazione di UFP è normalmente governata da fonti locali non stazionarie con emissioni altamente variabili in funzione del flusso di carburante (Kinsey et al., 2010) e della fase di atterraggio o di decollo. Diversi sono gli studi di letteratura che riportano un aumento di produzione di particelle ultrafini (UFP) nelle aree prossime agli aeroporti (Westerdahl et al., 2008; Hu et al., 2009; Klapmeyer et al., 2012; Hsu et al., 2013, Stafoggia et al., 2016; Masiol et al., 2017).

Anche se non esistono attualmente normative sulla concentrazione ambientale di UFP, diverse sono le pubblicazioni che le collegano con risultati negativi sulla salute (Utell e Frampton, 2000; Nemmar et al., 2001; Ibald-Mulli et al., 2002; Englert, 2004; Oberdorster, 2004; Delfino et al., 2005); quindi anche la quantificazione di contributi marginali come quelli riconducibili agli aeroporti diventa importante ai fini della pianificazione di politiche di intervento locali volte a ridurre le esposizioni della popolazione.

I principali aeroporti in Lombardia sono: Milano-Malpensa (MXP), Bergamo-Orio al Serio (LIME), Milano-Linate (LIML) e Brescia-Montichiari (LIPO). In parentesi sono stati riportati i codici ICAO (Organizzazione Internazionale di Aviazione Civile), che servono ad indicare univocamente gli aeroporti.

L'Aeroporto di Milano-Malpensa è un aeroporto intercontinentale situato nel comune di Ferno, in provincia di Varese; nasce agli inizi del secolo scorso come campo di aviazione per prototipi, ma è dagli anni '50 che prende piede il suo sviluppo e il successivo ingrandimento. È gestito dalla Società Esercizi Aeroportuali (SEA). Nel 2019 sono transitati da Malpensa circa 28 milioni di passeggeri e 558000 tonnellate di merci confermandolo primo aeroporto d'Italia per traffico merci e secondo aeroporto d'Italia per traffico passeggeri, dopo l'Aeroporto di Roma-Fiumicino (circa 43 milioni di passeggeri nel 2019). L'aeroporto

dispone di 2 terminal: il Terminal 1 è utilizzato dai voli di linea, charter e low cost, con l'eccezione della compagnia EasyJet che invece utilizza in modo esclusivo il Terminal 2.

L'Aeroporto di Bergamo-Orio al Serio, noto con il nome commerciale di Aeroporto Internazionale Il Caravaggio, nasce nel 1937 per scopi militari per passare a scalo civile negli anni '70. È situato principalmente nel comune di Orio al Serio ma occupa anche porzioni dei comuni di Grassobbio e Seriate, si trova a 5 km di distanza dal centro di Bergamo e 50 km dal centro di Milano. È il terzo scalo italiano per numero di passeggeri (più di 13 milioni nel 2019, con oltre 118000 tonnellate di merci). Lo scalo è principalmente utilizzato da compagnie aeree a basso costo.

L'Aeroporto di Milano-Linate, intitolato a Enrico Forlanini, è il settimo aeroporto italiano per traffico di passeggeri (6,5 milioni nel 2019). Accoglie il traffico nazionale e quello europeo di breve raggio. L'aeroporto dispone di un unico terminal e di due piste, una per il traffico commerciale e una per l'aviazione generale. Lo scalo milanese ricade nel comune di Peschiera Borromeo e in parte anche nel territorio del comune di Segrate.

L'aeroporto di Brescia-Montichiari è intitolato a Gabriele D'Annunzio, è situato a Montichiari e serve la città di Brescia. Rappresenta la principale base di smistamento della corrispondenza aerea di Poste Italiane: ogni notte partono e arrivano voli postali e cargo di Alitalia/Mistral Air. L'aeroporto beneficia inoltre di un'intensificazione del traffico merci, in forza di un accordo di partnership siglato tra Poste italiane e Amazon. Dal mese di novembre 2018, l'aeroporto accoglie i voli cargo del corriere internazionale DHL.

Inoltre, di minor importanza, vi sono gli aeroporti di: Alzate Brianza (LILB), Bresso (LIMB), Calcinate del Pesce (LILC), Cremona-Migliaro (LILR), Mantova-Migliaretto (LIDM), Valbrembo (LILV), Varese-Venegono (QVA, LILN), Vergiate (LILG), Voghera-Rivanazzano (LILH), Brescia-Ghedi (LIPL). Questi aeroporti sono per lo più adibiti a volo a vela, turismo, voli sportivi, manifestazioni, scuole di volo.

Vengono qui discussi i risultati dei monitoraggi effettuati da ARPA Lombardia a partire dal 1993 fino ad oggi negli aeroporti di Milano-Linate, Milano-Malpensa e Bergamo-Orio al Serio, effettuati per soddisfare richieste pervenute dal territorio circostante nate sostanzialmente dalla volontà di comprendere l'impatto delle emissioni aeroportuali e delle attività ad esse connesse sulla QA e, in particolare, comprendere l'eventuale esistenza di composti emessi potenzialmente tossici e un aumento sostanziale delle polveri emesse come PM₁₀. Lo scopo è quello di fornire una review di esperienze affrontate, sia dal punto di vista della pianificazione dei monitoraggi che degli approfondimenti tecnici. Le relazioni elaborate negli anni disponibili sono alla pagina https://www.arpalombardia.it/Pages/Aria/Relazioni-evalutazioni/Relazioni-Stazioni-

Metodi

Progettazione degli studi

La prima campagna realizzata per la valutazione dell'impatto di un aeroporto sulla QA è stata effettuata nel 1993 a Milano-Linate in periodo autunnale (dal 1° settembre al 19 ottobre) attraverso l'installazione di un laboratorio mobile nel piazzale di parcheggio degli aeromobili, quindi all'interno del sedime aeroportuale (Figura 11.4.1). Il laboratorio mobile era equipaggiato con la consueta strumentazione convenzionale (ossidi di zolfo, ossidi di azoto, CO, benzene, ozono, metano e idrocarburi non metanici) e non (DOAS, Differential Optical Absorption Spectroscopy).

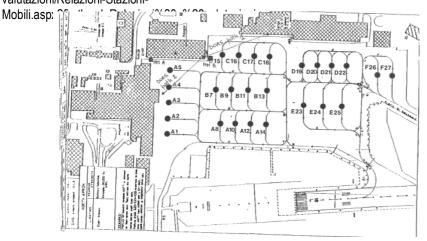


Figura 11.4.1. Piazzale di parcheggio degli aeromobili nell'aeroporto di Milano-Linate.

È a partire dagli anni 2000 che iniziano ad intensificarsi le richieste per approfondire le valutazioni della QA in

aree residenziali e non intorno agli aeroporti. Questa tendenza è da ricondursi in parte ad un aumento del livello di sensibilizzazione della popolazione residente sulle problematiche ambientali ma anche alla volontà degli enti di gestione e controllo aeroportuale di affidare all'ente preposto, ovvero ARPA, che già si occupava della gestione della Rete di Rilevamento della QA (RRQA), la gestione e realizzazione dei monitoraggi stessi. Già solo nei primi dieci anni, per la precisione dal 2003 al 2013, sono stati 22 i monitoraggi effettuati nei comuni intorno all'aeroporto di Orio al Serio (Figura 11.4.2), per un totale di 25 alla fine del 2018. Le campagne effettuate fino al 2012 hanno previsto l'utilizzo esclusivo del laboratorio mobile; dal 2013 al 2015 oltre al

laboratorio mobile sono state effettuate mappature mediante l'utilizzo di fiale adsorbenti ed è stata effettuata la speciazione chimica completa del PM₁₀; nel 2017-2018 è stato monitorato il PM₁₀ affiancato a contatori di particelle per la valutazione della distribuzione dimensionale dell'aerosol a partire da 6 nm, intorno al sedime aeroportuale e, in particolare, sotto le tracce di decollo e atterraggio degli aerei.

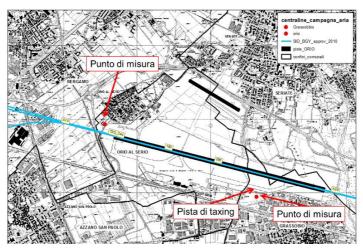


Figura 11.4.2. Tracce aerei e punti di misura in una delle campagne effettuate a Orio al Serio (2014).

Anche la qualità dell'aria nell'intorno aeroportuale di Milano-Malpensa (Figura 11.4.3) è stata oggetto di numerose analisi, soprattutto in seguito all'apertura del Terminal 1. Nelle immediate adiacenze dell'aeroporto sono collocate tre cabine della rete di monitoraggio della qualità dell'aria (Ferno, Lonate Pozzolo e Somma Lombardo). Ad integrazione delle misure in continuo sono state effettuate negli anni anche una serie di campagne con postazione mobile, sia per misure convenzionali che per il monitoraggio di microinquinanti. Gli approfondimenti nei comuni dell'area varesina più vicini all'aeroporto di Malpensa sono stati effettuati

tenendo conto delle ripetute sollecitazioni preoccupazioni formulate dai Sindaci del CUV, Consorzio Urbanistico Volontario, relativamente alla possibile presenza in atmosfera di sostanze potenzialmente pericolose per la salute, in particolare, alla possibilità di quantificare gli idrocarburi, possibili traccianti del traffico aereo, che potrebro essere presenti in concentrazioni critiche nell'area intorno all'aeroporto. La situazione di preoccupazione era alimentata sostanzialmente da una sentenza del Tribunale di Milano (n. 111169/08 del 22 settembre 2008) che accertava, sulla base di una perizia tecnica condotta tra il 2001 e il

2004 dall'Università di Milano gravissima compromissione di un'area di rilevante interesse naturalistico situata nei terreni di proprietà della Cascina Tre Pini situati nel SIC IT2010012" imputandola "alle attività vicino aeroporto di Malpensa". Successivamente è stata accertata una Procedura di infrazione (n. 4096/2012), relativa alla violazione della Direttiva 92/43/CEE del Consiglio del 21 maggio 1992 sulla conservazione degli habitat, in merito a situazioni di degrado delle specie boschive di un'area del Comune di

Somma Lombardo (VA) nell'area SIC (sito di importanza comunitaria) IT2010012 "Brughiera del Dosso". Per questi motivi, ad integrazione delle misure in continuo sono state effettuate dal 1999 al 2016 anche una serie di monitoraggi ad ampia scala nei comuni del CUV e distribuiti a livello stagionale, mediante l'installazione di laboratori mobili a supporto delle cabine fisse e l'utilizzo di fiale adsorbenti e contatori di particelle.

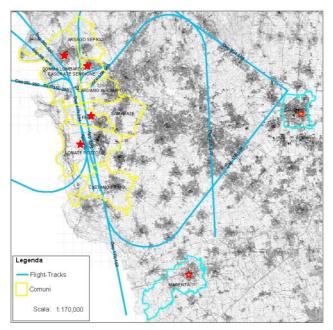


Figura 11.4.3. Ubicazione delle postazioni di misura della campagna 2011 a Milano-Malpensa.

Risultati e Discussione

In Lombardia, le valutazioni degli impatti degli aeroporti sulla QA hanno avuto inizio con il monitoraggio dell'aeroporto di Milano-Linate nel 1993. La campagna è stata effettuata dal 1° settembre al 19 ottobre, nel piazzale di parcheggio degli aeromobili mediante l'installazione di un Laboratorio Mobile (NOx, SO₂, O₃, CO, NMHC, CH₄) e di un DOAS, il cui sistema

trasmettitore-ricevitore è stato posto sul terrazzo dell'hangar Breda, angolo sud-ovest a quota 15 m, i due specchi montati su pali luce alle quote 14,3 e 7,3 m. Le quote sono state scelte in modo tale che fossero tutte poco superiori rispetto al livello dei reattori degli aerei. In generale, gli andamenti delle concentrazioni medie orarie e giornaliere degli inquinanti monitorati sono risultati modulati principalmente dagli eventi meteorologici, con valori confrontabili con le misure delle

circostanti cabine fisse. Le emissioni locali sono risultate preponderanti nella determinazione delle concentrazioni più elevate di NOx, NMHC, toluene e CO. Fortemente correlate sono risultate le concentrazioni di NO e NMHC. Considerando la dislocazione e le modalità di rilevamento dei sistemi di misura utilizzati, tali valutazioni sono state ritenute significative per una valutazione della QA fortemente puntuale, a livello del piazzale stesso. Fra i parametri misurati, gli Idrocarburi non metanici (mediante gascromatografo in continuo – rivelatore FID), ovvero l'insieme dei composti del carbonio e dell'idrogeno con l'esclusione del metano, essendo emessi per la cattiva e/o incompleta combustione del carburante dei veicoli (benzina, gasolio, jet fuel) insieme a particelle incombuste di carburante, potevano essere considerati un buon marker delle emissioni dai motori degli aeromobili, rappresentandone anche la fonte di odori, avvenendo in gran parte a livello del suolo. Si possono avere emissioni di NMHC anche dai veicoli con motore spento ma ancora caldo per evaporazione del carburante. Altri idrocarburi possono essere emessi per evaporazione nel travaso dei carburanti, per esempio, durante le fasi di riempimento di serbatoi e cisterne. Nonostante ciò, la situazione riscontrata a Linate non era tipica ma caratteristica di tutte le località urbane allora monitorate.

Circa una decina di campagne dal 1999 al 2010 effettuate nei comuni intorno all'aeroporto di Milano-Malpensa non sono risultate esaustive nel soddisfare le pressioni locali. Queste campagne sono state condotte mediante l'uso di laboratori mobili a supporto delle misure delle stazioni fisse. Sulla base della molteplicità dei dati raccolti nel corso degli anni, pur essendo l'aeroporto una sorgente emissiva importante, non è risultato nell'intorno una differenziazione sensibile dello stato di QA rispetto ad altre aree del territorio lombardo. Anche la QA misurata nelle tre postazioni fisse della rete collocate nell'area dell'intorno di Malpensa mostra una situazione confrontabile, e per alcuni inquinanti addirittura migliore, di quella delle altre aree di medesima classificazione nel territorio regionale.

Per questi motivi, tenendo conto delle ripetute sollecitazioni e preoccupazioni formulate dai Sindaci del

CUV, tra l'autunno del 2011 e l'estate del 2012 è stato effettuato un monitoraggio intensivo della QA volto in particolare alla quantificazione delle polveri aerodisperse e degli idrocarburi, possibili traccianti del traffico aereo. nell'area circostante l'aeroporto. A tal fine sono state scelte sei postazioni, due punti di "bianco" e quattro sotto le rotte degli aerei. In ogni postazione sono state effettuate quattro campagne intensive della durata di due settimane ciascuna, distribuite nelle quattro stagioni dell'anno, per garantire una copertura adequata sia dal punto di vista delle attività antropiche che relativamente alla variabilità meteorologica. Le misure effettuate, parallelamente al consueto monitoraggio in continuo degli inquinanti convenzionali, hanno riguardato la determinazione degli elementi e degli IPA in fase particolato, sui filtri di PM₁₀, e il rilevamento in fase gas tramite fiale adsorbenti del naftalene, delle aldeidi e di COV, individuati quali possibili traccianti delle emissioni dei velivoli dalla FAA. Fra di essi, sono stati misurati i primi dieci composti che, da soli, rappresentano - il 96% delle emissioni totali. Poiché alcuni composti previsti non sono comunque specifici della sola emissione degli aerei, nelle due stazioni più prossime al sedime aeroportuale è stata installata anche strumentazione di tipo ottico, per ottenere informazioni di supporto nell'individuazione delle possibili sorgenti. Analogamente, su alcuni campioni è stato determinato il levoglucosano, tracciante specifico delle emissioni da biomassa, quale discriminante per le combustioni.

Come atteso, l'analisi delle concentrazioni giornaliere di PM_{10} nelle quattro campagne non ha messo in evidenza differenze significative tra i siti potenzialmente sottoposti alle emissioni aeroportuali rispetto ai siti di controllo e all'agglomerato urbano milanese. L'andamento delle concentrazioni è risultato modulato prevalentemente dalle condizioni meteorologiche generali. Analogamente per COV, aldeidi e naftalene, non si sono osservate particolari situazioni di criticità. Il naftalene, la cui soglia olfattiva risulta essere 440 μ g/m³, ha le medesime sorgenti dei COV in aria, oltre alle esalazioni in prossimità di depositi o distributori di carburante, fenomeno che ha giustificato le uniche differenze nelle concentrazioni della campagna invernale osservate nei

due siti più a ridosso dei depositi di carburante dell'aeroporto rispetto agli altri siti (Casorate Sempione e Somma Lombardo, Figura 11.4.4). Le medie sui periodi $(0,744 \pm 1,290 \, \mu g/m^3)$ sono comunque risultate nel

range di variabilità dei tipici valori urbani di letteratura, ovvero da 0,01 µg/m³ a 6,31 µg/m³ (Jia et al., 2010).

Concentrazione media per periodo di Naftalene 6.0 5.0 Concentrazione (µg/m³) 4.0 3.0 1.0 0.0 I campagna II campagna ■ Casorate Sempione ■ Ferno ■ Lonate Pozzolo ■ Magenta Saronno Santuario ■ Somma Lombardo

Figura 11.4.4. Concentrazione media di Naftalene per ciascuna campagna.

In fase particolato, il B(a)P è tracciante delle combustioni in genere ovvero, oltre che emesso dai motori, è prodotto dalle combustioni di biomassa come avviene, ad esempio, dai camini ad uso domestico. Proprio nel sito di Ferno, dove le concentrazioni di B(a)P sono maggiori, è

stata evidenziata una forte correlazione con altri due traccianti specifici di questa tipologia di combustione: il levoglucosano e il potassio (Figura 11.4.5).

LevGlu e B(a)P con K nel PM10 Ferno (VA) - II campagna - inverno 3 2 16 LevGlu B(a)P .evGlu (µg/m³), B(a)P (ng/m³) 1.0 2.0 0.8 1.6 0.6 0.8 0.4 0.2 0.0 n n 3-feb 25-gen 28-gen 6-feb 9-feb Tempo (giorni)

Figura 11.4.5. Andamento giornaliero delle concentrazioni di levoglucosano, B(a)P e K nella II campagna invernale a Ferno.

L'analisi delle distribuzioni dimensionali del particolato ha mostrato andamenti tipici (Figura 11.4.6): il particolato più grossolano, di origine meccanica, ha avuto un andamento giornaliero regolato dai flussi di traffico. Nei fine settimana, a minori flussi di traffico sono corrisposte concentrazioni numeriche inferiori per questo cluster di particelle. Invece il cluster del particolato più fine, in parte primario, prodotto dalle combustioni, ed in parte secondario, generato da modificazioni chimico-fisiche precursori (agglomerazione nanometriche, condensazione, etc.), è apparso regolato essenzialmente dalle condizioni termodinamiche, più favorevoli alla diluizione nelle ore diurne rispetto alle ore notturne. Inoltre, a Ferno, a differenza di Somma Lombardo, le concentrazioni numeriche delle particelle sono risultate maggiori nei fine settimana rispetto ai giorni feriali. L'analisi a cluster (analisi gerarchica sulle serie auto scalate, indice di similarità coefficiente di Pearson R, rappresentante di classe centroide) applicata alle concentrazioni relative numeriche e gravimetriche di IPA e degli elementi ha mostrato le tipiche correlazioni da siti non sottoposti ad alcuna sorgente dominante, ovvero il cluster degli elementi terrigeni, il cluster degli elementi associati ad attività industriali varie (ad esempio, Cr, Pb, Ni e Cu), quello associato alle attività di combustione (IPA, levoglucosano e, talvolta, K e Rb) e l'indicazione della componente di particolato secondario associata allo zolfo. L'associazione degli elementi terrigeni ha confermato la presenza di una sorgente di risospensione dal suolo delle polveri che può essere associata sia al passaggio di autoveicoli in genere sia al movimento turbolento delle masse d'aria. Le specie relative alle combustioni delle biomasse sono risultate correlate nei vari siti in misura in dipendenza di diversi fattori: la tipologia del sito e quindi delle sue emissioni locali, la tipologia di biomassa utilizzata e la sua modalità di combustione, nonché dall'omogeneità dell'area e della diffusione del particolato più fine.

Sostanzialmente, tutte le elaborazioni effettuate sull'insieme dei dati raccolti non hanno messo in evidenza impatti sulla qualità dell'aria ambiente direttamente o indirettamente connessi alle emissioni legate alle attività aeroportuali.

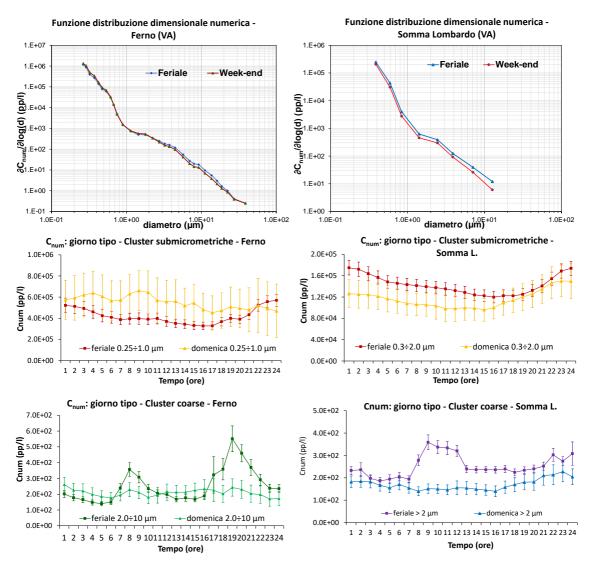


Figura 11.4.6. Elaborazioni dei dati OPC per Ferno (sinistra) e Somma Lombardo (destra): distribuzione dimensionale numerica (in alto), giorno tipo del cluster delle particelle submicrometriche (in mezzo) e di quello della frazione coarse (sotto).

A seguito della Procedura di Infrazione 4096/2012, relativa alla violazione della Direttiva 92/43/CEE del Consiglio del 21 maggio 1992 sulla conservazione degli

habitat, in merito a situazioni di degrado delle specie boschive di un'area del Comune di Somma Lombardo (VA) nell'area SIC IT2010012 "Brughiera del Dosso", è stato effettuato un ultimo monitoraggio nell'area di Milano-Malpensa, volto a valutare lo stato di conservazione degli ecosistemi e di alcune componenti abiotiche dell'area vasta Malpensa, in collaborazione con la Fondazione Lombardia Ambiente e l'Università Cattolica di Brescia, per quanto concerne la matrice biologica e vegetativa. Riguardo gli inquinanti gassosi presenti in atmosfera, l'attenzione è stata rivolta verso i due principali inquinanti fitotossici, ovvero NO2 e O3, e IPA sul PM10 per un totale di 17 punti di misura, di cui 3 all'interno dell'area SIC Brughiera del Dosso. È stato effettuato anche il monitoraggio delle deposizioni umide in campo aperto (bulk), per l'anno solare 2016.

Per quanto riguarda l'NO₂ (Figura 11.4.7), il valore medio della concentrazione media annuale per le stazioni di

riferimento è stato $29\pm6~\mu g/m^3$, inferiore ai valori misurati nel supersito di riferimento di fondo urbano di MI-Pascal (43 $\mu g/m^3$) e al valore limite annuale per la protezione della salute umana di 40 $\mu g/m^3$. Anche le concentrazioni massime orarie non hanno mai superato il valore limite di $200~\mu g/m^3$. Sia le concentrazioni medie giornaliere che le massime orarie giornaliere hanno avuto un andamento in linea con quanto tipicamente accade nella pianura padana, con valori maggiori nei periodi più freddi dell'anno sia a causa di una maggiore emissione delle sorgenti che ad un favorito accumulo degli inquinanti stessi per la meteorologia.

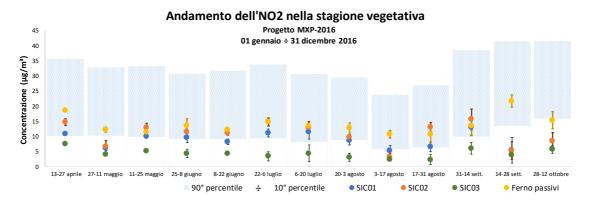


Figura 11.4.7. Andamento dell'NO2 nella stagione vegetativa...

Come noto, il periodo critico per l'ozono è la stagione estiva, in quanto la radiazione solare e l'alta temperatura favoriscono la formazione di questo inquinante secondario che viene prodotto attraverso reazioni fotochimiche che coinvolgono gli ossidi di azoto (NOx) e i composti organici volatili (COV); è in questa stagione che tipicamente si registrano i superamenti registrati in questa campagna. Tuttavia, i valori medi delle concentrazioni (Figura 11.4.8) e gli andamenti dell'O₃ sono risultati confrontabili fra le stazioni con le medesime

caratteristiche. Il valore relativo di ozono per l'esposizione delle piante per la valutazione degli effetti ecotossicologici sulla vegetazione è l'AOT40 (Accumulated ozone over Threshold of 40 ppb), ovvero la somma della differenza tra le concentrazioni orarie superiori a 80 µg/m³ e 80 µg/m³ in un dato periodo di tempo (dal 1° maggio al 31 luglio) ed utilizzando solo i valori orari rilevati ogni giorno tra le 8:00 e le 20:00. Il D.Lgs.155/2010 fissa come valore obiettivo per l'AOT40 18000 µg/m³h come media su 5 anni, valore superato

quasi ovunque nei siti considerati. Infatti, l'ozono può penetrare nelle piante attraverso gli stomi delle foglie distruggendo la clorofilla ed interrompendone così la crescita fino alla morte. Analogamente, le elaborazioni delle concentrazioni di PM₁₀ ed IPA non hanno mostrato

differenze significative rispetto alla situazione precedentemente monitorata.

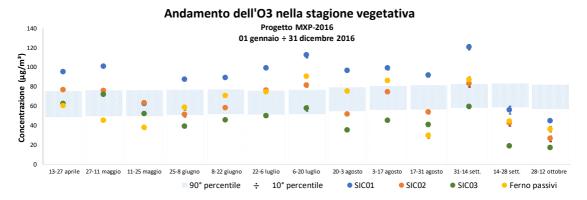


Figura 11.4.8. Andamento dell'O₃ nella stagione vegetativa.

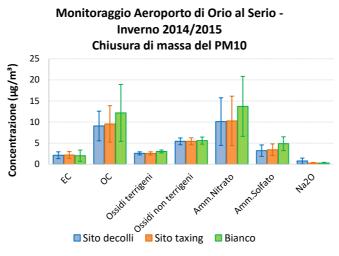
L'aeroporto di Bergamo-Orio al Serio è certamente quello che ha visto un elevato numero di campagne di monitoraggio, seppur alcune di breve durata rispetto agli standard, a causa delle forti pressioni antropiche dell'area circostante, raggiungendo ben 22 campagne in 10 anni (dal 2003 al 2013) e ulteriori 3 dal 2015 al 2018.

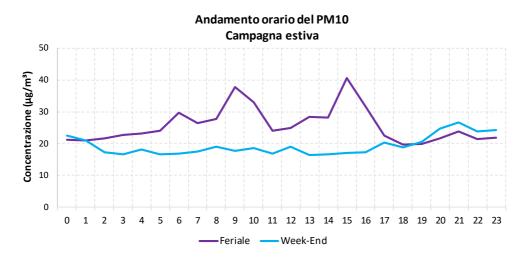
Le indagini dal 2003 al 2012 sono state condotte esclusivamente mediante l'utilizzo di laboratori mobili equipaggiati con la strumentazione convenzionale per il monitoraggio della QA; dal 2013 al 2015 si sono aggiunte le mappature di microinquinanti legati alle attività aeroportuali, quali aldeidi, COV e naftalene, e la speciazione chimica completa del PM₁₀; il monitoraggio effettuato nel 2017-2018 si è concentrato sulla determinazione del PM₁₀ e della concentrazione numerica di particelle per classi dimensionali tramite OPC e UFP.

Le elaborazioni dei dati raccolti dai laboratori mobili hanno mostrato sostanzialmente gli stessi risultati, ovvero per gli inquinanti ubiquitari si è osservato una sostanziale uniformità dell'inquinamento atmosferico locale rispetto a tutte le postazioni regionali, coerentemente con quanto rilevato nei monitoraggi degli altri aeroporti e con quanto pubblicato in letteratura (Yu et al., 2004; A. Unal et al., 2005). Alle stesse conclusioni si è giunti anche analizzando le elaborazioni dei microinquinanti: non si sono osservate particolari situazioni di criticità. Il naftalene in questi monitoraggi è risultato addirittura sempre al di sotto dei limiti di rilevabilità strumentale (0.2 μ g/m³).

Anche la speciazione chimica del PM₁₀ (Figura 11.4.9), effettuata in una campagna invernale (dal 23 dicembre 2014 al 7 marzo 2015), non ha mostrato differenze significative tra i due siti a ridosso del sedime aeroportuale e posti uno nelle immediate vicinanze della pista prettamente adibita ai decolli (nord-est rispetto al sedime aeroportuale) e l'altro vicino alla pista di taxing degli aerei (a sud dell'aeroporto), rispetto al sito usato come bianco per quella campagna, Casirate d'Adda, posto a circa 22 km in direzione sud-ovest rispetto all'aeroporto. Le concentrazioni di tutte le componenti

sono risultate praticamente uguali se non inferiori per la componente secondaria.




Figura 11.4.9. Chiusura di massa del PM₁₀ nella campagna 2014/2015 a Orio al Serio.

Il monitoraggio che più si è diversificato dagli altri per architettura è stato l'ultimo in ordine temporale, effettuato nell'intorno dell'aeroporto di Orio al Serio. Sulla base delle informazioni condivise dalla società che gestisce l'aeroporto, sono stati scelti cinque punti sotto le tracce radar degli aerei, comunque già esplorati nelle campagne precedenti. Fra essi sono stati considerati anche i due siti della campagna precedente, ovvero quelli posti a nord-est (qui Punto 4) e a sud (ora Punto 2) del sedime aeroportuale con l'aggiunta di un punto (Punto 1) posto a sud-est e affacciato alla pista adibita sia a decollo che atterraggio.

Quest'ultimo monitoraggio (dal 6 giugno all'11 luglio 2017 e dal 28 novembre 2017 al 10 gennaio 2018) ha riguardato la misura del PM_{10} con risoluzione giornaliera e delle concentrazioni numeriche delle particelle aerodisperse per classi dimensionali, a partire da 6 nm, con elevata risoluzione temporale (1 minuto).

Come atteso, il comportamento del PM₁₀ è risultato simile in tutta la regione, con concentrazioni tra il 25° ed il 75° percentile dell'insieme di tutti i valori rilevati in Lombardia, L'osservazione dei dati raccolti con l'OPC ha mostrato, in generale, andamenti più dinamici per i cluster costituiti da particelle più fini: questo comportamento è tipico in quanto le particelle più grossolane e quindi di formazione meccanica o da risollevamento hanno tempi di residenza in atmosfera dell'ordine di poche ore e risentono più facilmente dei fenomeni di rimozione. Utilizzando i dati di PM₁₀ giornalieri misurati con il sistema gravimetrico nel Punto 1, a partire dal numero delle particelle per ogni classe dimensionale, facendo ipotesi sulla densità delle particelle stesse, è stata stimata la concentrazione di massa del PM₁₀ (si veda in Appendice) e si è estesa la ricostruzione anche negli altri punti della campagna, ove non presenti i campionatori gravimetrici. Il processo è stato guindi iterato alle concentrazioni numeriche orarie. stimando così le concentrazioni orarie di PM₁₀ ed elaborando gli andamenti del giorno tipo nelle due campagne (Figura 11.4.10): durante la campagna estiva all'andamento pressoché piatto del week-end, si sovrappongono due picchi diurni (alle 9 e alle 15) del giorno feriale, e un lieve innalzamento anche alle ore 6; durante la campagna invernale, come atteso, l'andamento dei giorni feriali mostra valori più elevati rispetto ai festivi in considerazione delle maggiori emissioni. Si evidenzia come nelle ore notturne, le concentrazioni non diminuiscono in maniera drastica in quanto le particelle di aerosol, ad eccezione delle particelle grossolane, hanno tempi di residenza in

atmosfera dell'ordine dei giorni. La diminuzione delle concentrazioni nella parte centrale della giornata è dovuta principalmente all'innalzamento dello strato di rimescolamento per effetto dei moti convettivi innescati dal riscaldamento degli strati bassi dell'atmosfera e alla conseguente maggiore disponibilità di aria in cui l'inquinante può diluirsi.

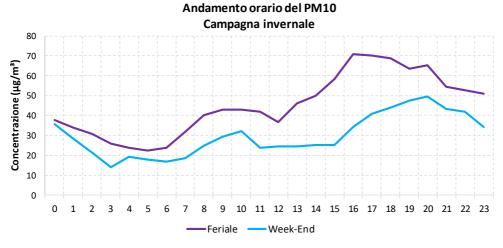


Figura 11.4.10. Giorno tipo del PM₁₀.

Per poter tenere conto del passaggio degli aerei, sono state utilizzate le tracce radar relative al passaggio degli aeromobili (decolli e atterraggi) nei periodi dei campionamenti. Nel periodo estivo il numero di decolli e atterraggi giornalieri è stato grossomodo equivalente (133±6 decolli e 134±7 atterraggi in media); nel periodo invernale invece si è osservato una diversa organizzazione e distribuzione dei decolli e degli

atterraggi (77±24 e 30±26 rispettivamente, in media). Gli andamenti delle particelle nelle due stagioni hanno mostrato diversi picchi (Figura 11.4.11): si è osservato un aumento della concentrazione numerica coerentemente con il passaggio degli aerei solamente quando il sito si trovava sottovento. Il giorno-tipo festivo della campagna invernale ha mostrato i due tipici picchi del traffico, correlati all'impronta dei passaggi aerei;

questo comportamento potrebbe essere stato però solo casuale perché il giorno-tipo feriale, con i due picchi più prominenti, non ha mostrato correlazioni col giorno-tipo del passaggio degli aerei.

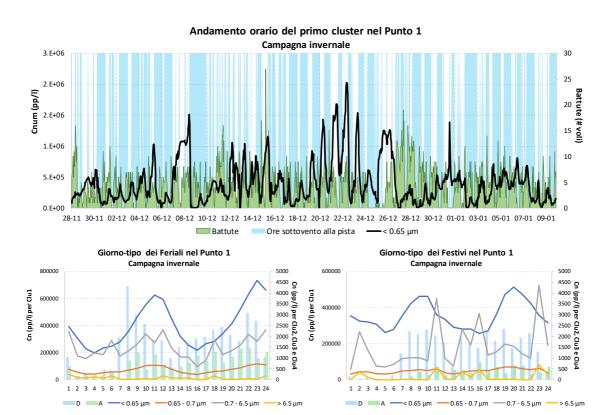


Figura 11.4.11. - Andamento orario del primo cluster (sopra) e giorno tipo dei feriali (sotto a sinistra) e dei festivi (sotto a destra) dei cluster individuati insieme all'informazione delle tracce radar.

Interpolando le concentrazioni numeriche misurate da OPC e UFP, sotto l'ipotesi di equivalenza tra diametro di light-scattering e diametro aerodinamico, è stato possibile elaborare le funzioni di distribuzione dimensionale numerica e volumetrica delle particelle a partire da quelle con diametro aerodinamico maggiore o uguale a 6 nm. La concentrazione numerica delle

particelle diminuiva all'aumentare del diametro aerodinamico, come tipicamente accade: nel Punto 1 si è avuto all'incirca la stessa concentrazione numerica nella prima classe (36888729 pp/l e 35456990 pp/l, rispettivamente per la campagna estiva e quella invernale), con concentrazioni superiori rispetto a quanto misurato d'estate nel Punto 4 (10240223 pp/l); ciò ha

potuto suggerire la presenza di una fonte di produzione di particelle ultrafini nel Punto 1 a differenza del Punto 4. Tuttavia, poiché la concentrazione di massa è fortemente dipendente dal volume, sono le particelle di dimensioni maggiori ad avere un ruolo importante nella determinazione della concentrazione ponderale e questo giustifica la mancanza di differenze nelle concentrazioni gravimetriche del PM₁₀ tra i vari siti. Elaborando poi i dati al minuto con le informazioni ricavate dalle tracce radar si sono ottenuti i grafici della Figura 11.4.12 che mostrano le distribuzioni dimensionali numeriche e volumetriche elaborate nel Punto 1 (più a ridosso della pista) nei periodi di presenza e assenza di voli, nelle due campagne di monitoraggio, ricavati selezionando solo i minuti in cui sono state registrate le battute degli aerei. La forma delle due distribuzioni è la stessa descritta precedentemente, con valori assoluti diversi. Le concentrazioni numeriche raggiungono valori non confrontabili tra i periodi di presenza e assenza dei voli, rispettivamente 89545232 pp/l e 37914934 pp/l in estate e 83302538 pp/l e 40947467 pp/l, rispettivamente, in inverno, sottolineando l'influenza del passaggio degli aeromobili sul punto in esame. Tale influenza non viene ravvisata invece nel Punto 4 con grafici della

distribuzione numerica sostanzialmente coincidenti nei periodi (12706936 pp/l e 12186436 rispettivamente al passaggio degli aerei e senza passaggio, per la prima classe dimensionale). Per il Punto 1, il rapporto tra le concentrazioni volumetriche, tra periodi con passaggi aerei e senza, sulla moda di accumulazione è stato 1.1 e sulla moda coarse 2.6. nel periodo estivo; nel periodo invernale tali rapporti sono stati 1.1 e 1.6 rispettivamente. Ciò sembra indicare che il passaggio degli aerei abbia avuto anche un'influenza sulla frazione coarse a causa delle turbolenze create dal risollevamento della polvere dal suolo al passaggio degli aerei, che a loro volta producono polvere di tale frazione, sia in fase di decollo che di atterraggio, a causa dell'usura degli pneumatici. Invece, la distribuzione volumetrica elaborata per i periodi di passaggio degli aerei sopra il Punto 4 è sempre inferiore a quella elaborata in assenza di voli. Ciò sembra confermare che in quel punto, ovvero nei pressi del cimitero di Orio al Serio, e per analogia in tutti gli altri punti ad esclusione del Punto 1, il passaggio degli aerei non abbia nessuna influenza.

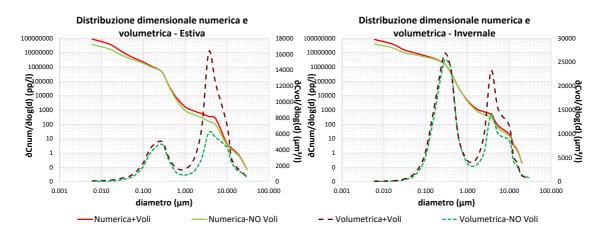


Figura 11.4.12. Distribuzione dimensionale numerica e volumetrica nel Punto 1 nei due periodi di monitoraggio, elaborate in presenza (linee rosse e bordeaux) e assenza di voli (linee verde chiaro e scuro).

Nonostante la forte evidenza che gli aeroporti siano un'importante sorgente di UFP, resta complicato riconoscere il fingerprint associato alla distribuzione numerica a causa della natura semi-volatile dei composti emessi dagli aerei, dei possibili meccanismi di formazione di aerosol secondario, degli effetti di diluizione dall'emissione all'immissione, piuttosto che la presenza di altre sorgenti con strutture modali simili, come il traffico stradale (Masiol e Harrison, 2014). Tenendo in considerazione le esperienze di letteratura, il dataset a disposizione è stato ulteriormente elaborato attraverso l'applicazione di tecniche di source apportionment tramite l'applicazione di EPA-PMF5 (Paatero et al., 1994; Hopke, 2003; Ogulei et al., 2007; Harrison et al., 2011). Per tutta la trattazione analitica si rimanda alla relazione pubblicata (Colombi et. Al., 2018).

Come dati di input al modello si sono considerate le concentrazioni numeriche differenziali orarie a partire da 6 nm; le particelle grossolane sono state sommate nella classe "> 15 µm". Le incertezze associate alle concentrazioni numeriche di input sono state calcolate in accordo con il metodo empirico proposto da Ogulei et al. (2007). Come variabile totale è stata selezionata la concentrazione numerica totale delle particelle (PNC) e marcata come debole per evitare di guidare strettamente l'individuazione dei profili. Sono stati effettuati 3 tipi di elaborazioni (run): Punto 1 nel periodo estivo, Punto 4 nel periodo estivo e Punto 1 nel periodo invernale. Il riconoscimento dei fattori risultanti è stato effettuato osservando le caratteristiche modali delle distribuzioni risolte, il comportamento del giorno-tipo, la direzionalità dei fattori rispetto la direzione del vento, il contributo del fattore al PNC, osservando il trend orario, e per confronto con i lavori di letteratura sopra menzionati.

Per tutti e 3 i run la miglior soluzione è stata l'identificazione di 10 fattori, alcuni dei quali con conformazione simile per pattern e fingerprint: per questo

motivo e per semplificarne dell'esposizione, i fattori simili sono stati raggruppati. Per la stagione estiva sono stati quindi risolti 6 fattori sia nel Punto 1 che nel Punto 4: la nucleazione, spiegata sostanzialmente da particelle nanometriche e il cui comportamento, nel Punto 1, è fortemente correlato al trend giornaliero del traffico aereo: l'aerosol secondario inorganico (Inorganic SA). caratterizzata sostanzialmente da particelle della moda di accumulazione, comportamento che si evince anche dal pattern diurno; il traffico stradale, suddiviso nella componente di fresca emissione (Fresh Road Traffic), caratterizzata da particelle nanometriche, e in quella invecchiata (Aged Road Traffic), caratterizzata da particelle submicrometriche: l'aerosol secondario arricchito in ozono (O₃ rich. SA), che tiene conto dell'importante ruolo della fotochimica nella formazione di ozono, con un pattern crescente nelle ore centrali della giornata; un fattore (Resusp.+Ind.) che racchiude l'insieme delle particelle originate da azioni meccaniche e quindi riconducibile al risollevamento ed alle attività industriali in genere. con una composizione dimensionale mista. Elaborando gli output della PMF5 sulla base della varianza spiegata di ciascuna classe dimensionale da parte dei fattori riconosciuti, è stata ricostruita la Figura 11.4.13, nella quale si possono facilmente riconoscere le familiarità tra fattori nei 3 run. Il fingerprint della nucleazione ha messo in evidenza la stessa tipologia di composizione nel passaggio da stagione estiva ad invernale nel Punto 1 e differente dal Punto 4, ad indicare una diversa causalità, ovvero l'influenza degli aerei nel Punto 1 rispetto al Punto 4. Il traffico stradale, invece, che nei due siti ha la stessa tipologia di formazione ha mostrato un'impronta del tutto similare, così come la componente industriale.

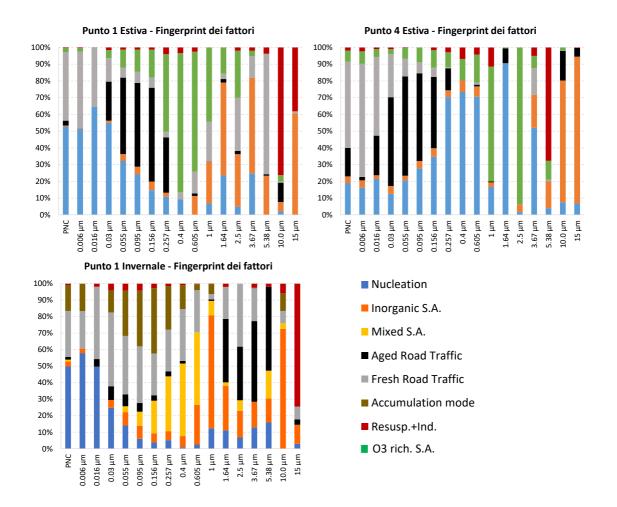


Figura 11.4.13. Fingerprint dei fattori.

L'osservazione dei fingerprint ha evidenziato una certa familiarità tra alcuni fattori, tra i quali la nucleazione con la stessa tipologia di composizione nel passaggio da stagione estiva ad invernale nel Punto 1 e differente dal Punto 4, ad indicare una diversa causalità, ovvero presumibilmente l'influenza degli aerei nel Punto 1 rispetto al Punto 4. Il traffico stradale, invece, che nei due siti ha la stessa tipologia di formazione ha mostrato

un'impronta del tutto similare, così come la componente industriale.

La nucleazione è il principale processo di produzione delle particelle fini dell'aerosol atmosferico, essendo costituita principalmente da particelle nell'intorno dei 10 nm, costituendone la componente principale della concentrazione numerica totale. Inoltre, è noto da letteratura che i fenomeni di nucleazione sono

verosimilmente associati ai passaggi aerei, in particolare nei pressi delle piste di decollo e atterraggio, e quando il punto si trova sottovento ai mezzi stessi; i risultati ottenuti in questa campagna confermano quanto riportato in letteratura, infatti il contributo della nucleazione al PNC è stato del 19% nel Punto 4 e del 50-53% (rispettivamente in inverno e in estate) nel Punto 1, cioè a ridosso del sedime aeroportuale. Cercando perciò di quantificare il contributo di un fattore così impattante alla concentrazione di massa del PM₁₀ sono stati applicati gli stessi ragionamenti utilizzati per la ricostruzione della concentrazione di PM a partire dalla concentrazione numerica, trovando così un contributo al PM₁₀ del 5% nel Punto 1 in entrambe le campagne e del 2% al Punto

Conclusioni

Ripercorrendo temporalmente i monitoraggi effettuati nel corso degli anni e facendo tesoro dell'esperienza acquisita, i risultati possono essere suddivisi in tre livelli: approccio tradizionale con parametri convenzionali, misura di microinquinanti tramite campionatori passivi, valutazione della distribuzione dimensionale del particolato.

Questi tre livelli hanno caratteristiche differenti, tra cui il tempo di mediazione delle misure. Infatti, le misure convenzionali con laboratorio mobile, poiché hanno lo scopo di fare un confronto con i limiti imposti dalla normativa vigente, archiviano le misure come concentrazioni orarie; la misura del PM₁₀ e/o del PM_{2.5} e la relativa eventuale speciazione, a meno di particolari applicazioni, permette una raccolta giornaliera di dati. Ciò non toglie che gli analizzatori possano essere programmati per l'archiviazione al minuto ma la loro installazione per misure di immissione, a causa della molteplicità di sorgenti che intercorrono nella loro produzione, porterebbe il rischio di produrre dati molto rumorosi, rendendone complessa la validazione. La mancanza di marker specifici tra le misure convenzionali rende questo tipo di approccio insufficiente se esclusivo nella determinazione dell'impatto di un aeroporto sulla QA circostante.

Il campionamento dei microinquinanti tramite fiale passive ha il vantaggio di consentire l'effettuazione di mappature e quindi poter coprire simultaneamente un'ampia scala spaziale ma l'informazione ha una risoluzione troppo elevata (da qualche giorno ad una settimana) da essere utilizzata per la valutazione generale dell'impatto di una sorgente non potendone discriminare la puntualità, ad esempio il passaggio di mezzi, che può caratterizzare un giorno tipo.

L'impiego di strumentazione non convenzionale come i contatori di particelle, per loro natura e non dovendo rispondere a esigenze normative, consente di spingere le elaborazioni delle concentrazioni numeriche a livello del minuto permettendo quindi correlazioni anche con le tracce radar relative al passaggio degli aeromobili. L'utilizzo poi di strumenti più sofisticati come gli UFP permette di valutare anche i fenomeni di nucleazione. processo associato ai passaggi degli aerei e guindi verosimilmente riconoscibile in queste tipologie di applicazione. Tuttavia, nonostante possa essere evidenziato un impatto del traffico aereo in termini di produzione di particelle ultrafini. poiché concentrazione di massa è fortemente dipendente dal volume e quindi sono le particelle di dimensioni maggiori ad avere un ruolo importante nella determinazione della concentrazione ponderale, si ravvisa un impatto modesto sulla concentrazione in massa del PM₁₀, come confermato anche da dati di letteratura

Sulla base della molteplicità dei dati raccolti nel corso degli anni è possibile effettuare una valutazione sintetica della qualità dell'aria nei pressi di aeroporti, evidenziando come, pur essendo l'aeroporto una sorgente emissiva importante, non risulta nell'intorno una differenziazione sensibile dello stato di qualità dell'aria rispetto ad altre aree del territorio provinciale.

Appendice: Strumenti e metodi di campionamento

Laboratorio mobile

Sostanzialmente, tutte o quasi le campagne effettuate dal 1993 ad oggi hanno previsto l'utilizzo di un laboratorio mobile: in alcuni casi quale riferimento esclusivo, in altri quale strumento di supporto. In generale i laboratori mobili in dotazione ad ARPA Lombardia sono dotati di strumentazione del tutto simile a quella presente nelle stazioni fisse della RRQA; gli analizzatori automatici installati rispondono, infatti, alle caratteristiche previste dalla legislazione vigente all'epoca della misura e comunque recepite dall'attuale normativa (D.Lvo 155/2010).

Un laboratorio mobile è tipicamente attrezzato con strumentazione per il rilevamento di: biossido di zolfo (SO₂), monossido di carbonio (CO), ossidi di azoto (NO_X), ozono (O₃), benzene, toluene, PM₁₀ e PM_{2,5}, oltre ai principali parametri meteorologici (temperatura, pressione atmosferica, pioggia, radiazione solare, velocità e direzione del vento).

Secondo la UNI EN 12341/2014, la misura del PM₁₀ e/o PM_{2,5} viene effettuata con l'utilizzo di campionatori sequenziali e pesata gravimetrica dei filtri utilizzati per la raccolta della polvere, prima e dopo l'esposizione; a meno di particolari esigenze, questo tipo di strumento viene programmato per fornire dati giornalieri.

Anche il posizionamento di un laboratorio mobile è stato collocato rispettando i criteri di ubicazione su macroscala e su microscala per il posizionamento delle stazioni fisse di rilevamento contenuti nell'Allegato III del Decreto Legislativo 155 del 13 agosto 2010.

Per alcune campagne, è stata effettuata la speciazione chimica del PM₁₀, ovvero i filtri raccolti sono stati sottoposti ad analisi per la determinazione di elementi, IPA, ioni inorganici, componente carboniosa (OC-EC) e levoglucosano.

La determinazione degli elementi, tra cui il piombo, viene effettuata mediante un analizzatore a Fluorescenza a

Raggi X (XRF, Panalytical Epsilon 5). In relazione alle caratteristiche del detector, è possibile rilevare la radiazione X di elementi con numero atomico superiore a 11, ovvero: alluminio (Al), silicio (Si), fosforo (P), zolfo (S), cloro (Cl), potassio (K), calcio (Ca), titanio (Ti), vanadio (V), cromo (Cr), manganese (Mn), ferro (Fe), nichel (Ni), rame (Cu), zinco (Zn), bromo (Br), rubidio (Rb), stagno (Sn), Bario (Ba), piombo (Pb), antimonio (Sb) e stronzio (Sr). La conoscenza della concentrazione di tali elementi, attraverso le opportune elaborazioni, consente di determinare la frazione del PM₁₀ relativa alla risospensione di polvere dal suolo piuttosto che all'emissione da parte di sorgenti industriali o altro.

Gas-Cromatografia Mediante con detector Spettrometria di Massa (GC-MS) vengono determinati i 12 IPA in fase particolato più importanti dal punto di vista tossicologico, acenaftilene, benzo(a)antracene, crisene, benzo(b)fluorantene. benzo(k)fluorantene. benzo(i)fluorantene. benzo(a)pirene. indeno. dibenzo(a.h)antracene. benzo(a.h.i)perilene. dibenzo(a,e)perilene, e il naftalene, presente nella sola fase gassosa e campionabile tramite cartuccia a diffusione, con carbone attivo quale sostanza sensibile.

La valutazione della componente ionica (cloruri, fosfati, fluoruri, nitrati, solfati, ammonio, sodio, calcio potassio magnesio), viene determinata in Cromatografia Ionica (IC, Metrohm-881 Compact IC pro) e permette la stima del contributo della componente secondaria inorganica del particolato, quindi meno correlata alle sorgenti strettamente locali. In particolare, i nitrati sono indicativi delle sorgenti da combustione (autoveicoli riscaldamento) e raggiungono le maggiori concentrazioni in inverno in quanto le basse temperature ne favoriscono la condensazione. I solfati, invece, pur essendone favorita la formazione nella stagione estiva, a causa dall'intensa radiazione solare, mantengono un contributo pressoché costante durante tutto l'anno. In atmosfera, nitrati, solfati ed ammonio si legano al particolato sotto forma di sali quali ammonio nitrato ed ammonio solfato.

La determinazione analitica della componente carboniosa del PM, ovvero carbonio organico (OC) ed elementare (EC), viene effettuata con metodo termo-

ottico. ovvero TOT/TOR Thermal-Optical Transmittance/Reflectance Laboratory). (Sunset secondo i criteri definiti dalla norma CEN/TR 16243:2011, con applicazione del protocollo NIOSH-Like (D.M. 25/05/2015): la frazione carboniosa del PM viene volatilizzata, ossidata e poi quantificata sulla base del segnale di CO2 prodotto nel processo analitico. La risposta del segnale viene poi convertita in termini di concentrazione di EC e OC: mentre la prima componente costituisce un inquinante primario, la frazione OC include sia emissioni primarie che aerosol organici secondari.

Il levoglucosano è uno zucchero anidro che si forma a seguito della decomposizione termica della cellulosa durante la sua combustione ed è quindi emesso come particolato; per questo motivo rappresenta un marker specifico della combustione di biomasse nel PM (Simoneit et al.,1999). Viene determinato in IC con l'aggiunta di un detector amperometrico (IC-PAD, Metrohm). A causa del consumo di legna nel riscaldamento residenziale, le concentrazioni di levoglucosano e dei suoi isomeri (ad esempio mannosano e galattosano) sono in genere alte durante i mesi invernali, mentre generalmente al di sotto dei limiti di rilevabilità strumentale durante i mesi estivi.

Le fiale passive

In diverse campagne sono stati utilizzati i campionatori passivi, ovvero dispositivi costituiti da una cartuccia sulla quale gli inquinanti di interesse vengono adsorbiti. La cartuccia è posta all'interno di un cilindro di materiale plastico poroso che permette all'aria di penetrare per diffusione al suo interno con velocità di diffusione nota. Ciascun campionatore viene quindi esposto in campo, riparato da una apposita piccola casetta per proteggerlo dagli agenti atmosferici ma senza impedimento alla libera circolazione dell'aria. Al termine dell'esposizione la cartuccia viene analizzata in laboratorio per ottenere la concentrazione media degli inquinanti rilevabili nel periodo di esposizione. In particolare, la cartuccia per la determinazione dell'NO2 è costituita da polietilene microporoso rivestito di trietanolammina (TEA) umida; il biossido di azoto è chemiadsorbito dalla TFA sotto forma

di ione nitrito, determinato poi mediante spettrofotometria visibile. Per le aldeidi, ovvero sostanzialmente formaldeide e acetaldeide, la sostanza sensibile è 2.4 dinitrofenilidrazina. L'analisi di laboratorio è stata condotta in Cromatografia Liquida con detector Massa-Massa (LC/MS-MS). Infine, per quanto riguarda i COV, ovvero benzene, toluene, etilBenzene, meta/para-xilene e orto-xilene, così come il naftalene, la cartuccia a diffusione ha il carbone attivo quale sostanza sensibile. L'analisi di laboratorio è stata condotta in GC-MS. Tipicamente, le fiale vengono esposte con frequenza settimanale e, per ciascun parametro, almeno due in parallelo per la verifica di riproducibilità.

I COV rappresentano un'ampia gamma di composti organici (tra i quali ricadono anche le aldeidi) provenienti da fonti sia antropiche che naturali, i quali possono reagire fotochimicamente con gli ossidi di azoto in presenza di radiazione solare e contribuire all'incremento della formazione di ozono come inquinante secondario. Tra le numerose sostanze organiche volatili presenti in aria, le aldeidi rivestono notevole interesse sia per le loro proprietà tossicologiche sia perché sono precursori di altri inquinanti fotochimici. Le aldeidi oltre che da fonti naturali, possono essere emesse direttamente da fonti mobili (emissioni veicolari) o stazionarie (processi industriali), oppure possono formarsi in atmosfera in seguito alla foto-ossidazione degli idrocarburi. Le reazioni atmosferiche di formazione delle aldeidi avvengono principalmente nel periodo diurno, ma hanno luogo anche nel periodo notturno, quando sono presenti ossidanti come l'ozono ed il radicale nitrato. La formaldeide, in particolare, è un composto organico in fase di vapore, caratterizzato da un odore pungente. Tutti questi composti sono costituiti da atomi di carbonio e idrogeno e, nelle aldeidi, anche da un atomo di ossigeno e quindi hanno una comune sorgente diffusa, ovvero le combustioni da motori in genere, che utilizzano combustibili fossili perlopiù in fase liquida.

Il naftalene è un IPA a due anelli benzenici fusi, ovvero che condividono due atomi di carbonio. A temperatura ambiente è un solido cristallino bianco dall'odore intenso e caratteristico. Poco solubile in acqua, si scioglie abbastanza bene nell'etanolo e ancora meglio nei

solventi organici. Può facilmente sublimare. Si ottiene per distillazione dal catrame, dal carbone e dal petrolio. Oltre all'impiego nell'industria chimica principalmente come materia prima per la sintesi dell'anidride ftalica e di coloranti, trova uso domestico anche come insetticida, specialmente contro le tarme. In passato è stato utilizzato come combustibile nel campo automobilistico e ferroviario.

Strumentazione non convenzionale

Alcune campagne hanno visto l'applicazione di strumentazione non convenzionale.

Fra queste, nella campagna del 1993 a Milano-Linate è stato utilizzato un DOAS, acronimo di Differential Optical

Absorption Spectroscopy (Figura 11.4.14) che calcola la concentrazione di alcuni inquinanti aerodispersi tramite la misura dell'assorbimento differenziale di un fascio aperto di radiazione ultravioletta e visibile da parte delle molecole delle specie considerate lungo un cammino ottico. Essenzialmente è costituito da una lampada allo xenon in pressione per l'emissione del fascio di radiazione, uno specchio posto all'estremità del cammino ottico per la riflessione del fascio, un ricevitore associato ad uno spettrometro per l'analisi della radiazione di ritorno, un calcolatore per la gestione strumentale e l'elaborazione dei dati.

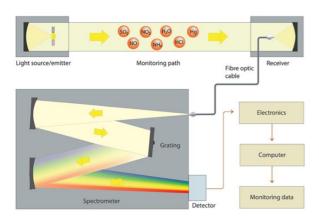


Figura 11.4.14. Schema di funzionamento del DOAS in dotazione (https://www.opsis.se/en/Products/Monitoring-Methods/UV-DOAS-Technique)...

In diverse campagne si è scelto di affiancare la misura gravimetrica del PM con il conteggio per classi delle particelle stesse mediante l'utilizzo di Optical Particle Counters (OPC, Grimm, mod. 107). L'OPC è in grado di determinare la concentrazione numerica delle particelle in funzione delle loro dimensioni. Il principio di funzionamento del sistema OPC (Figura 11.4.15) consiste nel condurre il flusso d'aria campione in una opportuna camera di misura; un fascio laser investe l'aria campione ed un rilevatore posto a 90° rispetto alla

direzione del fascio laser rileva la luce diffusa dalle particelle; ogni impulso rilevato corrisponde al passaggio di una particella e l'altezza dell'impulso è correlata con la sua dimensione. Pertanto, l'OPC è in grado di contare le particelle con dimensioni superiori a 0.25÷0.3 µm, in base alle caratteristiche di costruzione, e di classificarle in un certo numero di classi dimensionali, con frequenza al minuto. Al fine di evitare il conteggio di eventuali goccioline d'acqua aerodisperse, questi strumenti sono dotati di sistemi di essiccazione fondati su differenti

tipologie sulla base delle scelte dei costruttori (ad esempio diluizione dell'aria campione con aria secca e pulita, riscaldamento dell'aria campione, gel di silice, etc.). La misura delle concentrazioni numeriche per classe dimensionale consente di ricostruire la curva di distribuzione dimensionale. A partire dal numero delle particelle per ogni classe dimensionale, facendo ipotesi sulla densità delle particelle stesse, si può stimare la concentrazione di massa del PM₁₀ attraverso opportuni algoritmi (Colombi et al., 2013).

In linea teorica, nell'ipotesi di particelle sferiche di dimensioni note e densità delle stesse, funzione solo della loro dimensione, il problema si semplifica nel calcolo:

$$M = \sum_{i}^{n} \frac{\pi}{6} d_i^{3} \rho_i \varepsilon_i C_i$$

dove:

M è la concentrazione del PM₁₀.

n è il numero di classi dimensionali rilevato dall'OPC considerato.

di è il diametro delle particelle della i-esima classe dimensionale.

 ρ i è la densità delle particelle della i-esima classe,

 ε i è l'efficienza di raccolta che definisce la frazione del PM di interesse,

Ci è la concentrazione numerica della i-esima classe.

Tuttavia, nella realtà le particelle non sono sferiche e di conseguenza la densità non è funzione solamente del diametro; per questo motivo con gli OPC non si può misurare la massa del particolato ma solo stimarla, attraverso ulteriori ipotesi sulla funzione che rappresenta la densità.

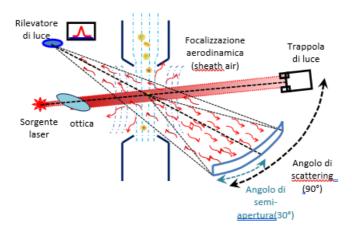


Figura 11.4.15. Principio di funzionamento dell'OPC.

Nel corso dell'ultimo monitoraggio effettuato, la campagna a Orio al Serio, è stato installato per un certo periodo, in parallelo all'OPC, uno strumento per la misura della concentrazione numerica delle particelle con diametro aerodinamico a partire da 6 nm (UFP) e della

loro distribuzione dimensionale fino a 10 μ m, aumentando così lo spettro della caratterizzazione fisica del particolato. Tale strumento conta le particelle attraverso la misura di impulsi elettrici a bassa pressione (Dekati mod. Elpi+). Il principio di funzionamento è

schematicamente il seguente (Figura 11.4.16): le particelle che vengono aspirate attraverso la testa di prelievo tramite una pompa operante a 10 l/min, passano attraverso una corona (charger) e vengono così caricate ad un livello di carica noto; dopo il charger le particelle passano attraverso un impattore a cascata a bassa pressione, che le classifica, in base alla loro dimensione

aerodinamica, in 14 classi mediante opportuni elettrometri. La classificazione è effettuata mediante la misura della corrente elettrica registrata dall'elettrometro ed è direttamente proporzionale alla concentrazione numerica delle particelle su quello stadio.

Figura 11.4.16. Schema operativo dello strumento Elpi+.

Bibliografia

Agrawal H., Sawant A. A., Jansen K., J. Miller W., Cocker D. R., Characterization of chemical and particulate emissions from aircraft engines, Atmospheric Environment, Volume 42, 2008, 4380-4392.

Barbosa S., Ayers E., Belknap M., Air monitoring study at Los Angeles International Airport, District, S.C.A.Q.M. (Ed.), 1999, 39.

Brown R.C., Miake Lye R.C., Anderson M.R., Kolb C.E., Effect of aircraft exhaust sulfur emissions on near field plume aerosols, Geophysical Research Letters, Volume 23, 1996, 3607–3610.

Bastress E. K., Impact of aircraft exhaust emissions at airports, Environmental Science and Technology, Volume 7 (9), 1973, 811–816.

Colombi C., Angius S., Gianelle V., Lazzarini M., Particulate matter concentrations, physical characteristics and elemental composition in the Milan underground transport system, Atmospheric Environment, Volume 70, January 2013. 166-178.

Colombi C., Algieri A., Monitoraggio speciale della qualità dell'aria nell'intorno dell'aeroporto Caravaggio di Orio al Serio – 2017: Relazione finale, https://www.arpalombardia.it/qariafiles/RelazioniMM/RMM_OrioalSerio_20171231.pdf.

Delfino R. J., Sioutas C., and Malik S., Potential Role of Ultrafine Particles in Associations between Airborne Particle Mass and Cardiovascular Health, Environmental Health Perspectives, Volume 113 (8), 2005, 934-946.

Englert N., Fine particles and human health—a review of epidemiological studies, Toxicology Letters, Volume 149, 2004, 235–242.

Federal Aviation Administration, Selected source materials and annotated bibliography on the topic of hazardous air pollutants associated with aircraft, airports, and aviation, July 1, 2003.

Harrison R. M., Beddows D. C. S., Dall'Osto M., PMF Analysis of wide-range particle size spectra collected on a major highway, Environmental Science and Technology, Volume 45, 2011, 5522–5528.

Herndon S.C., Onasch T.B., Frank B.P., Marr L.C., Jayne J.T., Canagaratna M.R., Grygas J., Lanni T., Anderson B.E., Worsnop D., Miake-Lye R.C., Particulate emissions from in-use commercial aircraft, Aerosol Science and Technology, Volume 39, 2005, 799–809.

Heywood J., Gas turbine combustor modeling for calculating nitric oxide emissions, Abstract book of 7th Propulsion Joint Specialist Conference, 14-18 June 1971, https://doi.org/10.2514/6.1971-712.

Hopke P. K., Recent development in receptor modelling, Journal of Chemometric, Volume 17, 2003, 255-265.

Hsu H. H., Adamkiewicz G., Houseman E. A., Vallarino J., Melly S. J., Wayson R. L., Spengler J. D., Levy J. I., The relationship between aviation activities and ultrafine particulate matter concentrations near a mid-sized airport, Atmospheric Environment, Volume 50, 2012, 328-337.

Hu S., Fruin S., Kozawa K., Mara S., Winer A. M., Paulson S. E., Aircraft emission impacts in a neighborhood adjacent to a general aviation airport in Southern California, Environmental Science and Technology, Volume 43, 2009, 8039–8045.

Ibald-Mulli A, Wichmann H. E., Kreyling W., Peters A., Epidemiological Evidence on Health Effects of Ultrafine Particles, Journal of Aerosol Medicine, Volume 15 (2), 2004.

ICAO (International Civil Aviation Organization), Airport Air Quality Manual, First Edition – 2011, https://www.icao.int/publications/Documents/9889_cons_en.pdf.

Jia C., Batterman S., A Critical Review of Naphthalene Sources and Exposures Relevant to Indoor and Outdoor Air, International Journal of Environmental Research and Public Health, Volume 7, 2010, 2903-2939.

Kinsey J. S., Dong Y., Williams D. C., Logan R., Physical characterization of the fine particle emissions from commercial aircraft engines during the aircraft particle emissions experiment (APEX) 1 to 3, Atmospheric Environment, Volume 44, 2010, 2147–2156.

Klapmeyer M. E., Marr L. C., CO2, NOx, and particle emissions from aircraft and support activities at a regional airport, Environmental Science and Technology, Volume 46, 10974–10981, 2012.

Lobo P., Hagen D. E., Whitefield P. D., Measurement and analysis of aircraft engine PM emissions downwind of an active runway at the Oakland International Airport, Atmospheric Environment, Volume 61, 2012, 114–123.

Lyons T. J., Ercoline W., O'Toole K., Grayson K., Aircraft and Related Factors in Crashes Involving Spatial Disorientation: 15 Years of U.S. Air Force Data, Aviation, Space, and Environmental Medicine, Volume 77 (7), 2006, pp. 720-723(4).

Masiol M., Harrison R. M., Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: a review, Atmospheric Environment, Volume 95, 2014, 409–455.

Masiol M., Harrison R. M., Vu T. V., Beddows D. C. S., Sources of sub-micrometre particles near a major international airport, Atmospheric Chemistry and Physics, Volume 17, 2017, 12379-12403.

Mazaheri M., Johnson G. R., and Morawska L., Particle and gaseous emissions from commercial aircraft at each stage of the landing and takeoff cycle, Environmental Science and Technology, Volume 43, 2009, 441–446.

Nemmar A., Hoylaerts M. F., Hoet P. H. M., Dinsdale D., Smith T., Xu H., Vermylen J., Nemery B., Ultrafine Particles Affect Experimental Thrombosis in an In Vivo Hamster Model, American Journal of Respiratory and Critical Care Medicine, Volume 166 (7), 2002.

Nichols T., Ostry M. E., Fuller M. R., Marking ground targets with radio transmitters dropped from aircraft, Research Note NC-274. St. Paul. 1981 - fs.usda.gov

Oberdorster G., Sharp Z., Atudorei V., Elder A., Gelein R., Kreyling W., Cox C., Translocation of inhaled ultrafine particles to the brain, Inhalation Toxicology, Volume 16, 2004, 437-445.

Ogulei D., Hopke P. K., Chalupa D. C., Utell M. J., Modeling Source Contributions to Submicron Particle Number Concentrations Measured in Rochester, New York, Aerosol Science and Technology, Volume 41 (2), 2007, 179-201.

Paatero P., Tapper U., Positive matrix factorization: a nonnegative factor model with optimal utilization of error estimates of data values, Environmetrics, Volume 5, 1994, 111–126.

Parker J., Air Pollution at Heathrow Airport, London: April-September 1970, SAE Transactions, Volume 80 (2), 1971, 1366-1388.

Petzold A., Stein C., Nyeki S., Gysel M., Weingartner E., Baltensperger U., Giebl H., Hitzenberger R., Do pelheuer A., Vrchoticky S., Puxbaum H., Johnson M., Hurley C. D., Marsh R., Wilson C. W., Properties of jet engine combustion particles during the PartEmis experiment: Microphysics and Chemistry, Geophysical Research Letters, Volume 30 (13), 2003, 1719.

Shabad L. M., Smirnov G. A., Aircraft engines as a source of arcinogenic pollution of the environment [benzo(a)pyrene studies], Atmospheric Environment, Volume 6 (3), 1972, 153-164.

Simoneit B.R.T., Schauer J. J., Nolte C. G., Oros D. R., Elias V. O., Fraser M. P., Rogge W. F., Cass G. R., Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles, Atmospheric Environment, Volume 33, 1999, 173-182.

Stafoggia M., Cattani G., Forastiere F., di Bucchianico A. D. M., Gaeta A., Ancona C., Particle number concentrations near the Rome-Ciampino city airport, Atmospheric Environment, Volume 147, 2016, 264–273.

Tsani-Bazaca E., McIntyre A., Lester J., Perry R., Ambient concentrations and correlations of hydrocarbons and halocarbons in the vicinity of an airport, Chemosphere, Volume 11 (1), 1982, 11-23.

Unal A., Hu Y., Chang M. E., Odman M. T., Russell A. G., Airport related emissions and impacts on air quality: Application to the Atlanta International Airport, Atmospheric Environment, Volume 39, Issue 32, October 2005, 5787-5798.

Utell M. J., Frampton M. W., Acute Health Effects of Ambient Air Pollution: The Ultrafine Particle Hypothesis, Journal of Aerosol Medicine, Volume 13 (4), 2009.

Westerdahl D., Fruin S. A., Fine P. L., Sioutas C., The Los Angeles International Airport as a source of ultrafine particles and other pollutants to nearby communities, Atmospheric Environment, Volume 42, 2008, 3143-3155.

Wey C.C., Aircraft particle emissions experiment (APEX), NASA TM, 2006-214382.

Wey C.C., Anderson B.E., Wey C., Miake-Lye R.C., Whitefield P., Howard R., Overview on the aircraft particle emissions experiment, Journal of Propulsion and Power Volume23 (5), 2007, 898–905.

Yu P. K. N., Cheung Y. P., Cheung T. M., Henry R. C., Identifying the impact of large urban airports on local air quality by nonparametric regression, Atmospheric Environment, Volume 38(27), September 2004, 4501-4507.

Zhu Y., Fanning E., Yu R. C., Zhang Q., Froines J. R., Aircraft emissions and local air quality impacts from takeoff activities at a large International Airport, Atmospheric Environment, Volume 45, 2011, 6526-6533.

11.5 CONTRIBUTO DEGLI INCENDI BOSCHIVI ALLE CONCENTRAZIONI DI PM₁₀ SUL TERRITORIO DELLA CITTÀ METROPOLITANA DI TORINO NEL MESE DI OTTOBRE 2017

<u>F. Lollobrigida</u>, M.M. Grosa, A. Pannocchia, C. Bussi, M. Fontana, A. Bruno, M. Maringo, M. Sacco, C. Bertello ARPA PIEMONTE

RIASSUNTO

In Piemonte il mese di ottobre 2017 è stato caratterizzato. da condizioni meteorologiche favorevoli allo sviluppo e alla successiva rapida propagazione degli incendi boschivi che hanno colpito soprattutto il territorio della Città Metropolitana di Torino. Durante la mattina del 27 ottobre, in particolare, il radar meteorologico installato sulla collina torinese ha rilevato la progressiva estensione del pennacchio di fumo prodotto dagli incendi dalla Valle di Susa - una delle aree maggiormente colpite dal fenomeno - verso le zone di pianura. Nei giorni più critici, vale a dire dal 24 al 27 ottobre, al fenomeno ha corrisposto un elevato aumento delle concentrazioni di particolato aerodisperso tanto che il PM₁₀ ha raggiunto nell'area urbana valori di media giornaliera dell'ordine di 200-300 µg/m³ che non venivano misurati da almeno un decennio

Allo scopo di stimare l'entità dello specifico contributo degli incendi al PM₁₀ è stata effettuata la determinazione del levoglucosano e del carbonio organico (OC) sui campioni giornalieri prelevati nelle stazioni dell'area metropolitana torinese e presso la stazione di Susa. I risultati hanno evidenziato che nei giorni di maggiore concentrazione intensità degli incendi la levoglucosano è aumentata significativamente rispetto ai giorni precedenti, sia in termini assoluti che come percentuale sul PM₁₀. Sulla base dei fattori di conversione levoglucosano - PM₁₀, come da fonti di letteratura si è stimato che nei giorni più critici il contributo percentuale degli incendi boschivi al PM₁₀ in termini massici di componente primaria sia stato in media dell'ordine del 15- 20% nell'area urbana e del 25-30% a Susa.

Il confronto tra i dati rilevati dalla rete regionale di monitoraggio nell'area urbana torinese e negli altri tre capoluoghi della pianura piemontese che non sono stati interessati dal fenomeno (Novara, Vercelli e Alessandria) evidenzia che l'aumento delle concentrazioni di PM₁₀ a Torino nei giorni più critici è stato in media dell'ordine del 40% e guindi circa il doppio di guello stimabile sulla base del solo contributo primario. L'ipotesi che il contributo massico alla componente secondaria del PM₁₀ degli incendi boschivi sia stato significativo quanto quello primario è suffragata in primo luogo dall'andamento temporale della concentrazione di OC nel PM₁₀, che ricalca sia a Torino che a Susa quello del levoglucosano; in secondo luogo dallo strumento di misura in continuo della concentrazione numerica di particelle, installato nella città di Torino (Ultrafine Particle Monitor 3031-TSI Inc.), che ha rilevato nei giorni più critici un significativo aumento del numero di particelle di dimensioni comprese tra 0.1 e 1 micron, intervallo che, rientrando all'interno del accumulazione. segnala modo norma l'intensificazione dei processi di formazione secondaria. L'ipotesi concorda inoltre con quanto riportato in recenti lavori secondo cui nel bacino padano, anche in condizioni emissive standard, il contributo secondario al particolato da parte della combustione di biomassa è quantitativamente confrontabile con quello primario.

Parole chiave: PM₁₀, incendi boschivi

ABSTRACT

In October 2017 the meteorology in Piedmont region was particularly favorable to development and fast spread of forest fires., which especially hit the province of Turin.

To mention one case in particular, in the morning of October, 27 the meteorological radar located on the Turin hill clearly showed that the plume of smoke gradually shifted from Susa Valley- one of the areas where the forest fires were more intense – to the plain.

During the most critical days - namely from October, 24 to October, 27 – a large increase of particulate matter concentration was reported, so much that PM_{10} showed in Turin urban area daily means in the order of 200-300 $\mu g/m^3$ which have not been measured for at least ten years.

In order to estimate the contribution of forest fires to PM_{10} , levoglucosan and organic carbon (OC) laboratory analysis was performed on daily samples of Turin urban area monitoring stations and Susa one. During days when forest fires were stronger the results show that levoglucosan significantly increased as both numerical concentration and percentage in PM_{10} . During the most critical days the primary percentage contribution of forest fires to PM_{10} was estimated to be in the order of 15- 20% and 25-30% in Turin urban area and in Susa respectively.

Comparison between PM₁₀ data in Turin urban area and in the three provincial capitals which were not hit by forest fires (Novara, Vercelli e Alessandria) highlights that during the most critical days PM₁₀ concentration increase was about 40% on the average, namely about twice the estimated primary contribution by the forest fires. There are evidence of a significant secondary contribution to PM₁₀ by forest fires as well. First of all, the time modulation of levoglucosan follows the one of OC both in Turin and in Susa; secondly, the instrument that measures particulate numerical concentration located in Turin (Ultrafine Particle Monitor 3031-TSI Inc.) reported during the most critical days an increase in the number of particles between 0,1 e 1 micron, namely a range belonging to the accumulation mode which is typically linked to secondary particulate matter formation. It is

noteworthy that according to some studies also under standard emissions condition the secondary contribution to PM_{10} from biomass burning in the Po Valley is comparable to primary one.

Keywords: PM₁₀, forest fire

Introduzione

In Piemonte il mese di ottobre 2017 è risultato il più secco degli ultimi 60 anni e il secondo mese di ottobre più caldo dal 1958. Il frequente contrasto barico a ridosso dell'arco alpino nordoccidentale ha determinato numerosi episodi di foehn, causando vento forte nelle vallate alpine spesso in sconfinamento alle zone pianeggianti. L'anomalia della situazione meteorologica del mese di ottobre ha contribuito a creare condizioni favorevoli per lo sviluppo e la successiva rapida propagazione degli incendi boschivi che hanno colpito le aree montane e pedemontane della Città Metropolitana di Torino, in particolare il Pinerolese, la Valle di Susa, il Canavese e la Valle Orco.

Una descrizione dettagliata del fenomeno e delle attività messe in atto da Arpa Piemonte nel corso dell'emergenza è contenuta in uno specifico rapporto tecnico (ARPA Piemonte, 2017). Lo sviluppo degli incendi ha inevitabilmente inciso in maniera significativa anche sulla qualità dell'aria, non solo nelle zone più prossime ai fenomeni ma anche nell'area urbana di Torino. Come dettagliato nel paragrafo successivo il PM₁₀ e il PM₂₅ sono risultati i parametri sui quali il contributo aggiuntivo dell'incendio è risultato più significativo, mentre il terzo parametro che presenta superamenti dei limiti di legge nel semestre freddo dell'anno - vale a dire il biossido di azoto - ha invece mostrato una criticità molto inferiore. Nei giorni di maggiore intensità degli incendi, cioè dal 24 al 27 ottobre, il PM₁₀ ha raggiunto nell'area urbana valori di media giornaliera dell'ordine di 200-300 µg/m³ che non venivano misurati da almeno un decennio.

Va sottolineato che nel 2017 si è verificato sul territorio della Città Metropolitana di Torino un significativo peggioramento degli indicatori di legge di PM₁₀ e PM_{2,5} rispetto al 2016, interrompendo la tendenza alla diminuzione delle concentrazioni che era stata osservata negli ultimi anni. I due fattori che potenzialmente possono avere causato questo fenomeno sono, da un lato le condizioni meteorologiche che sono risultate nel 2017 maggiormente sfavorevoli alla dispersione degli inquinanti, dall'altro il contributo aggiuntivo degli incendi boschivi.

Obiettivi dello studio

Obiettivo generale dello studio è valutare quale dei due fattori citati nell'introduzione sia stato quello prevalente nel determinare il peggioramento degli indicatori di qualità dell'aria per PM₁₀ e PM_{2,5} nel 2017 rispetto agli anni precedenti. A tale scopo è stata messa a punto una specifica metodologia per stimare l'entità del contributo aggiuntivo alle concentrazioni di particolato aerodisperso

determinato dagli incendi boschivi e di conseguenza l'importanza in termini quantitativi di tale contributo sugli indicatori di qualità dell'aria relativi a PM₁₀ e PM_{2.5}.

Sono inoltre riportati i risultati di una serie di approfondimenti relativi alla speciazione del PM₁₀ finalizzati alla valutazione del contributo degli incendi boschivi alla componente sia primaria che secondaria.

Analisi dei dati di PM₁₀ e PM_{2,5} nel periodo in cui hanno avuto luogo gli incendi boschivi

In Figura 11.5.1 è riportato l'andamento delle concentrazioni medie giornaliere di PM_{10} nel mese di ottobre, suddivise per zona

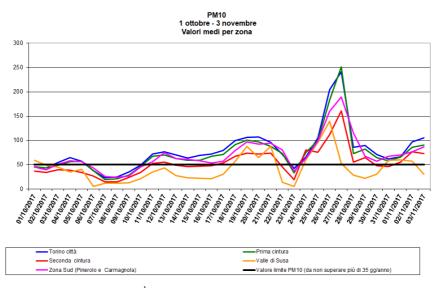


Figura 11.5.1. PM₁₀ Medie giornaliere per zona (μg/m³)

Risulta evidente come dal 24 al 27 ottobre si abbia un elevato e generalizzato aumento delle concentrazioni, in

particolare nell'area urbana torinese. Il fatto che l'aumento delle concentrazioni di PM₁₀ sia attribuibile agli incendi boschivi è testimoniato da tre elementi:

- l'aumento coincide temporalmente con il periodo più critico degli incendi stessi. Nei giorni di domenica 22 e lunedì 23 ottobre si è assistito a un incremento generalizzato della ventosità legato a uno degli episodi di foehn richiamati nell'introduzione, con raffiche sino a 50-100 Km/h. L'elevata ventosità, se da un lato ha favorito nel breve periodo la dispersione degli inquinanti e quindi una brusca diminuzione delle concentrazioni d PM₁₀, dall'altro ha riattivato i focolai nelle zone vallive. Di conseguenza i giorni da martedì 24 ottobre a venerdì 27

ottobre hanno visto un notevole incremento dell'intensità degli incendi;

- sino al 23 ottobre la concentrazione media dell'area urbana torinese di PM₁₀ segue quella dei tre capoluoghi piemontesi che non sono stati interessati dagli incendi boschivi, vale a dire Alessandria, Vercelli e Novara (Figura 11.5.2); dal 24 ottobre le concentrazioni medie nelle due aree si differenziano progressivamente e iniziano a riallinearsi solo il 28 ottobre, quando gli incendi sono in via di spegnimento definitivo;

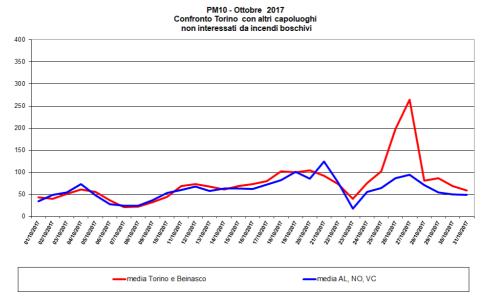


Figura 11.5.2. PM₁₀ Medie giornaliere (μg/m³) - Confronto tra l'area urbana di Torino e gli altri capoluoghi.

- come descritto nel seguito, nei giorni critici per gli incendi si assiste a un brusco aumento, sia in termini assoluti che in percentuale, dei traccianti della combustione di biomassa presenti nel PM_{10} ;
- durante la mattina del 27 ottobre (giorno in cui è stata registrata la concentrazione più elevata di PM_{10}

dell'intero 2017) il radar meteorologico installato sulla collina torinese ha rilevato la progressiva estensione del pennacchio di fumo prodotto dagli incendi dalla Valle di Susa - una delle aree maggiormente colpite dal fenomeno - verso le zone di pianura.

Stima del contributo aggiuntivo degli incendi boschivi alle concentrazioni di PM₁₀

Per stimare l'entità del contributo degli incendi boschivi è stata adottata la metodologia seguente:

- 1. costruzione della retta di regressione tra la concentrazione media di PM₁₀ nella città di Torino e negli altri tre capoluoghi della pianura piemontese non interessati dagli incendi boschivi, utilizzando i dati del periodo immediatamente precedente (1-22 ottobre) a quello critico per gli incendi. Come già evidenziato, infatti, in tale periodo le due serie di valori sono sovrapponibili. La correlazione è ottima (r= 0,93);
- 2. utilizzo della retta di regressione per stimare a partire dalla concentrazione media di PM₁₀ nei tre capoluoghi

- non interessati dal fenomeno-. la concentrazione media che si sarebbe misurata a Torino in assenza di incendi nei giorni critici (24-27 ottobre)
- 3. calcolo del contributo aggiuntivo degli incendi in ognuna delle giornate critiche sottraendo la stima ottenuta al punto 2 alle concentrazioni medie giornaliere di PM_{10} effettivamente misurate nell'area urbana torinese.

La Figura 11.5.3 mostra i risultati dell'applicazione della metodologia di stima: nei giorni critici la percentuale di PM_{10} attribuibile al contributo aggiuntivo degli incendi è in media del 43%, con un massimo del 59% il 27 ottobre.

100% 80% 59% 50% 40% 22% 22% 22% 22% 22% 22% 28/10/2017 25/10/2017 26/10/2017 27/10/2017 Media 24-27 ottobre

Stima della percentuale di PM10 e PM2.5 misurato a Torino attribuibile agli incendi boschivi

Figura 11.5.3. Stima della percentuale di PM₁₀ attribuibile agli incendi boschivi nell'area urbana torinese.

Speciazione del PM₁₀

Un ulteriore approfondimento è stato effettuato tramite la determinazione analitica sul PM_{10} degli zuccheri anidri traccianti della combustione di biomassa (in particolare

levoglucosano), del carbonio organico (OC) e dei componenti secondari di natura inorganica (ammonio, nitrato, solfato).

Nei giorni di maggiore intensità degli incendi si osserva (Figura 11.5.4) che la concentrazione di levoglucosano aumenta di circa un ordine di grandezza rispetto ai giorni precedenti sia nei campioni prelevati dell'area metropolitana torinese che in quelli della stazione di

Susa, ubicata in una delle zone vallive maggiormente colpite dagli incendi

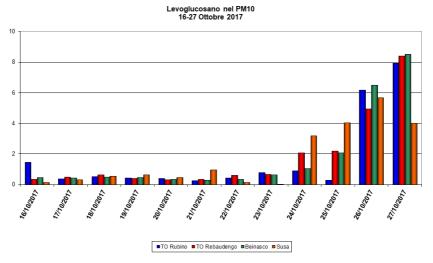


Figura 11.5.4. Levoglucosano nel PM₁₀ -Medie giornaliere (μg/m³).

L'aumento, come evidenzia la Tabella 11.5.1, si osserva non solo in termini assoluti ma anche come percentuale sul PM_{10} . Ciò significa che nei giomi più critici per gli incendi boschivi il PM_{10} si arricchisce di traccianti della combustione di biomassa; l'aumento percentuale, com'è prevedibile, è più elevato in un'area più prossima agli incendi come Susa. La Tabella 11.5.1 evidenzia inoltre che il rapporto medio percentuale tra le concentrazioni di levoglucosano e di PM_{10} totale nei giorni dal 16 al 22

ottobre è del tutto confrontabile con il valore ricavato nella città di Torino nel mese di ottobre 2013 all'interno del progetto Alcotra- Part'Aera; ciò conferma che nei giorni precedenti a quelli più critici per gli incendi boschivi il contributo primario della combustione di biomasse al PM₁₀ era quello tipico stagionale.

Tabella 11.5.1-Percentuale di levoglucosano nel PM₁₀

STAZIONE	Percentuale media di LG nel PM10 16-22 ottobre 2017	Percentuale media di LG nel PM10 24-27 ottobre 2017	Percentuale media di LG nel PM10 mese di ottobre TO Rubino progetto Part'Aera
TO Rubino	0,7%	1,8%	
TO Rebaudengo	0,5%	2,1%	0.7%
Beinasco	0,5%	2,4%	0,7%
Susa	0,7%	3,6%	

Il valore di levoglucosano permette di stimare la concentrazione di PM_{10} che deriva dal contributo primario della combustione di biomassa tramite i fattori di conversione levoglucosano- PM_{10} riportati in letteratura. In questo studio sono stati utilizzati un fattore medio basato su 62 lavori scientifici (8,85 μ g PM_{10}/μ g

levoglucosano) (Piazzalunga et al. 2011) e un fattore caratteristico delle regioni alpine (11,2 μ g PM₁₀/ μ g levoglucosano) (Schmidl, 2008). I risultati sono riportati in Figura 11.5.5 per l'area urbana di Torino e in Figura 11.5.6 per Susa.

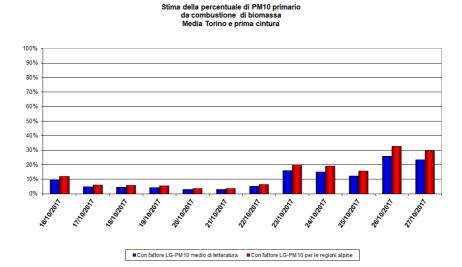
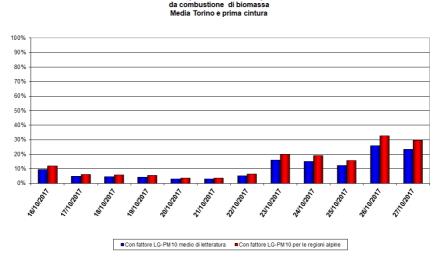



Figura 11.5.5. Stima della percentuale di PM₁₀ primario da combustione di biomassa- media area urbana di Torino

Stima della percentuale di PM10 primario

Figura 11.5.6. Stima della percentuale di PM₁₀ primario da combustione di biomassa- stazione di Susa

Si osserva che:


- prima della fase critica degli incendi, cioè sino al 22 ottobre, il contributo percentuale primario al PM_{10} della combustione di biomasse è in media del 5% nell'area urbana torinese e dell'8% a Susa, e quindi ricade nell'intervallo tipico del 5-15% indicato in letteratura per aree analoghe del bacino padano (Piazzalunga et al. 2011);
- il contributo percentuale primario dell'area torinese, come già evidenziato per il levoglucosano, è del tutto confrontabile con quello ottenuto per il mese di ottobre nel progetto Part'Aera (6-8%). In altre parole sino al 22 ottobre il contributo primario della combustione di biomasse al PM₁₀ è interamente attribuibile alle fonti normalmente attive nei mesi autunnali e invernali, cioè sostanzialmente il riscaldamento domestico a legna o derivati del legno;
- nei quattro giorni più critici, invece, il contributo degli incendi, sottraendo il fondo attribuibile alle sorgenti standard, è in media dell'ordine del 15-20% nell'area urbana torinese e del 25-30% a Susa.

Nel capoluogo il contributo primario al PM_{10} della combustione di biomassa dà quindi conto di circa la metà di quello complessivo stimato sulla base del confronto con le aree urbane non coinvolte negli incendi boschivi, che si ricorderà era in media del 43% (Figura 11.5.3). Si deve quindi ipotizzare che gli incendi boschivi abbiano fornito al PM_{10} anche un contributo di natura secondaria - in relazione alla trasformazione in particolato di sostanze originariamente emesse in forma gassosa - e che tale contributo sia quantitativamente confrontabile con quello primario. Tale contributo di natura secondaria, peraltro già documentato in letteratura in altri casi di incendi boschivi (Pio et al., 2008; Popovicheva et al., 2014; Alves et al., 2010), è sostenuto nel caso specifico dai dati sequenti:

- nella stazione di Torino Lingotto è installato uno strumento (Ultrafine Particle Monitor 3031 -TSI Incorporated) che misura in continuo la concentrazione numerica di particelle con dimensioni tra 0,02 e 1 micron, suddivise in sei classi dimensionali. Nei giorni più critici per gli incendi boschivi si è osservato un significativo aumento del numero delle particelle di maggiori

dimensioni, cioè quelle tra 0,1 e 1 micron, che corrispondono all'intervallo dimensionale noto come modo di accumulazione (Figura 11.5.7). Questo

fenomeno di norma segnala l'aumento dei processi di formazione secondaria di particolato:

Concentrazione numerica di particelle

Figura 11.5.7. Concentrazione numerica di particelle (numero di particelle/m³) – Stazione di Torino Lingotto.

- sia a Torino che a Susa la concentrazione di OC nel PM_{10} – come pure il rapporto OC/EC- mostra nei giorni critici un significativo aumento, che di norma è anch'esso indice di formazione di particolato secondario organico. Il legame con la combustione di biomasse è testimoniato dall'andamento temporale, del tutto analogo a quello del levoglucosano (Figura 11.5.8 e Figura 11.5.9). Si osserva che per entrambi i parametri la concentrazione

massima è raggiunta a Susa il 26 ottobre e a Torino il 27 ottobre, vale a dire nel giorno in cui tramite il radar meteorologico installato sulla collina torinese è stato rilevato il trasporto del pennacchio di fumo dalla Valle di Susa al capoluogo;

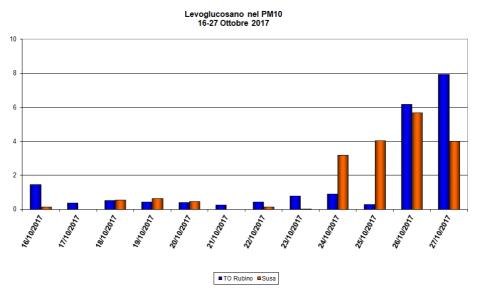


Figura 11.5.8. Levoglucosano nel PM_{10} - Medie giornaliere ($\mu g/m^3$) – Stazioni di Torino Rubino e Susa

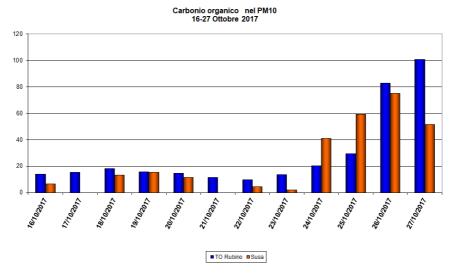


Figura 11.5.9 - Carbonio organico nel PM₁₀ - Medie giornaliere (μg/m³) – Stazioni di Torino Rubino e Susa

- come nel caso del levoglucosano la percentuale media di carbonio organico nel PM_{10} nell'area torinese sino al 22 ottobre (16%) è del tutto confrontabile con quello ottenuto per il mese di ottobre nel progetto Part'Aera (19%), mentre nei giorni critici per gli incendi boschivi sale al 34%:
- studi specifici a livello di nel bacino padano mostrano che il contributo al particolato secondario della combustione di biomassa, nei mesi invernali e in condizioni emissive standard, è significativo e quantitativamente dello stesso ordine di grandezza di quello primario, vale a dire dell'ordine del 5-6% del PM₁₀ (Gilardoni et al., 2016). Tale percentuale riportata dalla letteratura è confrontabile con il contributo primario sia relativo al periodo precedente a quello critico per gli incendi sia calcolato per la città di Torino all'interno del progetto Part'Aera. E' quindi ragionevole ipotizzare in prima approssimazione che anche nei giorni dal 24 al 27 ottobre il contributo secondario sia dello stesso ordine di grandezza di quello primario; in base a questa ipotesi il contributo totale (primario + secondario) degli incendi

boschivi risulta del 30-40%, valore confrontabile con quello calcolato sulla base del confronto con i capoluoghi non interessati dagli incendi.

Non appare invece significativo il contributo degli incendi boschivi alla componente secondaria inorganica del PM₁₀: si osserva che le concentrazioni medie giornaliere delle tre specie che costituiscono tale componente (nitrato, solfato e ammonio) mostrano valori più elevati prima della fase critica degli incendi, al contrario di quanto avviene per levoglucosano e carbonio organico. Nella Figura 11.5.10 è riportato a titolo di esempio l'andamento delle medie giornaliere di nitrato, il componente secondario inorganico maggiormente rilevante in termini di concentrazione. Anche in termini percentuali si osserva un decremento: sino al 22 ottobre il contributo medio complessivo delle tre specie secondarie inorganiche al PM₁₀ è pari al 43% e scende al 15% nei giorni critici, in concomitanza con l'aumento della percentuale della componente secondaria organica e del contributo primario.



Figura 11.5.10 - Nitrato nel PM_{10} - Medie giornaliere ($\mu g/m^3$) – Stazioni di Torino Rubino e Susa

È importante sottolineare che sino al 22 ottobre, come per levoglucosano e carbonio organico, anche la percentuale complessiva (il citato 43%) delle tre specie secondarie inorganiche nell'area torinese è confrontabile con quella ottenuto per il mese di ottobre nel progetto Part'Aera (46%), a conferma del fatto nei giorni precedenti a quelli più critici per gli incendi boschivi la composizione del PM₁₀ era quella tipica stagionale.

Questa situazione potrebbe essere stata determinata da una situazione caratterizzata da venti occidentali (foehn) che hanno apportato aria relativamente più "pulita" di quella usualmente presente nell'area urbana torinese (22 e 23 ottobre) alla quale si sono aggiunti, a Torino nei giorni 26 e 27 ottobre, i prodotti primari (gas / vapori/particolato) della combustione dei boschi interessati dagli incendi. Il tenore non elevato, o anche minore di quello dei giorni precedenti gli incendi, dei costituenti inorganici secondari del particolato PM₁₀ è compatibile con questa ipotesi in quanto la conversione degli ossidi di azoto e del biossido di zolfo nei relativi anioni richiede tempi relativamente lunghi e, per Torino, legata in termini di flussi di massa più alle sorgenti urbane standard che agli incendi. La condensazione di sostanze trasformazione per semivolatili in particelle - che costituisce uno dei principali meccanismi che danno origine a particolato organico secondario- è invece un fenomeno relativamente veloce.

Valutazione dell'influenza degli incendi boschivi sugli indicatori di qualità dell'aria del PM₁₀

Per valutare se il contributo aggiuntivo degli incendi boschivi abbia modificato significativamente nell'anno 2017 gli indicatori di qualità dell'aria previsti per il PM₁₀ (media annuale e numero di giorni di superamento del valore limite giornaliero) dal D.Lgs 155/2010 e s.m.i. sono stati presi in considerazione separatamente:

- i punti di misura di pianura, che di norma storicamente non rispettano almeno uno degli indicatori;
- i punti di misura nelle aree vallive interessate dagli incendi (Susa, Ceresole e Oulx) che ormai da molti anni rispettano tutti gli indicatori.

Per le stazioni di pianura si è confrontata la serie temporale 2017 tal quale e quella ottenuta dalla correzione delle concentrazioni medie giornaliere per i giorni critici degli incendi. La correzione è stata effettuata nel modo seguente:

- 1. per ognuno dei giorni critici è stata calcolato il rapporto tra la media delle concentrazioni effettivamente misurate nell'area urbana e la media delle concentrazioni ottenute dalla retta di regressione Torino-altri capoluoghi descritta nel precedente paragrafo;
- 2. per ognuno dei giorni critici e per ognuno dei punti di misura di pianura tale rapporto è stato utilizzato per calcolare quale sarebbe stata la concentrazione media giornaliera in assenza di incendi. L'ipotesi conservativa alla base del calcolo è che l'effetto degli incendi in tutta l'area di pianura sia assimilabile a quello che si è verificato nell'area urbana torinese, vale a dire nella zona in cui si è avuto il contributo aggiuntivo più elevato;
- 3. per ogni punto di misura sono stati calcolati gli indicatori di legge a partire sia dalla serie di dati originale sia da quella corretta sottraendo l'effetto stimato degli incendi.

Nelle Figure 11 e 12 sono riportati i risultati, rispettivamente, per la media annuale di PM_{10} , il numero di superamenti del valore limite giornaliero di PM_{10}

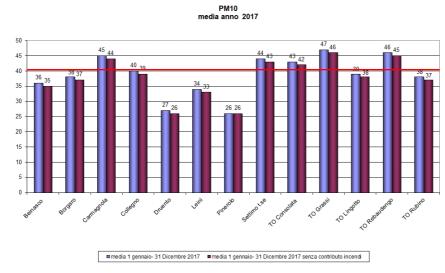


Figura 11.5.11 - Concentrazione media di PM_{10} ($\mu g/m^3$) nel 2017 con e senza il contributo degli incendi

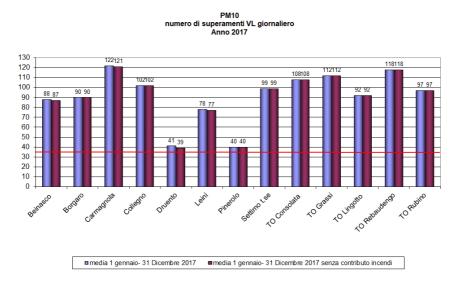


Figura 11.5.12 - Numero di superamenti del valore limite giornaliero di PM₁₀ (50 μg/m³) nel 2017 con e senza il contributo degli incendi

Nel caso delle medie annuali di PM $_{10}$ si osserva che nella peggiore delle ipotesi il contributo aggiuntivo degli incendi è dell'ordine di 1 μ g/m $_{3}$, valore ininfluente sul rispetto del limite: come evidenziato dalla Figura 11.5.11 infatti, nei punti in cui il limite non è stato rispettato anche le medie annuali corrette sono sempre maggiori del limite stesso. Nel caso del valore limite giornaliero di PM $_{10}$ il contributo aggiuntivo dovuto agli incendi boschivi nella peggiore delle ipotesi ha comportato nel 2017 una giornata di superamento in più; anche in questo caso il fenomeno risulta ininfluente rispetto al già elevato numero totale di superamenti annuale.

Per quanto i punti di misura delle aree vallive più prossime agli incendi (Susa, Ceresole e Oulx), anche nel 2017 i valori limite sono stati rispettati. I dati mostrano però che gli incendi boschivi hanno contribuito a un peggioramento degli indicatori. In particolare:

- nella stazione di Ceresole per la prima volta da quanto il punto di misura di PM₁₀ è operativo (2009) si sono verificati superamenti del valore limite giornaliero (sei giornate in tutto), tutti nel periodo interessato dagli incendi boschivi che hanno colpito la Valle Orco;
- nella stazione di Susa si sono verificati 27 superamenti del valore limite giornaliero, di cui 8 nel periodo degli incendi boschivi; nel precedente quinquennio il valore massimo su base annuale di questo indicatore era stato pari a 15;
- nella stazione di Oulx ben 5 degli 8 superamenti del valore limite giornaliero di PM₁₀ si sono verificati nel periodo degli incendi. Nel caso di Oulx il numero totale di superamenti è comunque confrontabile con il valore massimo su base annuale di questo indicatore nel precedente quinquennio, che era stato pari a 7;
- le concentrazioni giornaliere di PM $_{10}$ più elevate rilevate a Ceresole, Susa e Oulx nel periodo degli incendi sono state rispettivamente di 179 $\mu g/m^3$, 173 $\mu g/m^3$ e 82 $\mu g/m^3$. Nel caso di Ceresole e Susa si tratta di valori del tutto anomali, in quanto nel quinquennio 2012-2016 i valori massimi erano stati rispettivamente pari a 50 $\mu g/m^3$ (marzo 2012) e 89 $\mu g/m^3$ (dicembre 2015); nel caso di Oulx il valore massimo nel periodo degli incendi

- analogamente al numero di superamenti - è invece confrontabile con quello del quinquennio precedente (83 μg/m³, rilevato nel marzo 2012), presumibilmente perché la stazione, a differenza di Susa e Ceresole, si trova in un'area non immediatamente adiacente a quelle in cui si sono sviluppati i focolai più intensi.

Un discorso a sé merita la stazione di Pinerolo, l'unico punto di misura di pianura per il quale l'ipotesi di cui al precedente punto 2 potrebbe non essere conservativa. Si tratta, infatti, di una stazione che, pur non essendo ubicata in una zona valliva, si trova a breve distanza da alcune delle aree in cui si sono sviluppati i focolai più intensi e duraturi; di conseguenza a Pinerolo l'effetto degli incendi potrebbe essere stato significativo anche nei giorni precedenti a quelli più critici considerati dalla metodologia precedentemente descritta. Tale ipotesi è supportata dal fatto che Pinerolo è l'unico punto di misura oltre a quello di Susa - anch'esso relativamente prossimo agli incendi - in cui il numero di superamenti del valore limite giornaliero di PM₁₀ è più che raddoppiato rispetto al 2016: nel 2017 si sono verificati a Pinerolo 40 giorni di superamento (di cui 8 nella seconda metà di ottobre) contro 15 nel 2016, a Susa 27 giorni di superamento (di cui 9 nella seconda metà di ottobre) contro 10 nel 2016. Nel caso di Pinerolo, a differenza di Susa, tale aumento ha fatto sì che il numero di giorni di superamento sia risultato nel 2017 maggiore del massimo consentito dalla norma (35 giorni per anno civile), fenomeno che si era verificato per l'ultima volta nel 2012 e che non si è più verificato nel 2018 e nel 2019.

Pinerolo è quindi l'unico punto di misura in cui l'effetto degli incendi potrebbe avere effettivamente causato nel 2017 il superamento di uno degli indicatori di legge per il particolato atmosferico.

Va infine sottolineato che nei comuni in cui si sono sviluppati i focolai – tutti situati in zone montane e pedemontane – in base alla normativa vigente non sono presenti punti di misura fissi della rete di qualità dell'aria, in quanto si tratta di aree in cui in condizioni normali tutti gli indicatori di legge sono ampiamente rispettati.

Durante l'emergenza, allo scopo di valutare quantitativamente anche in tali zone la qualità dell'aria, è stato posizionato un campionatore trasportabile di PM₁₀ nel centro abitato del Comune di Sparone in Valle Orco che, per la sua vicinanza ai focolai e per l'intensità degli stessi, è da considerarsi rappresentativo delle condizioni di inquinamento atmosferico più critiche che si sono verificate nel corso degli incendi boschivi.

Sono state misurate concentrazioni medie giornaliere molto elevate, sino a 280 $\mu g/m^3$, ma l'analisi complessiva dei dati evidenzia che, in relazione alla breve durata del fenomeno, è da escludere su base annuale un superamento degli indicatori di legge.

Conclusioni

Gli incendi boschivi che nel mese di ottobre 2017 hanno interessato gran parte delle aree montane e pedemontane della Città Metropolitana di Torino hanno provocato sia nelle zone immediatamente adiacenti ai focolai che nelle aree di pianura un aumento delle concentrazioni degli inquinanti atmosferici. L'effetto è stato particolarmente marcato nel caso del PM₁₀ in termini di contributo sia primario (emissione diretta di polveri di combustione) che secondario organico (trasformazione in particolato di sostanze di natura organica emesse in origine in forma gassosa dai processi combustivi). Non si è invece rilevato un contributo significativo per quanto riguarda la componente inorganica del particolato secondario.

Nei giorni più critici dal 24 al 27 ottobre – in cui si sono raggiunti in molte aree valori di PM_{10} superiori a 200 $\mu g/m^3$ - si stima che in media il 43% del PM_{10} misurato

nell'area urbana torinese sia da attribuire agli incendi boschivi.

La composizione del PM₁₀ nell'area torinese nei giorni precedenti a quelli critici è risultata del tutto confrontabile con quella tipica stagionale, mentre nei giorni dal 24 al 27 ottobre si è osservato un brusco aumento - in termini sia assoluti che percentuali — della concentrazione dei traccianti della combustione di biomassa e del carbonio organico.

L'analisi complessiva dei dati evidenzia in ogni caso che in tutti i punti fissi di misura della rete di monitoraggio della Città Metropolitana di Torino il peggioramento degli indicatori nel 2017 rispetto al 2016 non è da attribuirsi agli incendi ma alla maggiore criticità delle condizioni meteorologiche complessive dell'anno. Vi è un unico caso di superamento di un limite di legge in cui, in base ai dati disponibili, si può ipotizzare che nel 2017 in assenza degli incendi boschivi il limite stesso sarebbe stato rispettato. Si tratta del valore limite giornaliero di PM₁₀ nella stazione di Pinerolo, l'unica di pianura ubicata immediatamente a ridosso dei focolai, che ha presentato nel 2017 40 giornate di superamento contro le 35 ammesse come massimo dalla normativa.

Nel corso dell'emergenza sono stati misurati elevati valori di particolato anche nelle aree montane e pedemontane direttamente interessate degli incendi - le quali di norma presentano concentrazioni di PM_{10} rappresentative dei valori minimi misurabili a livello regionale - ma è comunque da escludere, in relazione alla breve durata del fenomeno, un superamento degli indicatori di legge.

Bibliografia

Alves et al. Particulate organic compounds emitted from experimental wildland fires in a Mediterraneane cosystem, Atm.Env. 44(2010) 2750-2759.

Arpa Piemonte - Rapporto tecnico sulla qualità dell'aria e sulle attività dell'Agenzia a supporto dell'emergenza per gli incendi boschivi in Piemonte nel mese di ottobre 2017

http://www.arpa.piemonte.it/news/la-relazione-completa-sugli-incendi-boschivi-che-hanno-colpito-il-piemonte-a-ottobre-scorso.

Piazzalunga et. Al, Estimates of wood burning contribution to PM by the macro-tracer method using tailored emission factors, Atmospheric Environment 45 (2011)

Pio et al., Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period, Atm. Env. 42 (2008) 7530–7543

Popovicheva et al. Physicochemical characterization of smoke aerosol during large-scale wildfires: Extreme event of August 2010 in Moscow, Atm. Env.96 (2014) 405-414

Schmidl, Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions, Atmospheric Environment 42 (2008)

Gilardoni et al Direct observation of aqueous secondary organic aerosol from biomass-burning emissions, Proceedings of the National Academy of Sciences of the United States of America 36 (2016)

11.6 ANALISI MODELLISTICA DI SOURCE APPORTIONMENT SULLO STATO DELLA QUALITÀ DELL'ARIA DELLA REGIONE PUGLIA A 4 KM DI RISOLUZIONE

Schipa I.1, Morabito A.1, Costa M.P.2

¹ARPA PUGLIA ²Arianet Srl

RIASSUNTO

Nel corso del triennio 2015-2017 ARPA Puglia si è dotata di un sistema modellistico in grado di ricostruire sul territorio regionale le concentrazioni di inquinanti gassosi e di particolato in modalità retrospettiva e predittiva. Tale sistema è utilizzato per valutare annualmente lo stato della qualità dell'aria ai sensi del D.Lgs. 155/2010; questa valutazione è condotta combinando i campi di concentrazione simulati mediante modello fotochimico con le misure delle reti di monitoraggio di ARPA Puglia, al fine di ottenere una migliore e più realistica rappresentazione dello stato della qualità dell'aria sul territorio sia in termini di entità dei livelli di concentrazione che di distribuzione spaziale.

Le valutazioni modellistiche condotte sulla regione Puglia a 4 km di risoluzione spaziale relative al 2016, 2017 e 2018 hanno evidenziato la presenza di alcune non conformità per gli inquinanti PM₁₀, PM_{2,5}, Benzo(a)Pirene ed ozono. Mentre per l'O₃ i superamenti riguardano buona parte del territorio regionale, per PM₁₀, PM_{2,5} e B(a)P i superamenti si rilevano presso le aree urbanizzate di alcuni comuni delle province di Brindisi, Lecce e Taranto.

Allo scopo di individuare le sorgenti che contribuiscono prevalentemente alle criticità previste, è stata condotta sull'intera regione un'analisi modellistica di source apportionment ad una risoluzione spaziale pari a 4 km. Come noto infatti, l'informazione quantitativa sulla distribuzione spaziale e sulle caratteristiche delle sorgenti è richiesta dal D.Lgs. 155/2010 e dalla decisione 2011/850/EU sia per spiegare l'origine dei superamenti

che quale premessa conoscitiva indispensabile per la progettazione dei piani di risanamento.

L'analisi di source apportionment è stata condotta utilizzando il "Brute Force Method", considerato dalla comunità scientifica una delle metodologie più adatte per supportare le attività di pianificazione della qualità dell'aria. Tale metodo consiste nell'effettuare una simulazione di riferimento (denominata 'caso base') ed una serie di simulazioni, in cui le emissioni di diversi sottoinsiemi di sorgenti sono ridotte, rispetto al caso base, di una percentuale fissata. Il numero delle simulazioni 'alterate' è pari a quello degli insiemi di sorgenti di cui si vuole valutare il contributo; quest'ultimo è calcolato analizzando le differenze tra i risultati del caso base e quelli delle singole simulazioni alterate.

Nello specifico, la simulazione 'base' è stata condotta a 4 km di risoluzione spaziale con il modello fotochimico FARM sull'intera regione relativamente al 2016. Sono state poi effettuate altre quattro simulazioni, riducendo del 20% le emissioni relative alle seguenti sorgenti: il traffico stradale, il riscaldamento residenziale con biomassa legnosa, l'industria e tutte le sorgenti emissive restanti (denominate RESTO). Tale analisi ha riguardato sia le specie PM₁₀, PM_{2,5}, B(a)P e O₃, che gli inquinanti NO₂, SO₂, C₆H₆, e CO. Inoltre, tenuto conto che le non conformità riscontrate dalle simulazioni presentavano una forte componente stagionale, l'analisi è stata condotta relativamente al mese di gennaio e al mese di luglio, al fine di caratterizzare il contributo stagionale delle sorgenti emissive.

I risultati ottenuti hanno evidenziato i contributi delle sorgenti investigate ai livelli di concentrazione delle varie

specie, in termini sia percentuali rispetto al totale che assoluti.

Parole chiave: sistema modellistico, source apportionment, sorgenti, biomassa legnosa

ABSTRACT

Over the last few years, ARPA Puglia acquired and set up a regional modelling system used for yearly assessments and daily forecasts of gaseous and particulate pollutants concentration over the Apulia region. The system is also used to assess the state of air quality according to Legislative Decree 155/2010, combining the fields simulated by a photochemical model with the data measured by ARPA Puglia monitoring networks, in order to obtain a better and more realistic representation in terms of both concentration levels and spatial distribution.

The modelling studies, carried out at 4 km spatial resolution for 2016, 2017 and 2018, resulted in some non-conformities for PM₁₀, PM_{2,5}, Benzo(a)Pirene and ozone. While O₃ exceedances occur over a large part of the regional territory, PM₁₀, PM_{2,5} and B(a)P exceedances are found in the urban areas of some municipalities in the provinces of Brindisi, Lecce and Taranto. A source apportionment analysis at 4 km spatial resolution has been carried out on the OMSle region, in order to identify the main emission sources contributing to the assessed concentration levels. In fact, quantitative information on the spatial distribution and characteristics of the sources is required by Legislative Decree 155/2010 and Decision 2011/850/EU both to explain the origin of the exceedances and as a fact-finding precondition for the design of remediation plans.

The analysis was carried out using the "Brute Force Method", considered by the scientific community as one of the most suitable methodologies to support air quality planning activities. This method consists of a reference simulation (called 'base case') and a series of

simulations, in which the emissions of different subsets of sources are reduced by a fixed percentage. The number of 'altered' simulations is equal to the number of source sets OMSse contribution is to be evaluated. The contributions are calculated by analysing the differences between the results of the base case and those of the individual altered simulations.

Specifically, the 'base' simulation was carried out at 4 km spatial resolution with the FARM photochemical model over the entire Apulia region for year 2016. Four additional monthly simulations were then carried out, reducing emissions from the following sources by 20%: road traffic, residential heating with biomass burning, industrial activities and all remaining emission sources. The investigated pollutants are PM_{10} , $PM_{2.5}$, B(a)P and O_3 , as well as NO_2 , SO_2 , C_6H_6 , and CO. Since nonconformities found in the simulations had a strong seasonal component, the analysis was repeated for both January and July in order to characterise seasonal contributions of the emission sources.

Contributions of the investigated sources to the concentration levels are shown both as a percentage of the total and as absolute values, and the results are highlighted and discussed.

Keywords: modelling system, source apportionment, emission sources, biomass burning

Introduzione

Identificare le sorgenti dell'inquinamento è una delle finalità della modellistica per la qualità dell'aria e costituisce un'attività essenziale nella pianificazione di azioni efficaci per il risanamento. Come noto, infatti, l'informazione quantitativa sulla distribuzione spaziale e sulle caratteristiche delle sorgenti inquinanti è richiesta dal D.Lgs. 155/2010 e dalla decisione 2011/850/EU² sia per spiegare l'origine dei superamenti sia quale premessa conoscitiva indispensabile per la progettazione dei piani di risanamento (allegato XV).

234 -

²Tale decisione ha introdotto un nuovo meccanismo per lo scambio reciproco di informazioni e relazioni sulla qualità dell'aria ambiente, denominato e- reporting.

Nel corso del triennio 2015-2017 ARPA Puglia si è dotata di un sistema modellistico in grado di ricostruire sull'intero territorio regionale, con focus su eventuali sottodomini di interesse, le concentrazioni di inquinanti gassosi e di particolato in modalità sia retrospettiva che predittiva³. Tale sistema consente altresì di assimilare, cioè integrare nelle informazioni modellistiche, le misure fornite dalla rete di monitoraggio della qualità dell'aria gestita da ARPA Puglia ed è utilizzato per valutare annualmente lo stato della qualità dell'aria sull'intera regione ai sensi del D.Lgs. 155/2010. Tale valutazione è condotta combinando i campi di concentrazione modellati con i valori misurati, al fine di ottenere una migliore e più realistica rappresentazione dello stato della qualità dell'aria sul territorio sia in termini di entità dei livelli di concentrazione che di distribuzione spaziale.

Le valutazioni modellistiche condotte sulla regione Puglia a 4 km di risoluzione spaziale per gli anni 2016, 2017 e 2018 hanno evidenziato la presenza di alcune non conformità per gli inquinanti PM₁₀, PM_{2,5}, B(a)P ed O₃. Mentre per l'O₃ i superamenti riguardavano buona parte del territorio regionale, per PM₁₀, PM_{2,5}, B(a)P i superamenti si rilevano in corrispondenza delle aree urbanizzate di alcuni comuni della provincia di Brindisi.

Obiettivo del presente lavoro è quindi quello di discriminare i contributi di gruppi definiti di sorgenti alle criticità previste sulla regione Puglia utilizzando i risultati dell'analisi modellistica di source apportionment, condotta con l'utilizzo del "Brute Force Method". Questo metodo è considerato dalla comunità scientifica una delle metodologie più adatte per supportare le attività di pianificazione della qualità dell'aria e consiste nell'effettuare molteplici simulazioni (da qui il nome di brute force method), in cui si variano le emissioni in ingresso, imponendo una variazione prefissata ad una tipologia di sorgenti e lasciando inalterate le altre.

In questa applicazione, il sistema modellistico è stato utilizzato in modalità retrospettiva ed il modello chimico utilizzato è stato il FARM. Nello specifico, avendo come riferimento i campi di concentrazione al suolo ottenuti dalla valutazione modellistica condotta con FARM a 4 km di risoluzione spaziale sull'intera regione relativamente al 2016, è stato valutato il contributo, alle concentrazioni modellate, dei settori emissivi relativi al traffico stradale, al riscaldamento residenziale con biomassa legnosa, all'industria e a tutte le sorgenti emissive restanti (di seguito denominate RESTO). L'analisi mostrata nel presente lavoro riguarda gli inquinanti NO2 e PM10. Dal momento che le non conformità riscontrate dalle forte simulazioni presentano una componente stagionale, l'analisi di source apportionment è stata condotta relativamente al mese di gennaio e al mese di luglio, al fine di caratterizzare il contributo stagionale delle sorgenti emissive.

Metodi : Applicazione del *Brute Force Method* sulla regione Puglia

Il "Brute Force Method" (BFM) (Bonyoung Koo et al., 2009; Burr and Zhang, 2011), noto anche come "3D sensitivity runs", è una metodologia che consente di valutare il contributo di una sorgente analizzando la risposta del modello ad una variazione delle emissioni. Tale metodologia è stata già utilizzata da ENEA nel progetto nazionale MINNI a supporto delle attività del MATTM nell'ambito delle Deroghe CE (Enea, 2013) e del GAINS.

Essa consiste nell'eseguire, con un modello di qualità dell'aria, simulazioni multiple, in ognuna delle quali si utilizzano gli stessi dati di ingresso, ad eccezione delle emissioni provenienti dall'insieme di fonti che devono essere indagte, che sono perturbate ciclicamente. Le concentrazioni ambientali risultanti dalle simulazioni perturbate sono poi confrontate con quelle della

risoluzione spaziale rispettivamente di 4 km sulla Puglia e di 1 km sull'area di Taranto) e la ricostruzione (detta analisi) dello stato della QA relativa al giorno precedente (ieri), ottenuta mediante assimilazione dei dati misurati.

³Il servizio di previsione ed analisi dello stato della qualità dell'aria sulla Puglia e sull'area di Taranto, reso operativo da Arpa Puglia nel corso del 2016, è stato attivato ai sensi degli art.14 e art.18 del D. Lgs 155/2010.Sul sito

http://cloud.arpa.puglia.it/previsioniqualitadellaria/index.html sono disponibili giornalmente le previsioni a +72 ore dello stato della QA (con

simulazione di riferimento, effettuata con emissioni non perturbate, ottenendo una stima al primo ordine dei contributi. L'insieme delle fonti da esaminare può essere specificato selezionando combinazioni arbitrarie di settori di attività (ad esempio categorie SNAP della nomenclatura EEA) e di entità geografiche presenti nelle basi dati emissive in ingresso. L'utente può scegliere sia gli inquinanti di interesse che il meccanismo chimico da utilizzare fra quelli forniti dal modello fotochimico; inoltre la simulazione con il modello può essere eseguita su un periodo di tempo arbitrario, stabilito dall'utente in base alla natura del problema e alle risorse computazionali disponibili, e può essere strutturata su più griglie nidificate.

Nello specifico sono state effettuate una serie di simulazioni con il modello fotochimico FARM su un periodo scelto: il caso base, con emissioni invariate, e i casi alterati, in cui per ogni insieme di sorgenti, le emissioni del corrispondente gruppo di attività o area geografica sono state ridotte di una percentuale fissata. Il contributo di ciascun insieme di sorgenti è stato stimato come il rapporto fra la variazione di concentrazione risultante (data dalla differenza tra caso alterato e caso base) e la somma delle variazioni di tutti i casi alterati.

In sintesi, a partire dal quadro emissivo di riferimento inteso come caso-base, si sono effettuati i seguenti passi:

1. riduzione del 20%, quantità in grado di mettere in evidenza i contributi, senza peraltro alterare significativamente il regime chimico rispetto alle condizioni del run di riferimento, delle emissioni di *n* gruppi di SORGENTI (intendendo con "sorgente" un insieme di categorie emissive organizzato per settore di attività) e preparazione del gruppo RESTO (costituito dai settori non di interesse e ottenuto riducendo del 20% le emissioni delle attività non incluse negli altri insiemi);

- 3. calcolo della variazione Δ_i delle concentrazioni medie del caso i-esimo rispetto al caso di riferimento in ciascun punto griglia;
- 4. produzione di una serie di mappe: concentrazione media del caso base, contributi assoluti e percentuali dei singoli casi alterati.

Il procedimento è stato ripetuto esaustivamente per tutti gli insiemi di sorgenti e il contributo percentuale di ciascuno di essi è stato stimato come il rapporto fra la variazione di concentrazione risultante (data dal caso alterato – caso base) e la somma delle variazioni di tutti i casi alterati:

$$\Delta_i / \sum_{i=0}^n \Delta_i * 100$$

Questa metodologia è stata applicata su un dominio di simulazione comprendente tutta la regione Puglia, con una risoluzione spaziale di 4x4 km², considerando quali sorgenti da analizzare il traffico su strada, il riscaldamento residenziale con biomassa legnosa, l'industria e le sorgenti emissive restanti (di seguito denominate RESTO). Inoltre, al fine di caratterizzare il contributo delle sorgenti emissive stagionali, il source apportionment è stato condotto relativamente al mese di gennaio e al mese di luglio dell'anno 2016.

FARM

Il cuore del sistema modellistico utilizzato è il modello euleriano tridimensionale di trasporto e chimica dell'atmosfera FARM4 (Flexible Air quality Regional

^{2.} simulazione con il modello di dispersione considerando il caso emissivo base (di riferimento, non alterato) e gli altri *n*+1 casi alterati (*n* SORGENTI+RESTO) per i periodi scelti;

⁴Più precisamente è stata utilizzata la versione più recente del modello di trasporto e chimica dell'atmosfera FARM (versione 4.7), che implementa versioni aggiornate del meccanismo chimico SAPRC99 e del modulo di aerosol aerO₃. Tali versioni trattano la chimica dei quattro

IPA: B[a]P, B[b]F, B[k]F, indeno[1,2,3-cd]pyrene (sia in fase gassosa che in fase particellare – modi di Aitken e accumulazione) e del mercurio (elementare – Hg - e ossidato – HgO - in fase gassosa e particellare – modi di Aitken e accumulazione).

Model), in grado di fornire i campi tridimensionali orari di concentrazione per diversi inquinanti, a partire dalle emissioni di inquinanti delle varie sorgenti presenti sul territorio (naturali ed antropiche) e dallo stato fisico dell'atmosfera (campi di vento, di temperatura, di umidità, di turbolenza, ecc.).

Nella Figura 11.6.1. viene riportato lo schema concettuale del sistema modellistico, implementato sulla piattaforma computazionale ReCaS.

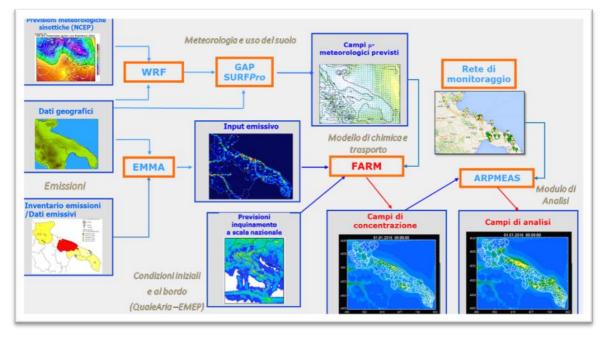


Figura 11.6.1. Sistema modellistico utilizzato per la Valutazione annuale della Qualità dell'aria.

Il sistema modellistico utilizza in ingresso molteplici dataset, che vengono elaborati in modo da produrre, sui domini di simulazione, tutti i dati in ingresso necessari al modello chimico di qualità dell'aria. In particolare, per lo svolgimento della simulazione relativa all'anno 2016, FARM è stato alimentato con:

- i campi meteorologici previsionali, prodotti dal SAF di ARPA Puglia relativamente al 2016 mediante l'utilizzo del modello meteorologico prognostico WRF (Weather Research and Forecasting);
- gli inventari delle emissioni, INEMAR per la regione Puglia ed ISPRA per le regioni limitrofe, opportunamente integrati ed aggiornati con le informazioni disponibili;
- le condizioni iniziali ed al contorno, relative all'anno 2016, derivate dai sistemi modellistici previsionali operativi come QualeAria (per gli inquinanti in fase omogenea, gassosa e particellare, su base temporale trioraria).

Il modello FARM è configurabile con diversi schemi chimici. Per tutte le simulazioni svolte da ARPA è stato utilizzato lo schema chimico *SAPRC99* (Carter, 2000) il

quale descrive le reazioni fotochimiche che hanno luogo nella bassa atmosfera, relative alle trasformazioni delle specie chimiche in fase gassosa dei composti organici volatili e degli ossidi di azoto, e che portano alla formazione di ozono e di aerosol organici secondari nella bassa atmosfera. Al suddetto modulo è stato accoppiato il modulo chimico per gli aerosol, *AerO*₃, messo a punto da EPA (Binkowski, 1999; Binkowski e Shankar, 1995) per la trattazione della chimica dell'aerosol (parte inorganica ed organica). Tale modulo, in particolare, tratta la dinamica delle particelle e la loro interazione con le specie in fase gas, considerando per gli aerosol tre classi dimensionali: "Aitken" (fino a 0,1 μm),

"accumulazione" (0,1-2,5 μ m) e "grossolane" (2,5-10 μ m), nelle quali sono considerate diverse specie chimiche (nitrati, solfati, ammonio, acqua, carbonio, ecc.).

Il sistema modellistico così configurato è stato applicato simultaneamente su un dominio comprendente la regione Puglia, con risoluzione spaziale pari a 4 km, e su un dominio, annidato nel precedente, comprendente le province di Brindisi, Lecce e Taranto con risoluzione pari ad 1 km (Figura 11.6.2.).

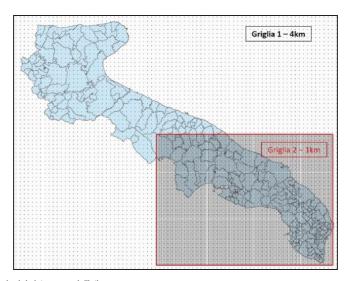


Figura 11.6.2. Domini di calcolo del sistema modellistico.

Tabella 11.6.1 – Caratteristiche spaziali dei domini di simulazione

Dominio	Denominazione	Estensione	Risoluzione spaziale
Griglia 1	regione Puglia	316 x 248 km ²	4 km x 4 km
Griglia 2	Salento	172 x 128 km ²	1 km x 1 km

La discesa di scala è effettuata tramite la tecnica two way nesting, che consente di simulare le dinamiche di dispersione, trasporto e trasformazione degli inquinanti nel dominio a maggiore risoluzione, tenendo conto sia degli effetti delle sorgenti emissive esterne e dei processi dominati dalle scale spaziali più grandi (come lo smog fotochimico), sia dei fenomeni locali di accumulo. Nella Tabella 11.6.1 si riportano le caratteristiche spaziali dei due domini.

L'estensione verticale dei due domini è pari a 9050 m, con i seguenti 16 livelli di calcolo espressi in metri sopra l'orografia:

10, 35, 70, 120, 195, 305, 465, 695, 1025, 1505, 2200, 3205, 4550, 6050, 7550, 9050.

Inventario delle emissioni

Affinché il sistema modellistico sia in grado di ricostruire quanto più realisticamente possibile lo stato della qualità dell'aria, è necessario che venga alimentato con una rappresentazione accurata ed esaustiva delle sorgenti emissive inquinanti, di origine naturale ed antropica, presenti sul territorio. Per le sorgenti emissive di origine antropica della regione Puglia è stato utilizzato l'Inventario delle emissioni in atmosfera regionale INEMAR, relativo al 2010 ed attualizzato, per le emissioni appartenenti ai Macrosettori SNAP 2 (riscaldamento civile e commerciale-istituzionale) e 7 (trasporto su strada), al 2013⁵. Nella Tabella 11.6.2 si riportano, per i comparti emissivi trattati nel source apportionment, i quantitativi complessivi relativi ad i macroinguinanti SO₂, NMVOC, CO, PM₁₀ e NO_X, espressi in tonn/anno.

Tabella 11.6.2 - Totali per anno dei comparti emissivi trattati nel source apportionment per gli inquinanti SO2, NMVOC, CO, PM₁₀ ed NO_X

COMPARTI EMISSIVI TRATTATI	SO2 ton/a	NMVOC ton/a	CO ton/a	PM10 ton/a	NOx ton/a
INDUSTRIA (Macrosettori 01; 03; 04)	11830	5524	219357	2626	27442
BIOMASSA (attività 020206;020207;020208;020210)	86	18575	46209	6206	673
TRASPORTI STRADALI (Macrosettore 07)	266	9699	50616	2697	42166
RESTO	887	59702	93727	8549	16039
TOTALI	13068	93500	409909	20078	86321

La Tabella 11.6.2 mostra come per SO₂ e CO il contributo emissivo rispettivamente predominante e prevalente sia l'industria, per NMVOC e PM₁₀ il comparto emissivo più incidente sia il RESTO e per NO_x il trasporto stradale. Nella Tabella 11.6.3 vengono indicati i contributi emissivi, ordinati per macrosettore, che compongono il

comparto RESTO. Dalla Tabella 11.6.3 emerge che per NMVOC i contributi prevalenti sono i macrosettori 10 - Agricoltura e 06 - Uso di solventi mentre per il PM $_{\rm 10}$ il macrosettore 09 - Trattamento e Smaltimento di rifiuti è il preponderante.

ispra/serie-storiche-emissioni. Per ottenere una stima del dato nazionale al 2013, si sono estrapolati linearmente i dati dei tre anni precedenti (2010-2011-2012). I fattori da applicare alle emissioni Inemar2010 sono poi stati calcolati, settore per settore, come rapporto tra i valori nazionali 2013 e 2010.

⁵ Sui totali emissivi 2010 sono stati applicati alcuni fattori di variazione, dipendenti dall'attività emissiva, desunti dagli andamenti nazionali nel corso degli anni. Questi sono stati calcolati a partire dalle stime annuali ISPRA disponibili su http://www.sinanet.isprambiente.it/it/sia-

Tabella 11.6.3 - Contributi del comparto emissivo RESTO

DESTO	SO2	NMVOC	CO	PM10	NOx
RESTO	ton/a	ton/a	ton/a	ton/a	ton/a
02 - Combustione non industriale (tranne biomassa)	215	409	4064	88	1463
05 – Estrazione, distribuzione combustibili					
fossili/geotermico	0	1829	0	210	0
06 – Uso di solventi	10	24726	0	39	0
08 – Altre Sorgenti Mobili	268	1726	5557	1207	13043
09 - Trattamento e Smaltimento Rifiuti	125	1506	52106	4622	37
10 - Agricoltura	66	26862	3429	429	491
11 - Altre sorgenti di Emissione ed Assorbimenti	203	2643	28572	1954	1005
TOTALE	887	59702	93727	8549	16039

È opportuno sottolineare che il peso che un determinato macrosettore ha in termini emissivi non è detto corrisponda al peso che tale macrosettore ha in termini di contributo sullo stato della qualità dell'aria, poiché il rapporto causa (emissione) ed effetto (concentrazione in aria ambiente) può dipendere fortemente dalla modalità con cui l'emissione avviene in atmosfera. Emissioni puntuali o diffuse, in quota o al suolo, calde o fredde hanno interazioni profondamente diverse con la dinamica dell'atmosfera e, conseguentemente, effetti differenti sullo stato della qualità dell'aria.

La valutazione della relazione tra emissione ed il suo impatto sullo stato della qualità dell'aria richiede quindi necessariamente l'applicazione dei modelli di dispersione.

Risultati - Valutazione del contributo delle sorgenti

Le figure seguenti (Figure 11.6.3 - 11.6.12) mostrano il risultato delle simulazioni condotte con il *Brute Force*

Method, mettendo in evidenza i contributi ai livelli medi mensili delle concentrazioni di NO2 e PM10 dei singoli settori investigati su tutti i punti del dominio di calcolo. Si dapprima mostrano le mappe relative concentrazione media mensile del singolo inquinante nel caso invernale e nel caso estivo e, a seguire, sono messe a confronto le mappe relative al contributo assoluto e percentuale alla suddetta concentrazione media del singolo settore emissivo investigato. Le due informazioni sono infatti complementari e permettono di apprezzare la significatività dei risultati ottenuti nei vari punti del dominio, dal momento che, ad esempio, contributi percentuali alti potrebbero risultare poco significativi se occorrenti in punti dove le concentrazioni complessive sono basse e. viceversa. contributi assoluti anche apprezzabili in aree dove i valori complessivi sono alti potrebbero corrispondere a percentuali trascurabili rispetto al totale.

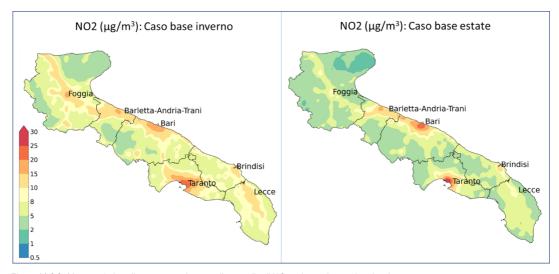


Figura 11.6.3. Mappe relative alla concentrazione media mensile di NO2 nel caso invernale ed estivo

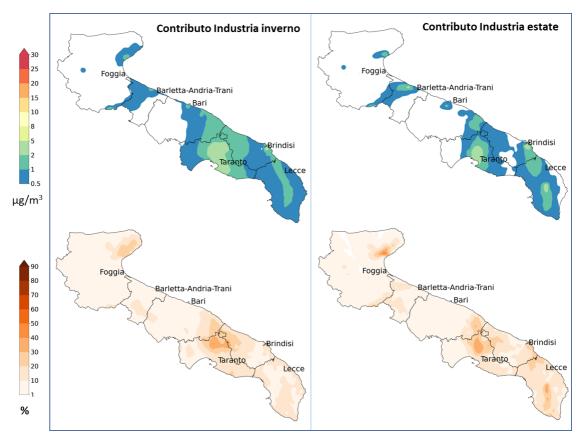


Figura 11.6.4. NO2: mappe relative al contributo assoluto e percentuale del settore industria.

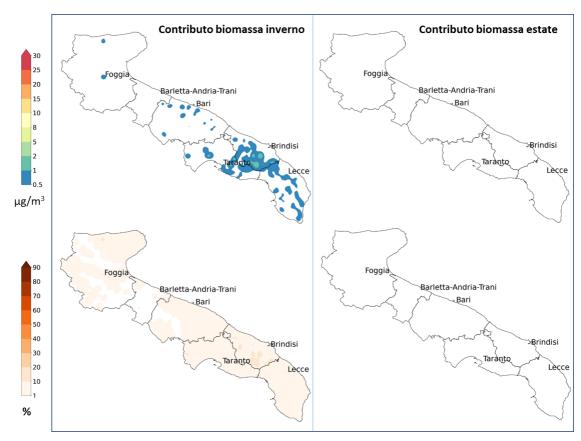


Figura 11.6.5. NO₂: mappe relative al contributo assoluto e percentuale del settore biomassa.

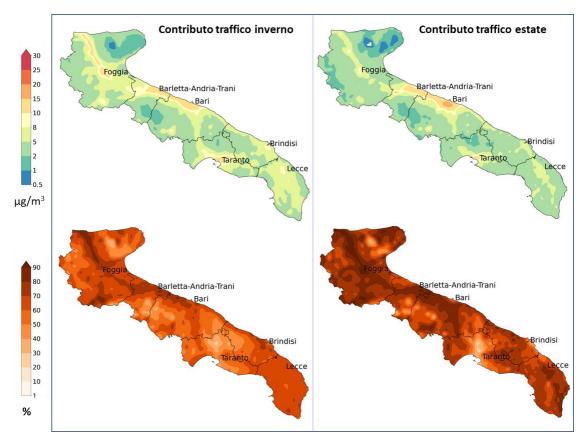


Figura 11.6.6. NO₂: mappe relative al contributo assoluto e percentuale del settore traffico.

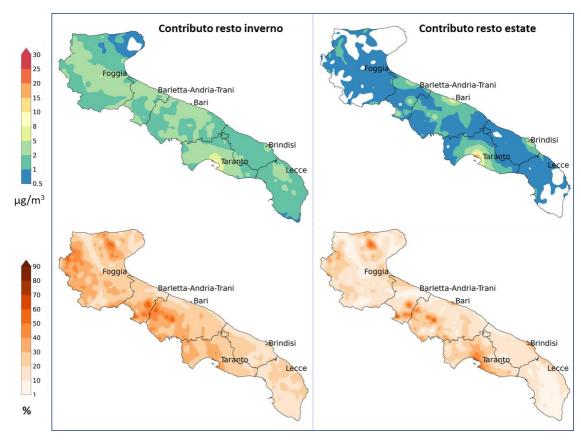


Figura 11.6.7. NO2: mappe relative al contributo assoluto e percentuale del settore RESTO.

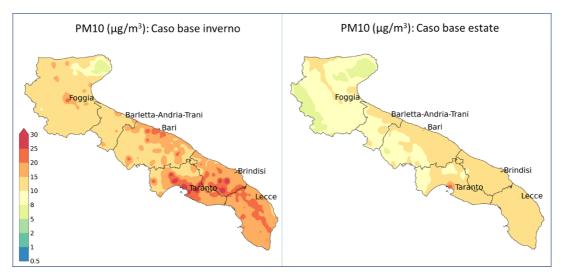


Figura 11.6.8. Mappe relative alla concentrazione media mensile di PM₁₀ nel caso invernale ed estivo.

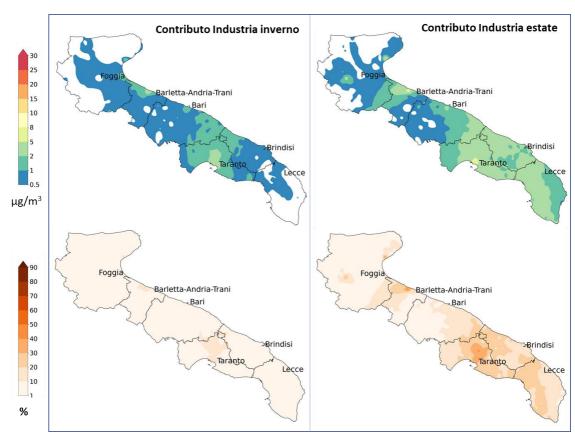


Figura 11.6.9. PM₁₀: mappe relative al contributo assoluto e percentuale del settore industria.

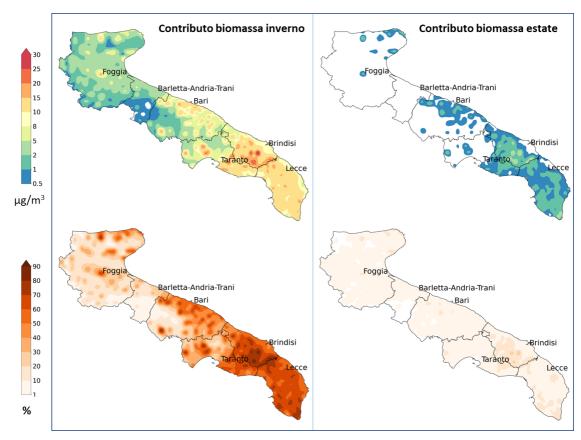


Figura 11.6.10. PM10: mappe relative al contributo assoluto e percentuale del settore biomassa.

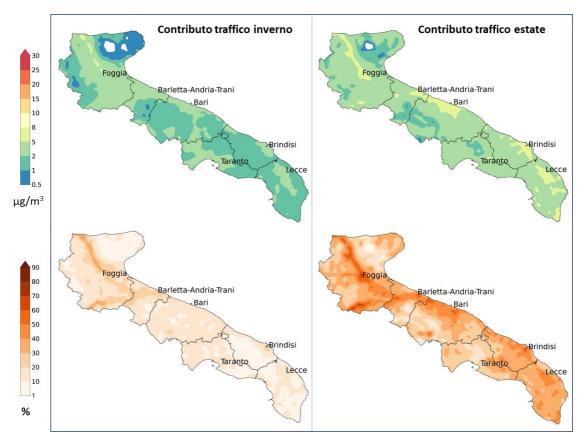


Figura 11.6.11. PM₁₀: mappe relative al contributo assoluto e percentuale del settore traffico.

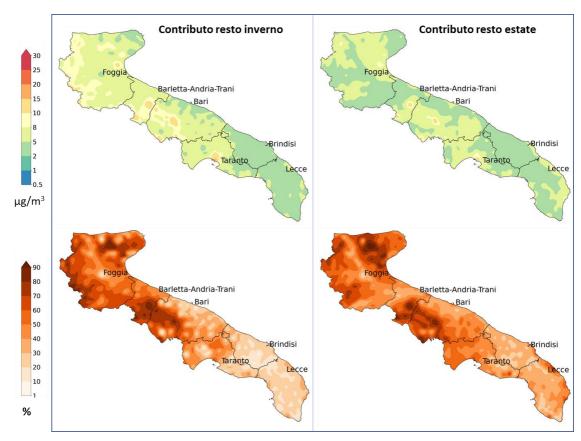


Figura 11.6.12. PM₁₀: mappe relative al contributo assoluto e percentuale del settore RESTO.

Discussione

Per quanto riguarda l'NO2, i risultati delle simulazioni del caso base non evidenziano una stagionalità marcata per questo inquinante. Il settore predominante che contribuisce alle concentrazioni è, come atteso, il traffico, in particolare su buona parte del territorio barese e foggiano dove il contributo percentuale supera in alcuni punti il 90%. Le sorgenti emissive indicate con il termine RESTO contribuiscono in modo apprezzabile, presumibilmente a causa delle emissioni marittime e portuali, con particolare riferimento al porto di Taranto. I

contributi delle sorgenti industriali risultano apprezzabili nelle aree in cui sono presenti i principali poli industriali della regione; da ultimo il contributo della combustione residenziale della biomassa si rileva perlopiù nei piccoli comuni lontani dai capoluoghi di provincia.

I risultati delle simulazioni relative al PM_{10} mostrano una componente stagionale molto evidente nei risultati relativi al caso base, che nel mese di gennaio raggiunge nel territorio brindisino valori medi di concentrazione superiori ai $35 \,\mu g/m^3$. Ciò che determina tale stagionalità è l'emissione dovuta all'utilizzo di biomassa legnosa per

il riscaldamento degli edifici, come si evince anche dal corrispondente contributo in termini percentuali, che. infatti, arriva fino all'80% nel mese di gennaio. riducendosi poi al 5-10% nel mese di luglio. A seguire vi è il contributo delle sorgenti emissive indicate con il termine RESTO che raggiunge in alcuni comuni del foggiano e dell'entroterra barese valori di concentrazione in gennaio ed in luglio fino ad un massimo di 10 µg/m³. con un contributo percentuale fino all'80% sia d'estate che di inverno. Da un'analisi condotta sulle stime emissive di PM₁₀ primario in input al modello, relative alle sole attività SNAP incluse in RESTO, emergono emissioni significative, legate ad esempio alle attività 9-"Incenerimento rifiuti agricoli".10-3-0 di "Combustione stoppie" ed 11-3 di "Incendi di foreste e altra vegetazione". Seguono i settori Traffico e Industria, i cui contributi assoluti nel periodo estivo risultano di entità maggiore oltre che interessare aree più ampie maggiori presumibilmente perché si verificano condizioni meteorologiche più favorevoli alla formazione di particolato secondario.

È stata presentata l'analisi di source apportionment modellistico condotta sull'intera regione Puglia, ad una risoluzione spaziale pari a 4 km, tramite l'applicazione del *Brute Force Method* (BFM). Nello specifico, a partire dalla simulazione 'base' condotta a 4 km di risoluzione spaziale con il modello fotochimico FARM sull'intera regione relativamente al 2016, sono state effettuate singole simulazioni, nelle quali sono state ridotte del 20% le emissioni relative alle seguenti sorgenti: il traffico stradale, il riscaldamento residenziale con biomassa legnosa, l'industria e tutte le sorgenti emissive restanti (denominate RESTO).

I risultati presentati hanno evidenziato che per quanto riguarda l' NO_2 la sorgente più rilevante risulta essere il traffico stradale sia nel periodo invernale che estivo. Anche industria e RESTO presentano contributi non trascurabili. Per il PM_{10} emerge nettamente che nel periodo invernale la causa principale dei fenomeni di inquinamento nelle province di Brindisi, Lecce e Taranto è rappresentata dalle emissioni da riscaldamento a legna, cui segue il settore RESTO. Durante il periodo estivo invece i contributi maggiori provengono dal traffico veicolare e dal settore RESTO.

Conclusioni

Bibliografia

Binkowski F. S. (1999) The aerosol portion of Models-3 CMAQ. In Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Part II: Chapters 9-18. D. W. Byun and J. K. S. Ching (Eds.) EPA-600/R-99/030, National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 10-1-10-16.

Binkowski, F. S. and U. Shankar (1995) The regional particulate matter model, 1. Mode description and preliminary results. J. Geophys. Res., 100, 26191-26209.

Bonyoung Koo, Gary M. Wilson, Ralph E. Morris, Alan M. Dunker and Greg Yarwood: "Comparison of Source Apportionment and Sensitivity Analysis in a Particulate Matter Air", Quality Model Environ. Sci. Technol. 2009, 43, 6669–6675.

Burr M.J., Zhang Y., 2011. Source apportionment of fine particulate matter over the Eastern U.S. Part I: source sensitivity simulations using CMAQ with the Brute Force method. Atmospheric Pollution Research2, 300-317.

Carter WPL (2000) Documentation of the SAPRC-99 Chemical Mechanism for VOC Reactivity Assessment. Final Report to California Air Resources Board, Contract 92-329 and 95-308, SAPRC, University of California, Riverside, CA.

Progetto MINNI Sistema modellistico per le politiche di qualità dell'aria a supporto di governi e regioni - Rapporto finale sintetico della Convenzione 2008-2012 fra Ministero dell'Ambiente e della Tutela del Territorio e del Mare ed ENEA "Sviluppo, verifica e nuove applicazioni del sistema modellistico MINNI a supporto delle politiche di qualità dell'aria nazionali e dei piani e programmi di risanamento della qualità dell'aria regionali", 2013

11.7 STIMA DELLE SORGENTI DEL PARTICOLATO ATMOSFERICO PM_{2.5}: UNA PROPOSTA DI ANALISI PARALLELA FRA INVENTARIO DELLE EMISSIONI E POSITIVE MATRIX FACTORIZATION

Bacco D., Agostini C., Maccaferri S., Scotto F., Trentini A., Poluzzi V.

ARPAE EMILIA ROMAGNA

RIASSUNTO

L'origine del particolato atmosferico è uno fra gli argomenti di maggiore interesse per i cittadini, per l'applicazione di modelli matematici e per i decisori politici. Gli approcci che vengono utilizzati per studiare questo tema nella sua complessità sono molteplici e complementari. Nel presente articolo viene descritto un confronto qualitativo fra l'utilizzo dell''Inventario delle emissioni" e un "modello al recettore".

L'inventario delle emissioni stima la quantità di inquinanti che vengono introdotti in atmosfera da attività antropiche e da sorgenti naturali. La compilazione dell'inventario delle regionale emissioni (https://www.arpae.it/dettaglio_generale.asp?id=3884&i dlivello=2075) fornisce la stima più dettagliata disponibile a livello territoriale in quanto utilizza dati emissivi e indicatori di attività disaggregati, eventualmente anche con l'uso di variabili proxy, fino ad arrivare a un dettaglio a scala comunale. L'utilizzo di un modello al recettore di ripartizione delle sorgenti (source apportionment) consente invece di stimare quali sorgenti abbiano concorso alla formazione del PM25 e in che misura, sulla base della composizione chimica dell'aerosol campionato in un sito detto "recettore". Un modello al recettore (Positive Matrix Factorization, PMF) è stato applicato nell'ambito del progetto Supersito, gestito e finanziato da Arpae e Regione Emilia-Romagna (DGR 4258/10 e DGR 1971/13).

Nel presente lavoro è riportato un confronto tra le due metodologie utilizzate per la frazione primaria del $PM_{2,5}$ che è stato il taglio dimensionale dell'aerosol su cui si è concentrato il progetto Supersito - nel periodo 2013-2015.

Una analisi esclusivamente quantitativa risulta complessa a causa delle differenze nella definizione e nell'aggregazione delle sorgenti, e delle diverse scale spaziali di riferimento. Inoltre non si dispone di strumenti completi per una valutazione dell'incertezza associata alle stime effettuate, ma è possibile comunque osservare alcune confortanti convergenze.

A livello qualitativo, e al netto della frazione secondaria dell'aerosol (che non viene considerata dall'inventario delle emissioni), entrambe le metodologie di analisi individuano nella combustione di legna, nel traffico e nelle attività produttive le principali sorgenti di particolato primario legate all'attività antropica. Considerata l'incoraggiante convergenza dei due strumenti di valutazione, si presenta una analisi parallela delle stime ottenute, che potrà essere la base per ulteriori approfondimenti metodologici e per la validazione incrociata dei risultati dei due metodi.

L'intento finale di questo studio non è quello di ottenere risultati di tipo strettamente quantitativo, ma quello di ricavare indicazioni utili e non ottenibili con nessuna delle due metodologie usata singolarmente.

Parole chiave: PM_{2,5}, composizione chimica, inventario emissioni, source apportionment.

ABSTRACT

The origin of atmospheric particulate matter is one of the topics of greatest interest to citizens, for the application of mathematical models and for the governance. The approaches that are used to study this complex theme are multiple and complementary. This article describes a qualitative comparison between the use of the "emission inventory" and a "receptor model".

The emissions inventory estimates the quantity of pollutants that are introduced into the atmosphere from anthropogenic activities and natural sources.

The regional emissions inventory (https://www.arpae.it/dettaglio_generale.asp?id=3884&i dlivello=2075) provides the most detailed estimate available at a territorial level as it uses emissive data and disaggregated activity indicators, possibly even with the use of proxy variables, up to a detail on a municipal scale.

The use of a source apportionment model allows instead to estimate which sources contributed to the formation of PM_{2,5}, based on the chemical composition of the aerosol sampled in a site called "receptor". A receptor model (Positive Matrix Factorization, PMF) was applied as part of the Supersito project, managed and financed by Arpae and the Emilia-Romagna Region (DGR 4258/10 and DGR 1971/13).

In this work, a comparison is made between the two methodologies used for the primary fraction of $PM_{2.5}$, the aerosol studied by the Supersito project in the 2013-2015 period.

An exclusively quantitative analysis is complex due to the differences in the definition and aggregation of the sources, and the different spatial reference scales. Furthermore, there are no complete tools for an assessment of the uncertainty associated with the estimates made, but it is still possible to observe some comforting convergences.

At a qualitative level, and net of the secondary fraction of the aerosol (which is not considered in the emissions inventory), both analysis methods identify the main sources of primary particulate in the combustion of wood, traffic and production activities. anthropic activity. Considering the encouraging convergence of the two assessment tools, a parallel analysis of the obtained estimates is presented, which can be the basis for further methodological analyzes and for the cross-validation of the results of the two methods.

By combining the results of the model with the receptor with the information deriving from the emissions inventory, it is also possible to obtain interesting information for studying particulates of secondary origin: in Emilia-Romagna this fraction constitutes a large part of the particulates detected.

The final intent of this study is not to obtain strictly quantitative results, but to obtain useful and not obtainable indications with neither of the two methodologies used individually.

Keywords: PM_{2,5}, chemical composition, emission inventory, source apportionment.

Introduzione

La qualità dell'aria è uno degli aspetti ambientali più delicati in Italia, visto l'elevato numero di superamenti dei limiti di legge registrati soprattutto nella zona della pianura padana.

Sono tre gli inquinanti che più spesso raggiungono valori troppo elevati: gli ossidi di azoto, l'ozono e il particolato atmosferico ("La qualità dell'aria in Emilia-Romagna", 2018:

https://www.arpae.it/dettaglio_documento.asp?id=7361 &idlivello=134).

Quest'ultimo è composto sia da una parte primaria direttamente emessa da diverse sorgenti sia antropiche che naturali, sia da una parte secondaria, cioè che si genera in atmosfera in seguito a reazioni tra sostanze già in essa presenti, detti precursori (Seinfeld e Pandis, 2006). La sua natura così varia rende complesso intervenire sulle concentrazioni del particolato e misurare con certezza l'effetto di ogni provvedimento. A tal fine

risulta utile individuare quali sorgenti concorrono alla formazione dell'aerosol considerato, e in che misura.

Un punto di partenza è quello di catalogare tramite l'inventario delle emissioni tutte le sorgenti presenti a livello regionale o nazionale: in questo modo è possibile stimare l'apporto al PM primario e avere informazioni riguardanti gli inquinanti precursori della frazione secondaria.

In maniera diametralmente opposta è possibile studiare la composizione chimica del particolato raccolto nei diversi punti di misura e, in base ad essa e alla sua variabilità, identificare le sorgenti che hanno concorso a produrre quel determinato aerosol in quel punto. Quindi una ricostruzione delle sorgenti in base alle concentrazioni al recettore (source apportionment).

In questo lavoro vengono mostrati i risultati ottenuti con questi due metodi per il periodo in cui era in corso il progetto Supersito (finanziato e realizzato da Arpae e dalla Regione Emilia-Romagna, DGR 4258/10 e DGR 1971/13, www.supersito-er.it), che tra il 2013 e il 2015 ha eseguito la caratterizzazione chimica del particolato atmosferico (PM_{2,5}) in tre fondi urbani - Bologna, Parma, Rimini - e in un fondo rurale, S. Pietro Capofiume in provincia di Bologna (Ricciardelli et al. 2017; Bacco et al. 2020; Scotto et al. 2015).

Metodi

Campionamento e analisi

Nell'ambito del progetto Supersito sono stati studiati tre siti di fondo urbano della regione Emilia-Romagna, uno nell'area metropolitana di Bologna, al centro della regione, uno a Parma, per l'analisi della qualità dell'aria nella zona più all'interno della pianura padana, e uno a Rimini, per l'area costiera. Inoltre è stato studiato anche un sito rurale della provincia di Bologna, S. Pietro Capofiume.

In ciascuno di questi punti sono stati raccolti campioni di PM_{2,5} di cui è stata caratterizzata la composizione chimica. In particolare, con analisi di Cromatografia Ionica (DIONEX, California, USA), sono stati analizzati i

principali ioni inorganici (sodio, potassio, magnesio, calcio, ammonio, nitrato, solfato, cloruro), in ICP-MS (7700 ICP-MS Agilent Technologies Inc. USA) sono stati misurati i metalli in tracce presenti nel particolato (AI, Sb, As, Ba, Cd, Cr, Fe, La, Pb, Mg, Mn, Ni, Sn, V, Zn), il carbonio elementare e organico (EC ed OC) sono stati quantificati con tecniche termo-ottiche di trasmittanza (Sunset Laboratoty Inc. Oregon, USA) e protocollo EUSAAR2 (Cavalli et al., 2010; Costa et al., 2016).

Le descrizioni dettagliate di siti, tecniche di campionamento e analisi eseguite sono pubblicate (Ricciardelli et al., 2017; Ottone et al., 2020; Bacco et al., 2020; Scotto et al., 2020).

Positive Matrix Factorization

Lo studio della ripartizione dell'inquinamento tra le sorgenti che ne sono responsabili è noto come "source apportionment" e può essere condotto sostanzialmente con due diversi tipi di approccio: quello orientato alla fonte e quello orientato "al recettore". La Positive Matrix Factorization (PMF) costituisce un modello al recettore che sta trovando largo impiego negli ultimi anni (Belis et al., 2020), sia per la disponibilità di un software gratuito e di relativamente facile utilizzo sviluppato dall'US EPA (US EPA PMF 5.0), sia perchè non richiede in input i profili delle sorgenti di inquinamento. L'idea di base dei modelli a recettore è che le particelle di particolato mantengono la composizione elementale/chimica caratteristica della loro origine, cosicchè la composizione nel sito recettore risulti una combinazione delle composizioni del particolato emesso dalle diverse sorgenti. Si tratta naturalmente di una ipotesi, che è più o meno verificata a seconda delle condizioni chimicofisiche dell'atmosfera e soprattutto a seconda delle specie chimiche considerate. Questa ipotesi è espressa dall'equazione del bilancio di massa, su cui si basano tutti i modelli al recettore:

$$x_{ij} \simeq \sum_k g_{ik} * f_{kj} \;\;$$
 o, in forma matriciale, $X \simeq G * F$

 x_{ij} = concentrazione della specie j nel campione i

 g_{ik} = contributo della sorgente k nel campione i

 f_{kj} = frazione della specie j nel particolato prodotto dalla sorgente k

X: matrice delle concentrazioni misurate, con elementi

G: matrice dei pesi delle sorgenti, con elementi

F: matrice dei profili chimici delle sorgenti, con elementi

Lo scopo dei modelli a recettore è determinare il peso delle sorgenti (matrice G) a partire dalle concentrazioni misurate (matrice X). In alcuni modelli, i profili chimici delle sorgenti (matrice F) devono essere noti, in altri - tra questi la PMF - sono determinati dal modello stesso, il che consente di poter applicare il modello anche senza una conoscenza approfondita delle sorgenti che impattano sul territorio e talvolta permette di scoprire il contributo di sorgenti inaspettate o, per sorgenti note, suggerisce un profilo chimico diverso da quello atteso.

La PMF fornisce dunque in output il profilo chimico dei fattori identificati (sulla base del quale ogni fattore viene associato ad una o a più sorgenti) e le serie storiche della massa di particolato prodotta da ogni fattore.

Il modello presuppone una serie di ipotesi; le principali sono sostanzialmente due.

La prima, di cui si è già parlato, è che il profilo chimico delle sorgenti sia costante nello spazio (ovvero non si modifichi nel tragitto dalla sorgente al recettore e quindi le specie chimiche non reagiscano tra loro e non subiscano reazioni chimico-fisiche nell'atmosfera) e nel tempo (questo crea difficoltà nell'identificare ad es. processi industriali con cicli produttivi variabili). Questa ipotesi fa sì, ad esempio, che il particolato di origine secondaria sia individuato come se fosse emesso come si ritrova in atmosfera, il che non è, per definizione.

La seconda ipotesi è che i profili e gli andamenti delle sorgenti siano linearmente indipendenti fra loro, affinché

i loro contributi siano correttamente distinti dal modello. Tali ipotesi difficilmente risultano perfettamente verificate nella realtà; il modello tuttavia ammette un certo scostamento dalle ipotesi, dando luogo a stime più imprecise e con una maggiore incertezza.

Il modello è stato applicato separatamente nei 4 siti e sono stati identificati 6 fattori, con un profilo chimico molto simile in ogni sito, indicando una elevata omogeneità a livello regionale nella formazione di particolato.

Quattro di questi fattori risultano associati a sorgenti emissive di origine antropica, mentre due risultano associati a componenti secondarie del particolato:

- -traffico veicolare con risollevamento della componente crostale;
- combustione di biomassa;
- combustioni di oli pesanti;
- mix di attività antropogeniche;
- un fattore secondario caratterizzato dal nitrato d'ammonio:
- un fattore secondario caratterizzato dal solfato d'ammonio e composti organici.

Il mix di attività antropogeniche non è stato rilevato come fattore isolato nel sito rurale di San Pietro Capofiume, che quindi presenta in realtà una soluzione a 5 fattori. L'adattamento statistico è risultato soddisfacente per i 4 siti, con un R² tra il PM₂,5 previsto e quello osservato compreso tra 0,93 e 0,97. La descrizione dettagliata dell'analisi PMF è riportata nell'articolo "Principali sorgenti che partecipano alla formazione del PM₂,5 in Emilia-Romagna", pubblicato su questo numero.

Inventario delle emissioni

Obiettivo dell'inventario delle emissioni è la restituzione di una stima quantitativa dei contributi alle emissioni in

atmosfera, provenienti da diverse sorgenti, e la loro distribuzione sul territorio.

Tale stima è realizzata sulla base della raccolta sistematica di informazioni su tipologia, localizzazione, entità delle emissioni regionali di inquinanti atmosferici e gas climalteranti, e fornisce supporto alla valutazione, gestione e pianificazione della qualità dell'aria, in particolare per l'individuazione dei settori su cui indirizzare prioritariamente le misure per la riduzione dell'inquinamento atmosferico e la costruzione degli scenari emissivi corrispondenti a politiche di risanamento della qualità dell'aria e mitigazione dei cambiamenti climatici.

L'inventario delle emissioni in atmosfera per la Regione Emilia-Romagna è compilato almeno ogni 3 anni in ottemperanza al decreto legislativo n. 155/2010.

La consultazione dei risultati in forma completa è disponibile sul sito di Arpae (www.arpae.it/dettaglio_generale.asp?id=3056&idlivello=1691).

L'aggiornamento dell'inventario regionale delle emissioni in Emilia-Romagna è realizzato usando il software INEMAR (INventario EMissioni ARia), strumento messo a punto e progressivamente aggiornato nell'ambito di una convenzione interregionale che attualmente coinvolge, oltre all'Emilia-Romagna, Lombardia, Piemonte, Veneto, Friuli Venezia Giulia, province autonome di Trento e di Bolzano e Puglia.

La metodologia di riferimento implementata in INEMAR è quella EMEP-CORINAIR; per gli inventari 2013 e 2015 è stata utilizzata quella contenuta nel documento "EMEP/EEA Air Pollutant Emission Inventory Guidebook 2013" (https://www.eea.europa.eu/publications/emep-eea-guidebook-2013).

La classificazione delle emissioni secondo tale metodologia prevede l'impiego della codifica SNAP (Selected Nomenclature for sources of Air Pollution) e lo svolgimento delle stime in funzione di essa; le attività antropiche e naturali che possono dare origine ad emissioni in atmosfera sono ripartite in 11 macrosettori:

- Produzione di energia e trasformazione di combustibili
- 2. Combustione non industriale
- 3. Combustione industriale
- 4. Processi produttivi
- Estrazione e distribuzione di combustibili
- 6. Uso di solventi
- 7. Trasporto su strada
- 8. Altre sorgenti mobili e macchinari
- 9. Trattamento e smaltimento rifiuti
- 10. Agricoltura e allevamenti
- 11. Altre sorgenti e assorbimenti.

In base a questa classificazione, per l'anno 2015 risulta che il maggior contributo primario all'emissione di particolato in Emilia-Romagna è dovuto al riscaldamento domestico a biomassa (che ricade nel macrosettore 2) e al trasporto su strada (macrosettore 7), seguiti da altre attività antropiche quali attività produttive (macrosettore 4), combustione nell'industria (macrosettore 3), produzione e uso di solventi (macrosettore 6).

Il 51% del PM₁₀ deriva dalla combustione non industriale; il 99% di questa frazione è dovuto alla combustione di biomassa per riscaldamento domestico ed è costituito quasi interamente da PM_{2.5}.

Il 26% del PM₁₀ è emesso dai veicoli su strada: il 42% di questa frazione è riconducibile alla combustione nei motori ad alimentazione diesel e il 50% all'usura di freni e pneumatici di tutti i tipi di veicoli.

L'insieme delle attività produttive e antropiche (macrosettori 4, 3 e 6) è responsabile di circa il 14% delle emissioni di PM₁₀.

Seguono la zootecnia, con un contributo alle emissioni di PM_{10} pari al 5% circa, e le restanti forme di trasporto col 4%.

Risultati e discussione

Le soluzioni ottenute dalla PMF eseguita sui risultati delle analisi chimiche dei campioni di PM_{2,5} raccolti nel biennio 2013-2015 all'interno del progetto Supersito, sono descritti dettagliatamente altrove (Scotto et al., 2015; Scotto et al., 2020; Ottone et al., 2020).

La soluzione risultata migliore mostra 6 fattori: due legati a formazione di particolato secondario, uno a fenomeni di trasporto di masse d'aria distanti e tre attribuibili a sorgenti primarie di aerosol.

In particolare le sorgenti antropiche individuate sono il traffico (compresa una parte di materiale crostale risospesa dal passaggio dei veicoli), la combustione di biomassa e una componente non meglio diversificabile formata dall'insieme delle attività produttive e di servizio.

Le sorgenti primarie sono le uniche che sono state prese in considerazione per osservare la confrontabilità dei risultati con l'inventario delle emissioni, che considera per definizione solo la parte primaria del particolato. Quindi il frazionamento del PM_{2,5} verrà calcolato portando al 100% la sola frazione primaria.

Per quanto riguarda i dati provenienti dall'inventario delle emissioni, i macrosettori in cui sono suddivise le sorgenti sono stati arbitrariamente raggruppati per essere i più coerenti possibile con i fattori primari individuati dalla PMF: i macrosettori 7 e 8 per la componente dei trasporti; i macrosettori 1,3,4,6,9,10 per l'insieme delle attività produttive e di servizio (Tabella 11.7.1).

Tabella 11.7.1 – Raggruppamento dei macrosettori dell'inventario delle emissioni in funzione dei fattori risultanti dall'analisi di source apportionment riconducibili a sorgenti antropiche primarie

Sorgenti antropiche - PMF	Macrosettori – Inventario Emissioni					
Traffico veicolare	MS 7 – Trasporto su strada MS 8 – Altre sorgenti mobili e macchinari					
Combustione di biomassa	MS 2 – Combustione non industriale					
Mix antropogenico	MS 1 – Produzione energia e trasformazione combustibile MS 3 – Combustione nell'industria MS 4 – Processi produttivi MS 6 – Uso di solventi MS 9 – Trattamento e smaltimento rifiuti MS 10 – Agricoltura					

L'analisi di source apportionment è fatta sui dati raccolti in stazioni di fondo, urbano e rurale, esposte alla media di tutte le sorgenti presenti in un'area spaziale di riferimento che potrebbe essere collocabile a scala comunale.

L'estensione dell'area di riferimento a tutta la regione potrebbe portare ad approssimazioni inerenti, ad esempio, la misura di specifiche sorgenti che nei siti considerati potrebbero essere più o meno importanti rispetto alla media regionale: ad esempio nelle prossimità dei siti studiati non sono collocati grandi

impianti petrolchimici o porti commerciali come in altre aree della regione. Quindi i risultati della PMF sono da considerarsi più solidi per la dimensione comunale e meno per la dimensione regionale.

L'inventario regionale risulta essere la stima a maggior dettaglio disponibile in quanto restituisce le emissioni disaggregate a livello comunale; tuttavia, la disomogeneità delle fonti e dei corrispondenti livelli di dettaglio, che costringono in alcuni casi all'utilizzo di variabili surrogate e/o alla stima indiretta mediante indicatori di attività e fattori di emissione medi, si riflettono in una maggiore incertezza nelle stime a livello comunale, non quantificabile in modo assoluto.

Per questi motivi si ritiene più solido, nelle valutazioni sul PM primario, derivante dall'inventario delle emissioni, mettere in relazione le stime aggregate a livello regionale.

I calcoli sono stati fatti per entrambe le scale spaziali, comunale e regionale. Per Bologna, essendo città metropolitana, la scala comunale risulta essere troppo piccola data l'urbanizzazione senza soluzione di continuità nell'agglomerato, motivo per cui sono state prese in considerazione le sorgenti presenti nell'inventario per l'intero agglomerato metropolitano (oltre al comune di Bologna, Argelato, Calderara di Reno, Casalecchio di Reno, Castel Maggiore, Castenaso, Granarolo dell'Emilia. Ozzano dell'Emilia. Pianoro. San Lazzaro di Savena, Sasso Marconi e Zola Predosa). Anche questa opzione può comportare degli errori in quanto l'insieme di questi 12 comuni supera la sola area urbanizzata e considera anche ampie parti sub-urbane o rurali, ma dovendo compiere un'approssimazione, si è deciso arbitrariamente che questa potesse essere la più vicina alla situazione rappresentata dai campioni raccolti nel sito di fondo urbano di Bologna del progetto Supersito.

Sebbene gli approcci siano sostanzialmente diversi per dati utilizzati, logica di applicazione e tipo di approssimazioni accettate, i risultati mostrano un'ottima coerenza tra i due metodi sia su scala regionale sia considerando separatamente i singoli siti.

Il particolato primario regionale, secondo entrambi gli approcci, deriva per più dell'80% da sorgenti di combustione, soprattutto per riscaldamento domestico, con l'utilizzo di biomassa come combustibile, e trasporto veicolare, mentre l'insieme delle attività produttive e di servizio risulta nettamente minoritario nel contribuire alla massa del PM_{2.5} direttamente emesso in atmosfera.

Una maggiore attribuzione al peso percentuale del traffico nei risultati di source apportionment è coerente con il fatto che il fattore ad esso attribuito contiene al suo interno anche il contributo della componente crostale risollevata in atmosfera dal passaggio dei veicoli. Questa quantità invece non è comunemente considerata dall'inventario delle emissioni che considera solo il contributo diretto dei veicoli (exhaust e not-exhaust).

Considerando i risultati a livello comunale, si conferma l'importanza dei processi di combustione, in particolare della biomassa, rilevati a livello regionale.

Interessante osservare che la peculiarità di Parma, unico sito tra quelli in esame a presentare un contributo del traffico superiore alla combustione di biomassa alla formazione del particolato, sia stata colta sia dalla analisi di source apportionment che dai dati dell'inventario delle emissioni.

Il sito che mostra, nell'analisi puntuale, maggiori differenze tra source apportionment e inventario delle emissioni è Rimini, con delle percentuali di particolato primario ottenute dall'analisi PMF intermedie tra quelle che l'inventario attribuisce al solo comune o all'intera provincia riminese. Ad esempio la biomassa in base ai risultati PMF peserebbe per quasi il 60% della massa del PM2.5, mentre il macrosettore 2, basandosi sull'inventario, avrebbe un apporto del 40% al PM2.5 a livello comunale e quasi del 75% in tutta la provincia.

Le più probabili spiegazioni di questo possono essere o una sottostima a livello comunale dell'apporto della biomassa al particolato oppure un'influenza sul sito di misura da parte di masse d'aria provenienti dalla campagna a causa, ad esempio, delle brezze di terra tipiche delle aree costiere.

Conclusioni

Considerando le grandi differenze esistenti tra i due approcci, sia perché si sviluppano da punti di partenza diametralmente opposti, relativamente al percorso del particolato in atmosfera (emissione e recettore), sia perché non utilizzano nessun dato in comune, il risultato ottenuto così comparabile e convergente è molto positivo e rafforza la validità di entrambe le metodiche utilizzate e del modo in cui sono state applicate. Questo offre una maggiore garanzia in merito alle considerazioni che si possono fare, almeno, sulla componente primaria del PM_{2,5} e sulle sue sorgenti.

Ringraziamenti

Gli autori desiderano ringraziare tutti coloro che hanno collaborato a raccogliere ed analizzare questi dati all'interno del progetto Supersito o nella preparazione dell'inventario delle emissioni della regione Emilia-Romagna. In modo particolare i colleghi di Arpae Emilia-Romagna delle APA e del Laboratorio Multisito.

Bibliografia

Bacco et al 2020 (altro articolo di questa pubblicazione):

C.A. Belis, D. Pernigotti, G. Pirovano, O. Favez, J.L. Jaffrezo, J. Kuenen, H. Denier van Der Gon, M. Reizer, V. Riffault, L.Y. Alleman, M. Almeida, F. Amato, A. Angyal, G. Argyropoulos, S. Bande, I. Beslic, J.-L. Besombes, M.C. Bove, E. Yubero, "Evaluation of receptor and chemical transport models for PM₁₀ source apportionment". Atmospheric Environment X (5) 2020, 100053.

https://www.sciencedirect.com/science/article/pii/S2590162119300565?via%3Dihub

Cavalli F., Viana M., Yttri K.E., Genberg J., Putaud J.P. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmospheric Measurement Techniques 3 (2010) 79-89:

Costa V., Bacco D., Castellazzi S., Ricciardelli I., Vecchietti R., Zigola C., Pietrogrande M.C. Characteristics of carbonaceous aerosol in Emilia-Romagna (Northern Italy) based on two fall/winter field campaigns. Atmospheric Research 167 (2016) 100-107;

Ricciardelli I., Bacco D., Rinaldi M., Bonafè G., Scotto F., Trentini A., Bertacci G., Ugolini P., Zigola C., Rovere F., Maccone C., Pironi C., Poluzzi V. A three-year investigation of daily PM_{2.5} main chemical components in four sites: the routine measurement program of the Supersito Project (Po Valley, Italy). Atmospheric Environment 152 (2017) 418-430;

Ottone M., Broccoli S., Parmagnani F., Giannini S., Scotto F., Bonvicini L., Luberto F., Bacco D., Trentini A., Poluzzi V., Angelini P., Colacci A., Rossi P.G., Ranzi A. Source-related components of fine particulate matter and risk of adverse birth outcomes in Northern Italy. Environmental Research 186 (2020) 109564;

Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd Edition, John Wiley & Sons, New York (2006);

Scotto F., Ricciardelli I., Bacco D., Vagheggini A., Trentini A., Ferrari S., Poluzzi V., Maccone C., Vecchi R. PM_{2,5} source apportionment in the Po Valley: a 4 city study in Emilia-Romagna region. Comunicazione orale, European Aerosol Conference, Milano (2015);

https://www.arpae.it/cms3/documenti/_cerca_doc/supersito/presentazioni/2015/10-presentazEAC2015_scotto.pdf Scotto 2020 (altro articolo di guesta pubblicazione);

US-EPA, "EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide" (2014). https://www.epa.gov/sites/production/files/2015-02/documents/pmf_5.0_user_guide.pdf.

11.8 PRINCIPALI SORGENTI CHE PARTECIPANO ALLA FORMAZIONE DEL PM2.5 IN EMILIA-ROMAGNA

Scotto F., Bacco D., Trentini A., Maccone C., Ferrari S., Poluzzi V.

ARPAE EMILIA ROMAGNA

RIASSUNTO

Il progetto Supersito, gestito e finanziato da Arpae e Regione Emilia-Romagna (DGR 4258/10 e DGR 1971/13), aveva come obiettivo primario un aumento della conoscenza relativa al particolato atmosferico. Le modalità con cui questo risultato è stato conseguito sono molteplici, in particolar modo ha avuto grande rilievo lo studio dell'importanza e della natura delle sorgenti emissive che sono responsabili della generazione dell'aerosol. A questo scopo è stato applicato un modello statistico "al recettore" di ripartizione delle sorgenti (SA, Source Apportionment) ai dati di composizione chimica del PM_{2,5} (Ricciardelli et al. 2017 - i dati sono attualmente disponibili anche in report semestrali aggiornati sul sito di Arpae, www.arpae.it) relativi a quattro siti della regione: tre fondi urbani (Bologna, Parma, Rimini) e un fondo rurale (S. Pietro Capofiume). Il modello al recettore applicato è la PMF (Positive Matrix Factorization), ed è stato implementato utilizzando il software EPA PMF v5.0. sviluppato da US EPA (United States Environment Protection Agency).

I risultati ottenuti dai dati del periodo 2013-2015 hanno mostrato una sostanziale omogeneità delle sorgenti nei siti studiati, con contributi leggermente diversi. La principale fonte antropica di particolato è risultata essere la combustione di biomassa, principalmente utilizzata per il riscaldamento domestico, ma anche per le attività agricole, cucina o altro, che nella stagione fredda arriva a costituire una media del 30 % circa della massa del PM2,5. Un altro fattore chiaramente individuabile di combustione di origine antropica è il traffico veicolare, che può generare sulla media annua tra tutti i siti il 15-20 % circa del PM2,5, con una componente sia exhaust che non. Le attività produttive e di servizio generano infine il contributo più sito-specifico sia come composizione che come peso sul PM2,5; nel sito rurale ad esempio il

contributo di tale sorgente è risultato trascurabile, mentre la media nei siti urbani invece è compresa tra il 5 e il 10 % circa.

La frazione secondaria del particolato viene confermata di gran importanza nella composizione del particolato, arrivando ad essere il 50% del PM_{2,5}. Sono state individuate due componenti con composizione chimica e stagionalità differenti: la prima caratterizzata soprattutto dal nitrato d'ammonio, con una marcata importanza quasi esclusivamente durante la stagione fredda, che contribuisce a portare il PM a livelli elevati soprattutto nei periodi di accumulo. La seconda è invece caratterizzata prevalentemente dal solfato d'ammonio e dalle specie organiche, probabilmente secondarie, e fornisce un contributo uniforme durante l'anno. Questa può essere attribuita ad un fondo a scala regionale o anche più ampia di particolato invecchiato, che è stato cioè ampiamente processato in atmosfera.

Un'ulteriore sorgente può essere individuata analizzando l'ammonio che costituisce il 10-12% della massa del PM_{2.5}, indipendentemente dal sito o dalla stagione. Siccome questo ione deriva principalmente dall'ammoniaca, gas che viene emesso quasi integralmente, è possibile attribuire alle attività agricole e agli allevamenti almeno un 10% del particolato analizzato: ne consegue che questa componente risulta essere la principale sorgente antropica del particolato non legata a processi di combustione.

Parole chiave: PM_{2,5}, Emilia-Romagna, Positive Matrix Factorization, particolato primario, particolato secondario

ABSTRACT

The Supersite project, managed and financed by Arpae and the Emilia-Romagna Region (DGR 4258/10 and DGR 1971/13), had as its primary objective an increase in knowledge relating to atmospheric particulate matter. This result has been achieved by multiple ways; in particular, great importance had the study of the importance and nature of the emissive sources responsible for the generation of the aerosol. For this purpose, a receptor model (SA, Source Apportionment) was applied to the chemical composition data of PM_{2,5} (Ricciardelli et al. 2017 - data are also available in updated half-yearly reports on the Arpae website, www.arpae.it) in four sites of the region: three urban background (Bologna, Parma, Rimini) and a rural background (S. Pietro Capofiume). The receptor model was PMF (Positive Matrix Factorization), and it was implemented using the EPA PMF v5.0 software developed by US EPA (United States Environment Protection Agency).

The results obtained from the data on the period 2013-2015 showed a substantial homogeneity of the sources in the sites, with slightly different contributions.

The main anthropogenic source of particulate was biomass burning, mainly used for domestic heating, but also for agricultural, cooking or other activities: it accounts on average for about 30% of $PM_{2,5}$ mass during the cold period.

Another clearly identifiable factor of anthropogenic combustion is vehicular traffic, which can generate about 15-20% of $PM_{2,5}$ on the annual average among all sites, with both an exhaust and non-exhaust component. Finally, production and service activities generate the most site-specific contribution both in terms of composition and weight on $PM_{2,5}$; in the rural site, for example, the contribution from this source was negligible, while the average in urban sites it was between 5% and 10%. The secondary fraction of the particulate is confirmed to be of great importance in the composition of the particulate, reaching 50% of $PM_{2,5}$. Two components with different chemical composition

and seasonality have been identified. The first one is characterized by ammonium nitrate, with a marked importance almost exclusively during the cold season: it contributes to rise PM to high levels especially in the periods of accumulation. The second one is instead characterized mainly by ammonium sulfate and organic species, probably secondary, and provides a uniform contribution during the year. This can be attributed to a regional or even larger scale background of aged particulate matter, which has been widely processed in the atmosphere.

An additional source can be identified by analyzing the ammonium which constitutes 10-12% of PM2.5 mass, regardless of the site or the season. This ion mainly derives from ammonia, a gas that is emitted almost entirely by agricultural activities and zootechnics (https://www.arpae.it/dettaglio_generale.asp?id=3884&i dlivello=2075); for this reason at least 10% of the analyzed particulate matter can be attributed to agriculture and farms. It follows that this component is the main anthropogenic source of the particulate matter not linked to combustion processes.

Keyword: PM_{2,5}, Emilia-Romagna, Positive Matrix Factorization, primary particulate matter, secondary particulate matter

Introduzione

Il progetto Supersito (https://www.arpae.it/index.asp?idlivello=1459), gestito e finanziato da Arpae e Regione Emilia-Romagna (DGR 4258/10 e DGR 1971/13), con la collaborazione del CNR-ISAC e di altre istituzioni nazionali ed internazionali, aveva lo scopo di migliorare le conoscenze degli aspetti ambientali e sanitari del particolato fine (PM2,5 e PM1) e ultrafine (inferiore al PM0.1) presente in atmosfera.

Tra gli obiettivi del progetto, della durata di sei anni (2010-2016), ha avuto un grande rilievo studiare l'importanza e la natura delle sorgenti emissive responsabili della generazione dell'aerosol rilevato in atmosfera. A questo scopo è stato applicato un modello

statistico "al recettore" per lo studio della ripartizione delle sorgenti (SA, Source Apportionment) ai dati di composizione chimica del PM_{2.5} (Ricciardelli et al. 2017) misurati in quattro siti della regione, tre fondi urbani (Bologna, Parma, Rimini) e un fondo rurale (S. Pietro Capofiume - BO), durante il biennio aprile 2013 – marzo 2015. Nell'ambito del source apportionment, che mira alla determinazione dei contributi delle sorgenti di emissione all'inquinamento atmosferico, i modelli al recettore costituiscono uno strumento largamente utilizzato dalla comunità scientifica (Belis C.A et al., 2019). Essi identificano le fonti primarie e secondarie del particolato atmosferico, quantificandone l'importanza nel sito recettore attraverso lo studio delle serie storiche della composizione chimica del particolato. La stima dei contributi delle sorgenti di emissione può essere di grande utilità sia per il supporto alla governance, relativamente alle misure da intraprendere per abbassare le concentrazioni di inquinamento atmosferico, sia per tentare di valutare gli effetti sulla salute delle diverse sorgenti, tenendo conto non solo della quantità del particolato emesso, ma anche della qualità. Due studi epidemiologici sono stati effettuati sui fattori identificati da questa prima analisi: uno sugli esiti riproduttivi è stato recentemente pubblicato (Ottone et al., 2020) ed uno sugli effetti a lungo termine della mortalità per cause naturali. respiratorie cardiovascolari è in fase di sottomissione.

Metodi

I siti oggetto di studio sono stati scelti in quanto ritenuti rappresentativi di quattro diverse tipologie di aree della regione: fondo urbano della città capoluogo (Bologna – BO/MS), fondo rurale (San Pietro Capofiume - SPC), area costiera (Rimini – RN), e fondo urbano dell'area ovest della regione, nella parte più interna della pianura (Parma - PR).

I dettagli su campionamento del PM_{2,5} e analisi chimiche sono riportati altrove (Ricciardelli et al. 2017; Bacco et al. 2020, su questo numero). Brevemente, si sono utilizzati filtri in fibra di quarzo da 47 mm di diametro con campionatori a basso volume (55 m₃/giorno; UNI EN 12341). Per la determinazione della concentrazione di

massa giornaliera di $PM_{2,5}$ sono stati utilizzati analizzatori certificati equivalenti con misure di attenuazione dei raggi β (Swam, FAI Instruments, Roma). Sono state effettuate analisi chimiche per la determinazione della frazione carboniosa (carbonio organico, OC e carbonio elementare, EC), di ioni (ammonio, bromo, calcio, cloruro, magnesio, nitrato, fosfato, potassio, sodio, solfato) e metalli (alluminio, antimonio, arsenico, bario, cadmio, calcio, cromo, ferro, lantanio, piombo, magnesio, manganese, nichel, stagno, potassio, vanadio, zinco).

La frazione carboniosa è stata quantificata tramite analisi termo-ottiche di trasmittanza (Sunset Laboratoty Inc. Oregon, USA) eseguite seguendo il protocollo EUSAAR2 (Cavalli et al., 2010, Costa et al., 2016); la componente ionica è stata analizzata in cromatografia ionica (IC) con rilevatore di conducibilità. Le analisi dei metalli sono state eseguite in ICP-MS, estendendo a tutti gli analiti considerati la metodologia UNI EN 14902 creata per Cd, As, Ni e Pb.

Il modello al recettore applicato è la PMF (Positive Matrix Factorization), ed è stato implementato utilizzando il software EPA PMF v5.0, sviluppato da US EPA (United States Environment Protection Agency). Nel sito di Bologna, definito "Main site", la frequenza delle analisi effettuate è pari al 90% dei giorni di campionamento e la numerosità della serie storica analizzata è pari a 650 dati. Negli altri tre siti, invece, le analisi chimiche sono state effettuate nel 30% circa dei giorni, dando luogo a serie storiche con numerosità poco superiore a 200.

Risultati

Nonostante il modello sia stato applicato separatamente sui dati relativi ad ogni sito, i risultati ottenuti sono stati comunque molto simili tra loro: sono stati identificati infatti 6 fattori, ognuno con un profilo chimico molto simile in ogni sito, indicando una elevata omogeneità a livello regionale nella formazione di particolato.

Quattro di questi fattori risultano associati a sorgenti emissive di origine antropica, mentre due sono associati a componenti secondarie del particolato:

- -traffico veicolare con risollevamento della componente crostale:
- -combustione di biomassa;
- -combustioni di oli pesanti;
- -mix di attività antropogeniche;
- -un fattore secondario caratterizzato dal nitrato d'ammonio;
- -un fattore secondario caratterizzato dal solfato d'ammonio e composti organici.

Il mix di attività antropogeniche non è stato rilevato come fattore isolato nel sito rurale di San Pietro Capofiume, che quindi presenta in realtà una soluzione a 5 fattori. L'adattamento statistico è risultato soddisfacente per i 4 siti, con un R² tra il PM_{2,5} previsto e quello osservato compreso tra 0.93 e 0.97.

Fattori individuati collegabili a specifiche sorgenti

Il fattore legato al traffico veicolare presenta un profilo chimico caratterizzato da alcuni elementi tipici sia della componente exhaust (come EC e OC), che not-exhaust cioè elementi derivanti dell'abrasione delle parti meccaniche (come Sb, Sn, Zn) ed elementi caratteristici del suolo (Fe, Ca, La), che indicano come il traffico veicolare provochi anche un risollevamento di materiale crostale. Questo fattore presenta contributi percentuali alla massa di PM_{2.5} variabili tra il 10 % e il 25%, con il sito di Parma che presenta i contributi sia relativi che assoluti più alti, il sito rurale di San Pietro Capofiume e quello di Rimini che presentano invece i contributi più bassi. Probabilmente la maggiore o minore concentrazione in atmosfera di PM_{2.5} imputabile al traffico nei diversi siti dipende sia dal diverso volume di traffico (come nel caso del sito rurale) sia da condizioni dispersive dell'atmosfera più o meno favorevoli. Questo fattore, in valore assoluto, non mostra una particolare stagionalità: le concentrazioni di PM_{2.5} imputabili al traffico diminuiscono durante la stagione calda per effetto della maggiore diluizione in atmosfera, ma il contributo percentuale aumenta in seguito al calo di altri fattori "invernali", legati alla combustione di legna per riscaldamento e alla

concentrazione di nitrato d'ammonio, composto tipico dei periodi freddi. In tutti i siti, perciò, il traffico rappresenta la sorgente emissiva che ha il maggiore impatto diretto sul PM_{2,5} durante la stagione calda.

Il fattore legato alla combustione di legna presenta un profilo chimico caratterizzato da potassio, cloro, carbonio elementare ed organico e, in tutti i siti tranne Parma, anche da alcuni metalli pesanti (Zn, Cd e Pb, questi ultimi normati dal vigente D.Lgs. 155/2010), i quali, pur non incidendo sulla massa di PM2,5, sono da evidenziare per il loro possibile effetto sulla salute. Questo fattore rappresenta la principale sorgente emissiva in tutti i siti durante la stagione fredda (con un contributo variabile tra il 25% e il 40% circa), ed è presente anche durante la stagione calda, pur con contributi ovviamente molto più bassi (dal 10% al 20% circa). Probabilmente, oltre alla combustione della legna per il riscaldamento domestico (come le stufe a pellet o i caminetti), possono essere una fonte non trascurabile di combustione di legna o simili, in particolare nel periodo caldo, anche le cotture in forno o con grigliatura a legna o carbone (pizzerie, ristoranti e privati) e la combustione a cielo aperto di sfalci e potature agricole. I contributi più bassi da tale sorgente si osservano a Parma, mentre è interessante notare come i contributi più alti, in termini sia assoluti sia percentuali, si osservano nel sito di Rimini. Nella città romagnola infatti la combustione di biomassa legnosa contribuisce circa al 30% del PM_{2.5} nella media di tutto l'anno (guasi 6 μg/m³), e spiega più del 15% della massa di PM2,5 anche durante la stagione calda (quasi 2 µg/m³).

Il fattore legato all'utilizzo di olio combustibile, è caratterizzato dalla presenza di vanadio, nichel e solfato, e da una parte di materiale crostale. L'utilizzo di oli combustibili è in generale attribuibile alle raffinerie e al traffico navale; l'elevata correlazione che si osserva tra gli andamenti temporali di questa sorgente nei quattro siti monitorati fa pensare che si tratti di una sorgente con trasporto long-range, quindi coerente con il traffico navale e tale ipotesi sembra essere confermata dall'analisi delle back trajectories (calcolate con Hysplit, NOAA Air Resources Laboratory). La serie storica di questo fattore è infatti caratterizzata da picchi molto elevati: nei giorni precedenti a tali picchi (individuati

selezionando i giorni in cui si osservano valori maggiori al 90° percentile), la massa d'aria era sempre transitata sopra al Mediterraneo, arricchendosi probabilmente del contributo delle emissioni navali.

Questo fattore spiega solo pochi punti percentuali (media annua < 5%) del PM_{2,5} e prevalentemente durante la stagione calda, per cui non contribuisce in maniera determinante al valore medio annuo del PM_{2,5}; tuttavia gli elementi chimici caratterizzanti questo fattore, pur essendo di scarsa importanza in termini di massa, possono avere un effetto nocivo sulla salute (Basagaña et al., 2015; Bell et al., 2014), il che rende comunque questa sorgente degna di interesse. In particolare, questo fattore è responsabile tra un terzo e metà del totale del nichel rilevato sul PM_{2,5} (parametro soggetto a limiti normativi, che comunque non sono mai stati superati negli anni analizzati).

Infine, il modello identifica un mix di attività antropogeniche (industriali, artigianali, attività di servizio), il cui profilo chimico è caratterizzato soprattutto dalla presenza di alcuni metalli (Zn, Cd, Pb, As) e che, dalle analisi della direzione e velocità del vento, risulta avere principalmente origine locale. Purtroppo il modello non è in grado di disaggregare ulteriormente questa sorgente. Il contributo di questo fattore in termini di massa del PM2,5 è contenuto per tutti i siti urbani, compreso tra il 5% e il 10%, mentre non viene individuato a San Pietro Capofiume.

Il contributo primario delle sorgenti emissive identificate alla massa del $PM_{2,5}$ è da considerare come un contributo minimo al quale dovrà essere sommata una quota di PM di origine secondaria, come di seguito descritto.

Le componenti secondarie: fattori collegabili a processi di trasformazione in atmosfera

Il modello identifica in particolare due componenti secondarie. Sono definite "secondarie" quelle componenti non emesse direttamente dalla sorgente, ma che si formano in atmosfera dai precursori emessi dalle fonti dirette, in particolari condizioni meteorologiche e

chimiche. Il $PM_{2,5}$ di origine secondaria riveste una grande importanza in Emilia-Romagna - e in generale nella Pianura Padana – e da questo studio risulta costituire dal 40% circa a più del 50% del $PM_{2,5}$ nei quattro siti analizzati.

Una delle due componenti secondarie individuate è un fattore composto principalmente da nitrato d'ammonio: costituisce tra il 25% e il 30% del PM25 in tutti i siti sulla media dell'anno ed ha un andamento fortemente stagionale, con contributi estivi nulli (o comunque inferiori al 5%) e pari a circa il 35% durante la stagione fredda, in tutti i siti. La forte stagionalità di questo fattore è sicuramente imputabile alle condizioni meteorologiche, in quanto ad alte temperature il nitrato d'ammonio, che è la specie che maggiormente lo caratterizza, non si trova sul particolato. I gas precursori della specie principale di questo fattore, il nitrato d'ammonio, sono principalmente gli ossidi di azoto e l'ammoniaca. I primi sono emessi per lo più da sorgenti di combustione (come traffico, riscaldamento, industria), la seconda deriva quasi esclusivamente dalle attività agricole e zootecniche, come si evince dall'inventario delle emissioni in atmosfera dell'Emilia-Romagna.

Un secondo fattore di origine secondaria risulta caratterizzato principalmente da solfato d'ammonio e specie organiche: presenta contributi medi annui al PM_{2.5} variabili tra il 15% e il 30% nei diversi siti, con valori assoluti lievemente superiori durante la stagione calda (probabilmente a causa delle condizioni meteorologiche estive che favoriscono la formazione di sostanze organiche ossidate in atmosfera) che, a fronte di un livello di particolato che invece diminuisce, danno luogo a contributi percentuali molto importanti di questo fattore, compresi tra il 35% a Rimini e il 60% a San Pietro Capofiume. Caratterizzato da stabilità termica e da un tempo di vita in atmosfera relativamente lungo, il solfato è comunemente considerato un fondo continentale. Per quel che riquarda la parte locale, tra i gas precursori di questa componente vi è il biossido di zolfo che, secondo l'inventario delle emissioni in atmosfera dell'Emilia-Romagna, per circa l'80% deriva da attività produttive. ma come evidenzia le analisi delle back trajectories e come noto in letteratura (Hamed et al., 2007), contributi

importanti di questo fattore possono derivare anche dal trasporto a lunga distanza (in particolare dall'Est Europa), dal momento che l'SO₂ tende a diffondersi omogeneamente a causa della sua stabilità termica e della sua sopravvivenza in atmosfera relativamente lunga (Seinfeld and Pandis, 1998).

Discussione

La grande omogeneità riscontrata nei quattro siti è data dal fatto che le sorgenti dell'inquinamento sono le stesse, con un profilo chimico molto simile.

Tra le sorgenti si conferma la grande importanza del traffico, che risulta la prima fonte durante la stagione calda in tutti i siti. Interessante è la diminuzione, statisticamente significativa, osservata nei weekend: durante i giorni festivi infatti, il $PM_{2.5}$ imputabile al traffico diminuisce da circa un quarto a quasi la metà. In termini assoluti, si tratta di una diminuzione di circa 0.5-1.5 $\mu g/m^3.$

Questa diminuzione, che è ottenuta come media su tutto l'anno e risulta al netto della variabilità delle differenti condizioni meteorologiche, dà un'idea di quello che potrebbe essere il decremento causato dalle restrizioni sul traffico, in grado cioè di produrne una riduzione paragonabile a quella che si verifica spontaneamente durante i giorni festivi. È però importante sottolineare che questo decremento non si osserva sul PM2,5 complessivo (rilevato dalle centraline), ma solo sul PM2,5 imputabile al fattore traffico individuato con l'analisi PMF.

La combustione di legna, la cui importanza in Pianura Padana è ormai nota da diversi anni (Pietrogrande M.C. et al. 2016) emerge molto chiaramente: risulta la prima sorgente, in tutti i siti considerati, durante la stagione fredda, perciò nel periodo durante il quale sono più frequenti i superamenti della soglia imposta per legge sul PM₁₀. Il suo contributo tuttavia non è nullo neppure durante la stagione calda, probabilmente a causa del cooking (pizzerie, grigliate domestiche) e della combustione a cielo aperto degli sfalci agricoli. Queste infatti. presentano combustione attività. una incontrollata, che può avere un'importanza non

trascurabile in termini di emissione di particolato. Il tema delle emissioni da combustione di legna non da riscaldamento domestico rimane comunque un tema molto importante da approfondire. Per quel che riquarda invece la combustione di legna per il riscaldamento domestico, bisogna valutare attentamente costi e benefici. Se è vero che, rispetto ad altre modalità di riscaldamento domestico (basate ad esempio sull'utilizzo di metano), questa è più onerosa in termini di emissioni di particolato, essa utilizza tuttavia, allo stesso tempo, come combustibile, una risorsa rinnovabile, la cui combustione comporta un minore impatto sul riscaldamento globale, a causa del rilascio dell'anidride carbonica precedentemente sottratta all'atmosfera (e fissata nella sua biomassa vegetale) dalla pianta, durante il suo ciclo di vita. Per questo motivo in passato l'installazione di apparecchi a biomasse ha usufruito di incentivi nazionali, nell'ambito delle strategie per lo sviluppo delle fonti rinnovabili non fossili: tuttavia il riconoscimento dell'importanza dell'inquinamento dell'aria generato dai piccoli apparecchi a legna ha portato ad intraprendere un percorso per il contenimento dell'uso degli apparecchi più inquinanti per limitare la contabilizzazione delle biomasse legnose ai fini degli obiettivi di sviluppo delle fonti rinnovabili di energia.

Non è stato individuato nessun fattore attribuibile ad una singola sorgente industriale, ma solo una miscela di fonti, un più generico "mix antropogenico", che ha un'importanza minore rispetto ai due fattori precedenti, con un impatto non superiore al 10% della massa di PM_{2.5}, nei siti in cui esso ha un impatto, cioè solo quelli urbani (almeno in termini di particolato primario). Ciò è in linea con quanto emerso in precedenti studi europei (Belis et al., 2013, progetto Sefira, Giardullo, 2016), ma contrasta con ciò che viene normalmente percepito dalla popolazione. Da quanto emerge dal progetto Sefira (Giardullo P., 2016), l'industria è percepita come il primo fattore inquinante; in un'indagine rivolta ai cittadini della Pianura Padana, nell'ambito del progetto Prepair (http://www.lifeprepair.eu/wp-

content/uploads/2019/07/E2D1_Valuta_lAria_Rapporto _completo.pdf), il 51.5% degli intervistati ha segnalato l'industria come causa dell'inquinamento atmosferico,

ponendola di poco dietro a traffico (segnalato dal 59,8%) e agli impianti di riscaldamento (54,0%), aspetto che non trova supporto nelle misure sperimentali.

Il fattore di trasporto a lungo raggio della combustione di oli pesanti, individuato inaspettatamente anche nei siti dell'entroterra, è un tracciante delle masse d'aria che hanno transitato sul Mediterraneo e porta ad individuare nel traffico navale la probabile sorgente inquinante legata alle specie chimiche che compongono questo fattore. Esso impatta di pochi punti percentuali sulla massa di PM_{2,5} ed ha valori alti soprattutto durante il periodo estivo, in cui il valore assoluto di particolato in aria non assume quasi mai livelli elevati. Il contributo principalmente estivo di questo fattore può essere particolarmente interessante. È infatti noto che gli effetti sanitari a breve termine per un incremento unitario di particolato sono notevolmente più alti in estate che in inverno: questo risultato è stato confermato da numerosi studi multicentrici condotti in Italia e nel Mediterraneo (Nawrot, 2007; Samoli, 2013; Stafoggia, 2008). La causa di questa maggiore nocività del particolato estivo, a parità di incremento in massa, è ancora da chiarire e lo studio della differente composizione e delle differenti sorgenti del particolato nella stagione estiva può fornire strumenti per una maggiore comprensione. Sebbene presenti un contributo alla massa molto basso, questo fattore spiega una parte rilevante del nichel presente nel particolato, un metallo classificato dalla IARC (Agenzia Internazionale di Ricerca sul Cancro) come cancerogeno per l'uomo (Gruppo 1, IARC Monographs 100C, 2012). Il contributo di questo fattore, benché possa sembrare trascurabile se comparato alle emissioni locali derivanti da traffico o dalla combustione di legna, è comunque presente e identificabile con chiarezza e costituisce un interessante esempio di apporto di origine certamente non-locale.

L'analisi non identifica un fattore "spray marino", neppure nel sito costiero di Rimini. Na+ e Cl- presentano una grande percentuale di valori sotto il limite di rilevabilità. Anche sostituendo tutti i valori di Na+ e Cl- sotto al limite di rilevabilità, per tutti e tre gli anni con il limite stesso, si troverebbe un valore inferiore al 2% della massa di PM_{2,5} e questo valore sarebbe sicuramente una sovrastima.

non solo perché i valori inferiori al limite verrebbero sostituiti con il massimo, ma anche perché è noto che Clha diverse fonti antropiche, come la combustione di biomassa (Hovorka et al. 2015) o l'incenerimento dei rifiuti (Lind et al. 2007), mentre Na+ è anche un componente crostale (Mason B. 1966).

Lo studio conferma la grande importanza della componente secondaria, che costituisce circa la metà del particolato durante la stagione fredda ed ha un peso variabile dal 37% al 68% durante la stagione calda. La stagione calda presenta un contributo percentuale maggiormente variabile da sito a sito, con il contributo percentuale maggiore che si rileva nel sito di San Pietro Capofiume.

La grande importanza che la componente secondaria riveste in Emilia-Romagna rende essenziale cercare di individuare le sorgenti che ne sono responsabili, perché altrimenti si spiegherebbe solo poco più della metà dell'origine del PM_{2,5}. Parte delle fonti che sono responsabili della componente primaria sono indirettamente responsabili anche della frazione secondaria: i gas precursori del nitrato e del solfato sono infatti gli ossidi di azoto e di zolfo, che sono emessi sostanzialmente dalle combustioni (i primi) e dalle attività produttive locali e non (i secondi), secondo l'inventario delle regionale emissioni (https://www.arpae.it/dettaglio_generale.asp?id=3884&i dlivello=2075). Una grande importanza riveste però anche lo ione ammonio, controione positivo di solfato e nitrato. Questo ha come precursore quasi esclusivo l'ammoniaca, un gas contenente azoto in forma ridotta. Secondo l'inventario regionale delle dell'Emilia-Romagna, l'ammoniaca deriva in forma guasi esclusiva (> 95%) dalle attività agricole e zootecniche. Sebbene non risulti direttamente come un fattore PMF, questa attività antropica appare quindi responsabile, verosimilmente, di almeno un 10% circa del PM_{2,5} medio osservato nei 4 siti, perché la concentrazione di ammonio è in media il 10-12% della massa del PM_{2.5}. Secondo la già citata indagine Prepair, solo un guarto circa dei cittadini intervistati in Pianura Padana percepisce le attività agricole e gli allevamenti come una causa dell'inquinamento atmosferico, quando invece

questa risulta verosimilmente più importante, in Emilia-Romagna, delle attività industriali.

Infine, si vuole sottolineare come l'analisi delle back trajectories abbia evidenziato un incremento del fattore secondario solfato in corrispondenza di masse d'aria provenienti dall'Est Europa, come già identificato in letteratura (Hamed et al., 2007). Il contributo proveniente da questi paesi non è stato rigorosamente quantificato, ma costituisce un interessante argomento di approfondimento.

Conclusioni

Lo studio ha individuato le principali sorgenti di inquinamento dell'Emilia-Romagna, identificando gli stessi fattori di inquinamento, con un profilo emissivo molto simile, in tutti i quattro siti, pur rappresentativi di aree diverse della regione. Sono stati individuati 3 fattori di origine prettamente locale (traffico, riscaldamento e attività produttive) e 3 fattori di scala regionale (principalmente di origine secondaria) o con trasporti extraregionali (con tracce legate al trasporto navale).

Quella qui presentata è stata la prima analisi svolta sui dati raccolti nei quattro siti, ma il monitoraggio del PM2,5 e delle sue componenti prosegue e ha dato origine ad una rete di approfondimenti tuttora esistente (https://www.arpae.it/dettaglio_generale.asp?id=4169&i dlivello=2148). Anche lo studio della speciazione chimica attraverso le analisi di source apportionment continua e permetterà l'aggiornamento delle serie storiche dei contributi di queste sorgenti, per valutarne l'andamento nel tempo, l'eventuale modificarsi del panorama delle fonti impattanti nella regione Emilia-Romagna e della loro relativa importanza. Serie storiche via, via più lunghe saranno utili anche per approfondire e aiutare la comprensione degli impatti che questi inquinanti possono avere in campo sanitario.

Uno studio sugli effetti sugli esiti riproduttivi dei fattori individuati da questa analisi PMF è stato pubblicato di recente (Ottone, 2020)

Bibliografia

Bacco et al 2020 (su questo numero)

Basagaña X., Jacquemin B., Karanasiou A., Ostro B., Querol X., Agis D., Alessandrini E., Alguacil J., Artiñano B., Catrambone M., de la Rosa JD., Díaz J., Faustini A., Ferrari S., Forastiere F., Katsouyanni K., Linares C., Perrino C., Ranzi A., Ricciardelli I., Samoli E., Zauli-Sajani S., Sunyer J., Stafoggia M.; MED-PARTICLES Study group, 2015. Short-term effects of particulate matter constituents on daily hospitalizations and mortality in five South-European cities: results from the MED-PARTICLES project. Environ Int., Feb;75:151-8;

Bell M.L., Ebisu K., Leaderer B.P., Gent J.F., Lee H.J., Koutrakis P., Wang Y., Dominici F., Peng R.D., 2014. Associations of $PM_{2.5}$ constituents and sources with hospital admissions: analysis of four counties in Connecticut and Massachusetts (USA) for persons ≥ 65 years of age. Environ Health Perspect., Feb; 122(2): 138-44

Belis C.A., Favez O., Mircea M., Diapouli E., Manousakas M-I., Vratolis S., Gilardoni S., Paglione M., Decesari S., Mocnik G., Mooibroek D., Salvador P., Takahama S., Vecchi R., Paatero P., 2019. European guide on air pollution source apportionment with receptor models. JRC Technical report

Belis C.A., Karagulian F., Larsen B.R., Hopke P.K., 2013. Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmospheric Environment 69, 94-108

Cavalli F., Viana M., Yttri K.E., Genberg J., Putaud J.P., 2010. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmospheric Measurement Techniques 3: 79-89

Costa V., Bacco D., Castellazzi S., Ricciardelli I., Vecchietti R., Zigola C., Pietrogrande M.C., 2016. Characteristics of carbonaceous aerosol in Emilia-Romagna (Northern Italy) based on two fall/winter field campaigns. Atmospheric Research 167, 100-107

Giardullo P., June 2016. SEFIRA Project, Working Package n. 6 – Deliverable 6.7. Social perception of Air Quality. http://www.sefira-project.eu/ad/wp-content/uploads/2013/11/Deliverable-6.7_FINAL1.pdf oppure http://www.sefira-project.eu

Hamed A., Joutsensaari J., Mikkonen S., Sogacheva L., Dal Maso M., Kulmala M., Cavalli F., Fuzzi S., Facchini M.C., Decesari S., Mircea M., Lehtinen K.E.J., Laaksonen A., 2007. Nucleation and growth of new particles in Po Valley, Italy. Atmospheric Chemistry and Physics, 7, 355-376

Hovorka J., PokornáP., Hopke P.K., Křůmal K., Mikuška P., Píšová M., 2015. Wood combustion, a dominant source of winter aerosol in residential district in proximity to a large automobile factory in Central Europe". Atmospheric Environment 113 98-107

Lind T., Hokkinen J., Jokiniemi J.K., 2007. Fine particle and trace element emissions from waste combustion - Comparison of fluidized bed and grate firing". Fuel Processing Technology, 88, 737-746

Mason B., 1966. Composition of the Earth. Nature, 211, 616-618

Nawrot, T.S., Torfs, R., Fierens, F., De Henauw, S., Hoet, P.H., Van Kersschaever, G., De Backer, G., Nemery, B., 2007. Stronger associations between daily mortality and fine particulate air pollution in summer than in winter: evidence from a heavily polluted region in western Europe. J. Epidemiol. Community Health 61 (2), 146–149

Ottone M., Broccoli S., Parmagnani F., Giannini S., Scotto F., Bonvicini L., Luberto F. Bacco D., Trentini A., Poluzzi V., Angelini P., Colacci A., Ross P.G., Ranzi A., 2020. Source-related components of fine particulate matter and risk of adverse birth outcomes in Northern Italy. Environmental Research, Vol. 186, 109564

Pietrogrande M.C., Bacco D., Ferrari S., Ricciardelli I., Scotto F., Trentini A., Visentin M., 2016. "Characteristics and major sources of carbonaceous aerosols in PM_{2,5} in Emilia Romagna Region (Northern Italy) from four-year observations". Science of the Total Environment. 553: 172–183.

PREPAIR LIFE project, "CITTADINI E QUALITA' DELL'ARIA, I risultati della prima indagine realizzata a livello di bacino padano", Maggio 2019, http://www.lifeprepair.eu/wp-content/uploads/2019/07/E2D1 Valuta IAria Rapporto completo.pdf

Ricciardelli I., Bacco D., Rinaldi M., Bonafè G., Scotto F., Trentini A., Bertacci G., Ugolini P., Zigola C., Rovere F., Maccone C., Pironi C., Poluzzi V., 2017. A three-year investigation of daily PM_{2.5} main chemical components in four sites: the routine measurement program of the Supersito Project (Po Valley, Italy). Atmospheric Environment 152: 418-430

Samoli E, Stafoggia M, Rodopoulou S, Ostro B, Declercq C, Alessandrini E, Díaz J, Karanasiou A, Kelessis AG, Le Tertre A, Pandolfi P, Randi G, Scarinzi C, Zauli-Sajani S, Katsouyanni K, Forastiere F; MED-PARTICLES Study Group. 2013. Associations between fine and coarse particles and mortality in Mediterranean cities: results from the MED-PARTICLES project. Environ Health Perspect. Aug;121(8):932-8

Seinfeld and Pandis, 1998. Atmospheric Chemistry And Physics: From Air Pollution to Climate Change. Wiley and Sons, New York, 969-971

Stafoggia, M., Schwartz, J., Forastiere, F., Perucci, C., 2008. Does temperature modify the association between air pollution and mortality? A multicity case-crossover analysis in Italy. Am. J. Epidemiol. 167 (12), 1476–1485.

12. IL PROBLEMA DELLA VALUTAZIONE DELL'ESPOSIZIONE DELLA POPOLAZIONE

12.1 VARIABILITÀ DELL'ESPOSIZIONE ALL'INQUINAMENTO ATMOSFERICO IN AMBITO URBANO: APPROFONDIMENTI NELL'AMBITO DEL PROGETTO SUPERSITO

Zauli Sajani S., Marchesi S., Trentini A., Maccone C., Scotto F., Rovelli S., Cattaneo A., Colacci A., Poluzzi V. ARPAE EMILIA ROMAGNA

RIASSUNTO

Nell'ambito delle attività del progetto "Supersito" (www.supersito-er.it) Arpae Emilia-Romagna condotto diverse campagne di misura volte alla valutazione della variabilità dell'esposizione della popolazione all'inquinamento atmosferico in ambito urbano. Le campagne di misura di interesse prioritario sono state quattro e hanno avuto come obiettivo l'analisi delle differenze di esposizione: a) tra chi risiede in zone ad alto e a basso traffico veicolare; b) tra chi risiede nello stesso edificio sul fronte strada trafficato e chi sul retro: c) tra chi risiede ai diversi piani dello stesso edificio; d) tra l'estate e l'inverno. Coerentemente con gli obiettivi generali del progetto l'attenzione è stata rivolta principalmente alla caratterizzazione delle proprietà fisico-chimiche del particolato.

Dalle indagini effettuate è emersa una differenza molto ridotta (pari a circa il 10-15%) tra le concentrazioni di $PM_{2,5}$ misurate nei siti ad alto e a basso traffico. Una variabilità spaziale molto più marcata è stata trovata per le concentrazioni di particelle ultrafini (diametro inferiore a 100 nm) e, per quanto riguarda le componenti chimiche del $PM_{2,5}$, del ferro e del carbonio elementare. Differenze significative sono state riscontrate anche rispetto alla forma della distribuzione dimensionale, con un picco nel range delle nanoparticelle (< 50 nm) ben evidente nel sito da traffico.

La comparazione dei livelli di inquinamento presenti sul fronte e sul retro di un edificio posto in prossimità di una strada trafficata ha evidenziato gradienti di concentrazione per le diverse metriche utilizzate per la misura del particolato (inclusa la distribuzione dimensionale) in buona parte sovrapponibili a quelli ottenuti confrontando il sito da traffico e quello residenziale. Questo risultato mostra come siano

possibili non trascurabili errori di classificazione dell'esposizione per gli individui residenti in prossimità di strade trafficate ed evidenzia le ridottissime scale spaziali (decine di metri) e temporali (pochi minuti) in cui possono avvenire importanti trasformazioni nelle caratteristiche fisico-chimiche del particolato e delle nano-particelle nello specifico.

La campagna sul profilo verticale, condotta con misure a diversi livelli di uno stesso edificio di 70 metri, ha voluto indagare l'esistenza e l'entità dei gradienti di esposizione della popolazione rispetto al piano di residenza. I risultati hanno evidenziato la notevole uniformità sulla verticale delle concentrazioni in massa del PM_{2,5} abbinata però ad alcune significative variazioni nella composizione chimica. Molto più marcata è risultata la variabilità con la quota dell'NO₂ e dei BTEX, in particolare nel periodo invernale. I risultati suggeriscono l'opportunità che l'assegnazione dell'esposizione ad alcuni inquinanti tenga in considerazione anche il piano di residenza.

Parole chiave: Esposizione, PM_{2,5}, composizione chimica, particelle ultrafini, distribuzione dimensionale

ABSTRACT

In the framework of Project "Supersito" (www.supersito-er.it) Arpae Emilia-Romagna carried out several field campaigns in order to evaluate the different people exposure to atmospheric pollutants in an urban area. Four different field campaigns were of major interest for the Project and the goal was the analysis of different exposure between people living: a) in areas with high/low traffic fluxes; b) in the front/rear of a building standing on a road with high traffic volumes; c) at different floors in the same building; and d) between summer and winter seasons. Main focus was on the characterization of the

phisical and chemical properties of particulate matters according to Project "Supersito" general objectives.

A small difference (about 10-15%) emerged between $PM_{2,5}$ concentrations between high and low traffic areas, while a more pronounced spatial variability was found for ultra fine particles (diameter less than 100 nm) and for iron and elemental carbon among the chemical components of $PM_{2,5}$. Significant differences were also found for the shape of the size distribution, with a distinct peak in the range of nano particles (< 50 nm) in the high traffic site.

The comparison of pollutants level in the front/rear of a building near a high traffic road pointed out concentration gradients for the different particulate metrics (including size distribution) which are in close agreement with those obtained comparing the traffic and the residential sites. These results indicate that relevant misclassification errors are possible when attributing exposure to people living by roads with high traffic volumes and point out the very small spatial (tens of meters) and temporal (few minutes) scales in which important phisical and chemical transformations in the characteristics of particulate, and specifically nano particles, may occur.

The field campaign related to the vertical profile was carried out at different floors of a 70 meter building and was addressed to the study of exposure gradients for people living at different levels above the ground. The results showed that mass concentration for PM2,5 is very homogeneuously distributed in the vertical, while some significant differences are related to the chemical composition of particulate matter. NO2 and BTEX variability in the vertical distribution was more evident, especially during summer season. These results suggest to consider the opportunity for some air pollutants of attributing exposure as a function of the height of residence as well.

Keywords: people exposure, PM_{2,5}, chemical properties, ultra fine particles, size distribution

Introduzione

Numerosi studi hanno fornito solide prove sugli effetti del particolato sospeso (PM) sulla funzionalità polmonare e su innumerevoli patologie di tipo cardiovascolare, respiratorio e tumorale (Beelen et al., 2014; Raaschou-Nielsen et al., 2013). Permane tuttavia una considerevole incertezza su quali caratteristiche fisiche e quali componenti chimiche del particolato siano più importanti nel determinare gli effetti sulla salute (REVIHAAP, 2013). A questo proposito, una particolare attenzione è stata dedicata negli ultimi anni allo studio degli effetti delle particelle ultrafini (UFP, particelle con diametro <100 nm) a causa della loro riconosciuta capacità di penetrare fino nelle vie aeree profonde (Ohlwein et al., 2019)

Il traffico veicolare, in particolare all'interno delle aree urbane, è sicuramente una delle principali fonti di emissione sia di particelle fini che ultrafini e l'esposizione di tipo residenziale alle emissioni veicolari è stata associata ad un incremento di numerose patologie, compresa una maggiore prevalenza di sintomi respiratori (Delfino et al., 2014). Una questione chiave negli studi sulla vicinanza residenziale al traffico è però ancora la valutazione dell'esposizione. Sono stati compiuti notevoli sforzi sia in ambito sperimentale che modellistico per valutare la variabilità spaziale, principalmente dovuta al traffico, dei principali inquinanti all'interno delle città. Diversi studi hanno valutato le differenze di concentrazione di inquinanti atmosferici in siti da traffico e in siti di fondo urbano (Boogard et al., 2011) e all'interno dei canyon stradali (Zhou et al. 2008). Da segnalare in questo ambito sono i notevoli risultati raggiunti con i Land Use Regression Model (LUR), modelli che mettendo in relazione i dati di monitoraggi ad alta risoluzione spaziale di alcuni inquinanti atmosferici con diverse variabili predittive come densità di popolazione, uso del suolo e variabili legate ai flussi di traffico riescono a stimare con buona approssimazione le concentrazioni degli inquinanti atmosferici nell'intera area urbana (Rahman et al., 2020). L'insieme di guesti studi sulla variabilità spaziale degli inquinanti atmosferici ha permesso di raggiungere notevoli risultati in campo epidemiologico ma ha anche posto in evidenza l'importanza degli studi locali che permettono di cogliere le caratteristiche peculiari delle distribuzioni spaziali degli inquinanti in rapporto alle specifiche caratteristiche delle varie aree (tipologie di veicoli circolanti, strutture urbanistiche, caratteristiche meteorologiche etc).

Diversi aspetti specifici rimangono inoltre da indagare. Uno di questi è sicuramente quello legato alle differenze tra le concentrazioni di inquinanti atmosferici nella parte anteriore e posteriore degli edifici posti in prossimità di strade trafficate (Weber et al., 2008). La questione è di notevole interesse in quanto si tratta di valutare l'entità dell'errore che si commette negli studi epidemiologici nell'assegnare la stessa esposizione agli individui che risiedono nello stesso edificio quando questo si trovi vicino ad una strada trafficata.

Un altro aspetto poco indagato dalla letteratura scientifica è rappresentato dall'analisi della variabilità verticale delle concentrazioni degli inquinanti atmosferici, in particolare all'interno delle aree urbane. Alcuni studi si sono concentrati sulle configurazioni canyon (Kumar et al., 2008) mentre pochissimi hanno valutato la variazione verticale di inquinanti atmosferici su edifici isolati o in configurazioni non canyon (Kholer, 2005; Imhof, 2005).

In questo lavoro vengono presentati i risultati di diverse campagne di monitoraggio condotte nell'ambito del Progetto Supersito (www.arpae.it/supersito) volte ad analizzare la variabilità dell'esposizione all'inquinamento atmosferico in ambito urbano. In particolare l'attenzione è stata dedicata alla valutazione delle differenze di esposizione:

- tra chi risiede in zone ad alto e a basso traffico:
- tra chi risiede nello stesso edificio sul fronte strada e sul retro;
- tra chi risiede ai diversi piani dello stesso edificio;

Le campagne di monitoraggio hanno riguardato anche ambienti indoor ma in questo lavoro vengono presentati i risultati dei soli monitoraggi condotti in ambiente outdoor.

Metodi

La strumentazione

Le campagne di misura hanno avuto diversi aspetti peculiari ma anche elementi comuni. Uno degli aspetti comuni ha riguardato la raccolta contestuale dei dati di monitoraggio nei diversi siti che si intendeva mettere a confronto. La motivazione della scelta era legata all'obiettivo di garantire il più possibile l'uniformità delle condizioni meteorologiche tra i siti monitorati e permettere così di isolare più facilmente, nella comparazione delle condizioni ambientali, gli effetti legati alle caratteristiche locali (sia emissive che dispersive). In coerenza con gli obiettivi generali del progetto Supersito, le attività sperimentali hanno dedicato una attenzione prioritaria alla misura del particolato aerodisperso e in particolare alla raccolta di dati di concentrazione di PM25. di numero di particelle e di composizione chimica. In alcune campagne di misura è stato possibile anche misurare inquinanti gassosi quali il biossido di azoto (NO2) e i BTEX (Benzene, Toluene, EtilBenzene e Xylene). Qui di seguito vengono fomiti i dettagli dei metodi di misura.

PM_{2,5}. – Massa. La massa del particolato fine (PM_{2,5}) è stata misurata con campionatori gravimetrici (Skypost. TCR TECORA Milano, Italia). Tali campionatori prevedono la deposizione del particolato su filtro con un cambio automatico dei filtri di tipo seguenziale. La rotazione dei filtri è stata importata su 24 o su 8 ore a seconda delle specifiche necessità di utilizzo (in particolare in funzione della necessità in alcune campagne e in alcuni siti di poter avere ragionevoli garanzie di raggiungere la soglia di rilevabilità e al contempo di non saturare i filtri). Il flusso di aria in ingresso è stato fissato a 2,3 m³/h. I campioni sono stati raccolti su filtri in fibra di quarzo (Whatman, 47 mm di diametro) e pesati seguendo la procedura descritta nella norma europea EN 12341: 2014. Gli strumenti sono stati collocati su stativi portando così la testa di prelievo a circa 2 m dal suolo. In alcune campagne di monitoraggio alla misura gravimetrica è stata affiancata una misura del PM_{2.5} con metodologia Optical Particle Counter (OPC) che permette di ottenere dati ad alta risoluzione temporale (dati al minuto). Gli OPC stimano la concentrazione in massa del PM_{2,5} tramite l'analisi dello scattering dovuto all'interazione della radiazione

monocromatica emessa da un laser con le particelle aerodisperse. In questo caso si parla di una metodica non considerata né di riferimento né equivalente. In particolare gli strumenti utilizzati sono stati del tipo DustTrak (TSI, Shoreview, MN, Stati Uniti d'America). Su sensibilità e accuratezza di tale tipo di strumentazione è stata condotta una analisi specifica (dati non mostrati).

 $PM_{2,5}$ - Composizione chimica. La caratterizzazione chimica del particolato $PM_{2,5}$ è stata effettuata rispetto alle seguenti famiglie chimiche:

- Ioni: NH₄+, NO₃-, SO₄2-, Ca²⁺, Cl-, K+, Mg²⁺, Br-

- Carbonio organico ed elementare

- Metalli: Ni, V, As, Cr, Zn, Fe, Mn, Al

Le misure, a causa della disponibilità di un solo filtro per ogni giorno in ogni sito, sono state effettuate a giorni alterni per ognuno dei 3 gruppi di componenti chimiche. Gli ioni inorganici sono stati determinati estraendo le specie in 10 mL di acqua ultrapura. Gli estratti sono stati filtrati e analizzati tramite Cromatografia Ionica (Dionex ICS-1000 per gli anioni e ICS-1100 per i cationi, Thermo Fischer Scientific Inc., USA). Il carbonio organico (OC nel report viene adottata la notazione inglese) e il carbonio elementare (EC - anche per il carbonio elementare viene adottata la notazione inglese) sono stati analizzati tramite il metodo della trasmittanza termoottica (Lab OC-EC Aerosol Analyzer, Sunset Laboratory Inc., Tigard, Oregon, USA) e seguendo il protocollo EUSAAR 2. I valori di OC ed EC sono stati poi sommati per ottenere il carbonio totale (TC). I metalli sono stati analizzati tramite la tecnica Inductively Coupled Plasma Spectrometry (8800 ICP-MS, Agilent Technologies Inc., USA). La digestione del campione e le analisi sono state effettuate in base alla norma europea EN 14902: 2005, con un'efficienza di recupero di oltre l'85%. Nelle analisi sono stati considerati i dati delle sole specie chimiche con più del 50% di dati superiori al limite di quantificazione e misurati in contemporanea nei diversi siti.

PM - Distribuzione dimensionale. La misura della distribuzione dimensionale del particolato (l'andamento cioè del numero di particelle in funzione del diametro) non presenta metodiche di riferimento ed è tuttora oggetto di una intensa attività di ricerca sperimentale che genera un frequente rinnovo della tipologia di strumenti disponibili sul mercato. Gli strumenti utilizzati nelle campagne di misura qui presentate sono due spettrometri Fast Mobility Particle Sizer (FMPS, TSI, modello 3091).

Gli spettrometri FMPS misurano la dimensione e la concentrazione in numero delle particelle da 5,6 nm a 560 nm suddivisi in 32 intervalli dimensionali equispaziati in scala logaritmica. I canali dimensionali sotto ai 13 nm sono stati esclusi dall'analisi a causa della numerosità di dati al di sotto del limite di rilevabilità e anche a causa degli artefatti spesso presenti in questo intervallo dimensionale e evidenziati in alcuni studi in letteratura. Le concentrazioni di particelle ultrafini (UFP) sono state ottenute sommando il numero di particelle rilevate nei canali tra 13 e 100 nm. Al fine di garantire la massima comparabilità dei dati raccolti sono state condotte diverse campagne di interconfronto prima e dopo le campagne di monitoraggio. Le rilevazioni degli FMPS durante i periodi di interconfronto sono state utilizzate per effettuare delle correzioni sui dati misurati. In particolare, i dati di uno dei due FMPS sono stati corretti canale per canale sulla base dei dati misurati dall'altro FMPS

Inquinanti gassosi. Come già accennato, in alcune campagne di monitoraggio è stato possibile misurare alcuni inquinanti gassosi. Tali misure sono da considerarsi di corredo a quelle principali, focalizzate sul particolato. La loro natura di dati aggiuntivi deriva anche dal tipo di strumentazione utilizzata. Queste misure sono state infatti condotte con campionatori passivi del tipo Radiello. Tali strumenti di misura hanno una buona affidabilità ma forniscono solo un dato integrato nel tempo (variabile da alcuni giorni a 15 giorni a seconda dell'inquinante e del periodo). Sono stati oggetto di monitoraggio tramite questa tecnica il biossido di azoto (NO₂) e i BTEX.

Siti e periodi di monitoraggio

Alto vs basso traffico. Come sito da traffico è stata scelta una postazione in Viale Silvani (in prossimità del civico 4), una delle strade che circondano il centro storico di Bologna. L'arteria è una delle più trafficate di tutto il territorio comunale con flussi giornalieri di circa 31,000 veicoli (4-5% veicoli pesanti - dati forniti dal Settore Traffico del Comune di Bologna). Il campionamento è stato fatto in un ampio tratto stradale in qualche modo assimilabile ad un canyon (20 metri di larghezza circa). Il sito residenziale è stato collocato in una zona a basso traffico a circa 2 km dal centro storico di Bologna. La Figura 12.1.1 (riquadri A e B) mostra le caratteristiche dei due siti di monitoraggio, in particolare rispetto alla prossimità alle emissioni dirette da traffico. Sono state effettuate tre campagne di misura di 15 giorni ognuna. I periodi di campionamento sono stati:

1.22 Febbraio - 7 Marzo 2012;

2.16 Aprile - 30 Aprile 2012;

3.28 Maggio - 11 Giugno 2012.

Fronte vs retro edificio II sito scelto per le attività di monitoraggio è l'edificio di Viale Silvani 4/C, Bologna, ex sede dell'Ufficio Cartografico della Regione Emilia-Romagna. Il sito è uno dei due descritti nel paragrafo precedente. L'edificio si affaccia su Viale Silvani ed è esposto sul fronte strada ad un intenso traffico; sul retro si trova una piccola area verde confinante con il cortile di un asilo. Le campagne di misura hanno riguardato sia il PM (massa, composizione chimica e distribuzione dimensionale) che il biossido di azoto. La Figura 12.1.1 (riquadro C) mostra l'area circostante l'edificio con evidenziati i punti di campionamento. Le campagne di misura sono state condotte nei seguenti periodi:

1.10 Giugno 2013 – 12 Luglio 2013

2.28 Novembre 2013 – 13 Dicembre 2013

Figura 12.1.1. Visione di insieme dei siti di monitoraggio. Confronto sito residenziale e da traffico (riquadri A e B). Confronto fronte e retro edificio (riquadro C). Confronto diversi piani di un edificio (riquadro D).

Piani alti vs piano strada. Una delle torri ove ha sede la Regione Emilia-Romagna è stato l'edificio prescelto per le campagne di misura. In particolare la torre utilizzata per il monitoraggio è stata quella al civico 52 di Viale Aldo Moro. Questo sito presentava caratteristiche che ben si prestavano agli scopi dell'indagine avendo una altezza considerevole (circa 70 metri) e una geometria regolare. La Figura 12.1.1 (riquadro D) mostra la torre dove si sono svolte le campagne di misura, con l'indicazione dei piani individuati per il monitoraggio ed i parametri misurati a ciascun livello. Le altezze dei piani (rispetto al piano stradale) sono: 65 metri per il 16° piano, 43 metri per il 10° piano, 25 metri per il 5° piano, 15 metri per il 2° piano, 2 metri per il piano strada.

La dotazione strumentale è stata più ricca rispetto alle precedenti campagne di misura. Agli inquinanti monitorati nelle campagne di misura precedenti si sono infatti aggiunti il biossido di azoto (NO2) e i BTEX (benzene, toluene, etil-benzene, xilene). Sono stati inoltre utilizzati alcuni analizzatori DustTrak per una misura ottica del PM_{2,5}. I campionatori Skypost sono stati posizionati in ciascuno dei 5 livelli individuati, mentre gli analizzatori FMPS sono stati posti al piano strada, al quinto ed al sedicesimo piano; i DustTrak, infine, sono stati posizionati a tutti i livelli nella sola campagna invernale, mentre in quella estiva sono stati posizionati soltanto al secondo, quinto e sedicesimo piano, a causa della indisponibilità di 2 strumenti nel periodo individuato per la campagna e del malfunzionamento di uno degli strumenti disponibili nella prima settimana della campagna estiva. Il biossido di azoto ed i composti BTEX sono stati misurati utilizzando a ciascuna quota una coppia di campionatori passivi per NO2 ed una coppia per BTEX (una terna nella campagna estiva) per cercare di minimizzare le problematiche legate a eventuali danneggiamenti o malfunzionamenti dei campionatori. Per questi parametri si è potuto disporre di due dati bisettimanali per ciascuna campagna e per ciascuno dei livelli considerati.

Le campagne di monitoraggio sono state condotte:

1.dal 20 Febbraio al 6 Marzo 2015;2.dal 28 Maggio all'11 Giugno 2015.

Risultati e discussione

Alto vs basso traffico Le concentrazioni di PM25 misurate nel corso delle tre campagne di misura sono riportate nella Figura 12.1.1. Le concentrazioni outdoor nella prima campagna sono risultate circa tre volte più elevate rispetto a quelle della seconda e della terza campagna. I valori più elevati sono stati 72 μg/m³ nel sito di traffico e 70 µg/m³ nel sito residenziale. Le polveri fini hanno variabilità mostrato una ridotta spaziale concentrazioni medie di PM_{2.5} nel sito di traffico superiori di solo il 6% rispetto al sito a basso traffico. La variabilità spaziale del PM_{2,5} è risultata leggermente inferiore a quella riscontrata in altri studi e in particolare nello studio ESCAPE, un grande studio epidemiologico multicentrico che comprendeva campagne di monitoraggio in diverse città europee (Eeftens et al., 2012). I monitoraggi condotti nell'ambito di questo importante progetto europeo hanno fornito un rapporto medio di concentrazione di polveri fini tra i siti da traffico e quelli di fondo urbano pari a 1,14 (range 0,96 - 1,30). Occorre tuttavia precisare che nel presente studio il confronto è avvenuto tra un sito da traffico e uno collocato in una zona a basso traffico, mentre nel progetto ESCAPE i siti a bassa concentrazione erano quasi sempre individuati all'interno di parchi pubblici. Scopo della presente indagine è stato infatti la valutazione della variabilità dell'esposizione residenziale. Un altro elemento che potrebbe spiegare la ridotta variabilità spaziale è il contributo del particolato secondario che nell'area padana è maggiore rispetto alla maggior parte delle altre aree d'Europa.

Sono stati riscontrati livelli molto alti di correlazione (correlazione di Pearson) tra le concentrazioni misurate nei due siti (r=0,97 calcolato sui dati dell'insieme delle campagne di misura).

La Figura 12.1.2 riporta le concentrazioni medie delle particelle ultrafini nei due siti. Contrariamente al PM_{2,5}, si è riscontrata una notevole differenza tra il sito da traffico e quello residenziale. Le concentrazioni medie misurate nel sito da traffico nelle tre campagne di misura hanno mostrato valori 3,4, 3,2 e 1,7 volte maggiori di quelle trovate nel sito residenziale. Il valore medio orario di concentrazione più elevato nel sito da traffico è stato di

129.000 part./cm³, mentre il valore più elevato nel sito residenziale è stato di 38.000 part/cm³. Le particelle ultrafini hanno mostrato marcati picchi di concentrazione nelle ore di maggior traffico (8-9 di mattina e 7-9 di sera, ora del giorno espressa in ora solare in inverno e ora legale in estate). Questi picchi sono risultati significativamente più alti nel sito da traffico. Le concentrazioni massime del mattino sono state raggiunte intorno alle 8 nel sito residenziale e intorno alle 9 nel sito da traffico. Nella prima campagna il massimo delle

concentrazioni durante il pomeriggio è stato raggiunto nel sito residenziale intorno alle 21 e nel sito da traffico intorno alle 19. Nella seconda campagna i picchi pomeridiani sono risultati ritardati di circa un'ora. I picchi del mattino sono risultati di norma più alti di quelli del pomeriggio.

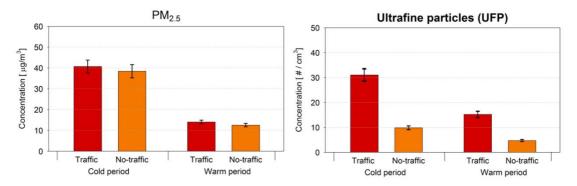


Figura 12.1.2. Livelli medi di concentrazione di PM_{2.5} e particelle ultrafini (UFP) nelle campagne di misura invernali ed estive nel sito da traffico e in quello residenziale.

I livelli di correlazione tra le concentrazioni outdoor di particelle ultrafini sono risultati pari a 0.89 (dati giornalieri).

La distribuzione dimensionale ha evidenziato un carattere multimodale in entrambi i siti di campionamento e in tutte le stagioni (Figura 12.1.3). Molto evidente è risultato il picco intorno a 30 nm corrispondente alla moda del processo di nucleazione. Un secondo picco è risultato presente nel range di accumulazione 80-100 nm. Questi due picchi sono risultati presenti in tutte le campagne di misura ed in tutte le ore del giorno, sebbene con un peso relativo differente. Particolarmente variabile è risultato il picco a 30 nm che ha raggiunto valori molto elevati nel sito da traffico nelle ore di picco delle concentrazioni di particelle ultrafini. La differenza di concentrazione tra mattina e tardo pomeriggio del

numero di particelle intorno a 30 nm è risultata più evidente nel corso della prima campagna ed è diminuito nelle successive. Il popolamento della moda legata al processo di accumulazione si è mantenuto nei vari siti di monitoraggio pressoché costante nel corso del giorno. Rispetto all'interpretazione di questi spettri dimensionali, ed in particolare alla presenza di un picco intorno ai 30 nm. è possibile dire che le particelle emesse dai motori diesel sono collocabili nell'intervallo dimensionale 20-130 nm mentre quelle dei motori a benzina sono collocabili nella gamma 20-60 nm. I fattori di emissione per le auto a benzina sono molto più bassi rispetto a quelle a gasolio anche se i veicoli di benzina nelle fasi di accelerazione mostrano emissioni vicine a quelle osservate per i veicoli diesel. Le particelle appartenenti alla moda della nucleazione sono associate ai gas di scarico caldi che si raffreddano e condensano dando luogo ad un numero elevato di nanoparticelle.

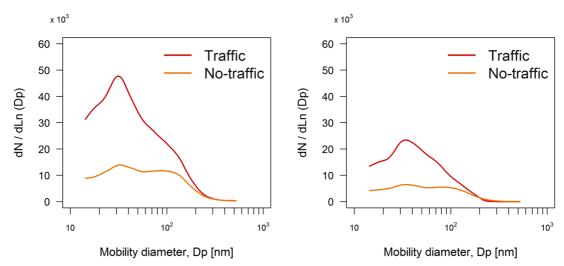


Figura 12.1.3. Distribuzione dimensionale media del particolato nel range 13-560 nm nelle campagne di misura invernali ed estive nel sito da traffico e in quello residenziale.

Rispetto alla composizione chimica, il contributo maggiore alla massa del PM_{2,5} è risultato quello del carbonio organico seguito dai nitrati, dal carbonio elementare e dai solfati. Differenze significative (paired ttest) tra i livelli outdoor nei due siti sono state trovate per il ferro, il carbonio elementare e il carbonio totale. Le altre specie chimiche hanno mostrato differenze piccole e non significative. Il ferro è associato sia alle emissioni veicolari sia di tipo "exhaust" che "non exhaust" mentre le particelle carbonio se sono associate prioritariamente alle emissioni "exhaust". Anche i dati relativi alle componenti chimiche hanno mostrato livelli molto elevati di correlazione (coefficienti di correlazione sempre superiori a 0,9).

Fronte vs retro edificio. Le concentrazioni di PM_{2,5} misurate nel corso delle due campagne di monitoraggio sono mostrate in Figura 12.1.4. Sono state trovate differenze piccole ma significative nelle concentrazioni di

PM_{2.5}, con livelli medi presso il sito sul fronte strada maggiori di circa il 14 % rispetto al sito di monitoraggio collocato sul retro dell'edificio. I valori outdoor di picco nelle due campagne di monitoraggio sono stati pari a 68 μg/m³ e 64 μg/m³ rispettivamente per il fronte strada e il retro. Come previsto, le concentrazioni misurate durante il periodo freddo sono risultate in media sensibilmente superiori (più di tre volte superiori) rispetto a quelle misurate nel periodo caldo, secondo il tipico andamento stagionale dell'area. Il rapporto delle concentrazioni di PM_{2.5} tra il sito fronte strada e quello sul retro è risultato leggermente superiore a quello trovato nel confronto tra un sito da traffico e quello residenziale. La variabilità spaziale del PM_{2,5} è risultata praticamente identica al valore medio dei gradienti di concentrazione di PM2,5 entro-città ottenuto nell'ambito del progetto ESCAPE. Come già accennato a commento dei risultati della prima annualità, tale indagine ha registrato un rapporto medio

tra i siti di traffico e siti di fondo urbano pari a 1,14, seppure con una marcata variabilità tra le diverse città e i diversi siti (0,96-1,30). Il rapporto di concentrazione tra fronte e retro è risultato più elevato nel periodo freddo rispetto a quello caldo. È stata trovata una correlazione

elevata (r=0,98) tra le concentrazioni misurate nei due siti.

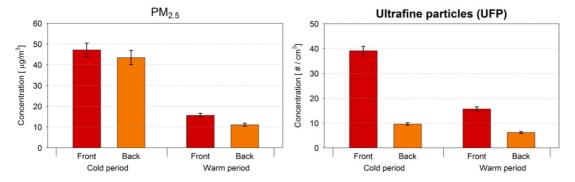


Figura 12.1.4. Livelli medi di concentrazione di PM_{2.5} e particelle ultrafini (UFP) nelle campagne di misura invernali ed estive nel sito da traffico sul fronte strada e sul retro dello stesso edificio.

La Figura 12.1.4 riporta anche una visione sintetica delle concentrazioni di polveri ultrafini misurate durante le due campagne di monitoraggio. Le concentrazioni di UFP nel sito sul fronte strada sono risultate 3,5 volte superiori rispetto al sito sul retro. Questo risultato pare di una certa rilevanza valutazione sia rispetto alla rappresentatività spaziale dei dati di monitoraggio in ambito urbano rispetto all'assegnazione sia dell'esposizione negli studi epidemiologici: è infatti probabile che siano possibili non trascurabili errori di classificazione dell'esposizione per gli individui residenti in prossimità di strade trafficate. Tale gradiente di concentrazione è risultato più elevato durante il periodo freddo (4,2) rispetto a quello caldo (2,5). Il valore orario outdoor più elevato sul fronte strada è stato pari a 121.000 part./cm3, mentre il valore più alto nel sito sul retro è stato pari a 27.000 part./cm³. Il coefficiente di correlazione di Pearson calcolato tra le concentrazioni giornaliere di UFP sul fronte strada e sul retro è risultato pari a 0,84.

Si è verificato se la direzione del vento potesse aver influenzato in modo sostanziale i risultati ottenuti in termini di rapporto tra le concentrazioni misurate sul fronte strada e nel retro. Si è constatata una ottima sovrapponibilità tra la rosa dei venti riferita al periodo 2012-2015 e quella riferita ai soli periodi di monitoraggio. Emerge quindi come i regimi di vento nei periodi di campionamento siano stati rappresentativi dei regimi di vento tipici dell'area. È inoltre emersa una marcata dipendenza delle concentrazioni di UFP dalla intensità e dalla direzione del vento con concentrazioni più elevate sul retro in associazione a venti più intensi provenienti dal settore est. Questo risultato è probabilmente da addebitare al fatto che i venti orientali tendono a spostare verso il retro dell'edifico le particelle emesse dal traffico veicolare. Coerentemente con quanto sopra riportato i rapporti di concentrazione tra fronte e retro dell'edificio sono risultati più elevati con venti di provenienza da nord e da ovest. Tali rapporti di concentrazione sono risultati compresi in un intervallo da 2 a 4. Le concentrazioni di UFP sono quindi risultate comunque sempre superiori sul fronte strada rispetto al retro dell'edificio, indipendentemente dalla direzione del vento.

La Figura 12.1.5 mostra le distribuzioni dimensionali medie sul fronte strada e sul retro dell'edificio nelle due campagne di monitoraggio. Le distribuzioni dimensionali outdoor sul fronte strada sono risultate multimodali con un picco molto marcato intorno a 20-30 nm. È possibile identificare un secondo picco intorno a 60-100 nm. Questo tipo di distribuzione è tipico dei siti fortemente trafficati, con le mode derivanti rispettivamente dalla nucleazione di particelle semi-volatili e particelle solide di tipo grafitico. Sono state trovate differenze rilevanti nella

forma delle distribuzioni dimensionali tra il periodo freddo e quello caldo. Nel periodo freddo il sito outdoor fronte strada ha mostrato un contributo molto maggiore delle particelle appartenenti alla moda della nucleazione rispetto a quello caldo. Le altre distribuzioni relative al periodo freddo hanno mostrato invece un posizionamento della moda principale intorno agli 80 nm. Nel periodo caldo il picco della moda della nucleazione nel sito sul fronte strada outdoor è risultato sensibilmente ridotto

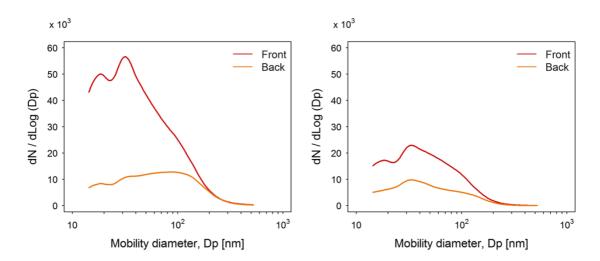
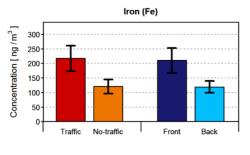
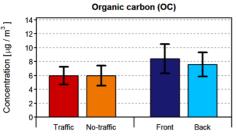
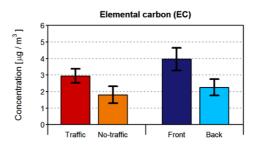


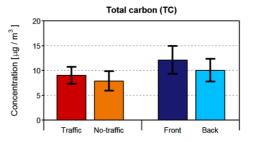
Figura 12.1.5. Distribuzione dimensionale media del particolato nel range 13-560 nm nelle campagne di misura invernali ed estive nel sito da traffico sul fronte strada e sul retro dello stesso edificio.

I contributi maggiori alla massa del PM $_{2,5}$ nei due siti di monitoraggio outdoor sono legati al carbonio organico e ai nitrati, seguiti dal carbonio elementare, dai solfati e dallo ione Ammonio. Le differenze di concentrazione tra fronte e retro dell'edificio sono risultate altamente significative (p-value <0,01) per EC (3,96 e 2,25 μ g/m³, rispettivamente) e Mn (7,25 e 5,54 ng/m³, rispettivamente). Gradienti fronte/retro significativi (p-


value<0,05) sono stati trovati per i livelli outdoor di TC (Carbonio totale, comprensivo di EC e OC) e OC. Non significative sono invece risultate le differenze, pur rilevanti, per Fe e Sn. EC, così come Mn e Sn, sono componenti importanti degli scarichi degli autoveicoli. Fe, Mn e anche Cu sono collegati con emissioni da usura dei freni. Il Fe è inoltre legato anche all'usura degli pneumatici e alle perdite di fluidi. Alcuni elementi come il


Fe e il Mn sono inoltre legati alla ri-sospensione della polvere stradale. Tale contributo è legato soprattutto alle frazioni più grossolane ma non è trascurabile nemmeno nelle frazioni più fini. La Figura 12.1.6 fornisce un quadro comparativo dei livelli medi di diverse componenti chimiche nei 4 siti monitorati nelle campagne di misura condotte nelle prime due annualità. Dalla figura emerge come le differenze ottenute dalla comparazione tra sito da traffico e sito residenziale siano sovrapponibili a quelle ottenute dal confronto tra fronte e retro dello stesso edificio.


Gli andamenti delle concentrazioni delle singole componenti chimiche sono risultati altamente correlati con coefficienti di correlazione superiori a 0,9 con l'eccezione di Sn (0.70) e Fe (0.38).


Dall'analisi dei dati di NO_2 è emerso un ben identificato gradiente tra il fronte e il retro dell'edificio. Tale gradiente si posiziona ad un valore intermedio tra quello evidenziato per le particelle ultrafini e quello, di entità molto limitata, ottenuto per il $PM_{2,5}$.

Piani alti vs piano strada. La Figura 12.1.7 riporta il profilo verticale della concentrazione media di PM2,5 per ciascuna campagna di misura ottenuto dai 5 Skypost. Per ciascun livello e ciascuna campagna viene riportato nella figura il valore medio e la variazione percentuale rispetto al valore misurato al piano strada. Il gradiente verticale del PM_{2,5} è risultato abbastanza modesto con una riduzione della concentrazione media tra il piano strada e l'ultimo piano pari all'11,5% nel periodo freddo e al 4,2% nel periodo caldo. L'andamento mostra, guindi, in entrambe le stagioni, una progressiva diminuzione andando dal piano strada al sedicesimo piano, con, come atteso, concentrazioni medie decisamente più elevate nella campagna invernale rispetto a quella estiva: si passa da 26,7 μg/m³ in inverno a 15 μg/m³ in estate al piano strada ed il rapporto tra i valori di concentrazione in inverno rispetto a quelli in estate (a parità di piano) varia fra 1,78 al piano strada e 1,64 al sedicesimo piano.

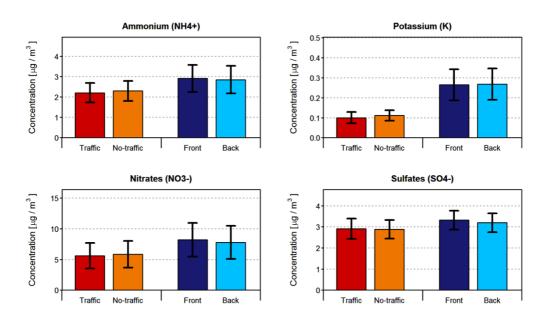


Figura 12.1.6. Livelli medi di concentrazione di alcune componenti chimiche del PM_{2,5} nelle campagne di misura condotte nel sito da traffico e in quello residenziale e sul fronte e sul retro dello stesso edificio.

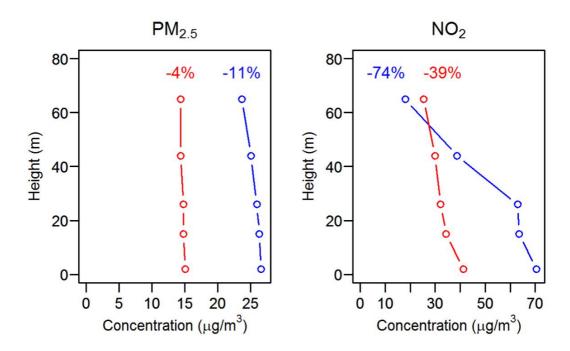


Figura 12.1.7. Variazioni verticali nelle campagne di misura estive ed invernali delle concentrazioni di PM_{2,5}, UFP, NO₂ e Benzene.

La Figura 12.1.7 mostra anche il marcato decremento delle concentrazioni di NO_2 , in entrambe le campagne ed i valori mediamente maggiori in inverno rispetto all'estate (70,5 μ g/m³ vs 41,2 μ g/m³ prendendo a riferimento il piano strada). Il decremento delle concentrazioni con la quota è evidente in entrambe le campagne ma è risultato più marcato nel periodo invernale (la diminuzione delle concentrazioni tra il piano strada ed il sedicesimo piano è stata pari al 74,3% nel periodo freddo e al 38,6% nel periodo caldo). In inverno, si ha una riduzione percentuale molto consistente ai due piani più alti (oltre il 40% ed oltre il 70% rispettivamente al decimo ed al sedicesimo piano), rispetto a quella presente ai piani inferiori. Nella campagna estiva, invece, si ha una riduzione percentuale più graduale e uniforme.

I decrementi con la quota dei BTEX sono risultati non sempre uniformi. In particolare, nel periodo invernale, si

è evidenziato per tutti i BTEX un leggero incremento delle concentrazioni tra il piano strada e il 2° piano. Concentrazioni notevolmente più basse sono state invece misurate ai piani superiori, con un trend non ben definito (le concentrazioni al 10° piano sono risultate più elevate di quelle al 5°). Andamenti con la quota più uniformi sono stati ottenuti nel periodo estivo. Le differenze tra piano strada e 16° piano sono risultate comparabili nelle due stagioni e comprese tra il 35 e il 50%.

La speciazione chimica del $PM_{2.5}$ è stata effettuata sui filtri degli Skypost posti al piano strada, al quinto ed al sedicesimo piano. Per quanto riguarda il carbonio, è presente un decremento della concentrazione al crescere della quota (Tabella 12.1).

Tabella 12.1 - Concentrazioni al piano strada e variazioni percentuali con la quota di alcune componenti chimiche del PM2.5.

	EC	ОС	TC	NH4	K	NO ₃	SO ₄	Fe	Sn	Ni
Piano strada	1.4*	4.4*	5.9*	2.2*	0.1*	0.1*	2.8*	139**	2.1**	1.7**
5° piano	-15.0%	-2.1%	-6.1%	-1.7%	-0.1%	-0.1%	0.4%	-13.5%	-30.9%	11.1%
16° piano	-28.0%	-4.4%	-10.7%	-2,5%	-8.0%	-8.0%	-0.6%	-17.8%	-35.5%	37.0%

^{*} dati in µg/m³

Tale decremento riguarda sia il carbonio organico, sia quello elementare. La variazione percentuale più rilevante riguarda proprio la frazione elementare, il cui valore di concentrazione è, però, sensibilmente inferiore rispetto alla frazione organica. Nessun gradiente verticale è stato riscontrato per gli ioni. L'analisi dei dati dei metalli ha fornito invece risultati poco omogenei. Diversi hanno evidenziato una marcata diminuzione delle concentrazioni con la quota (ferro e stagno e in misura minore arsenico, manganese e piombo) mentre altri non hanno evidenziato trend definiti (lantanio vanadio, zinco).

Il nichel e in misura minore il cadmio sono infine gli unici per i quali si è riscontrato un aumento delle concentrazioni con la quota.

La Figura 12.1.8 mostra le distribuzioni dimensionali relative alla campagna invernale. Le concentrazioni sono risultate più elevate al piano strada rispetto al 16° piano in tutti i canali sotto ai 100 nm.

^{**} dati in ng/m3

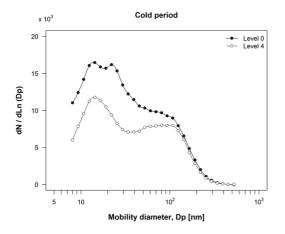


Figura 12.1.8. Distribuzione dimensionale media del particolato nel range 8-560 nm nelle campagne di misura invernali ed estive al piano strada ("Level 0") e al 16° piano ("Level 4").

Conclusioni

Nell'ambito del Progetto Supersito sono state condotte diverse campagne di misura volte ad approfondire le conoscenze sulla variabilità dell'esposizione della popolazione all'inquinamento atmosferico in ambito urbano. Le campagne di misura hanno avuto come obiettivo l'analisi delle differenze di esposizione:

- tra chi risiede in zone ad alto e a basso traffico
- tra chi risiede nello stesso edificio sul fronte strada e chi sul retro
- tra chi risiede ai diversi piani dello stesso edificio.

Coerentemente con gli obiettivi generali del progetto l'attenzione è stata rivolta prioritariamente alla caratterizzazione delle proprietà fisico-chimiche del particolato.

È emersa una differenza molto ridotta (pari a circa il 10%) tra le concentrazioni di PM_{2,5} misurate nei siti ad alto e a basso traffico. Una variabilità spaziale molto più marcata è stata trovata per le concentrazioni di particelle ultrafini.

e, per quanto riguarda le componenti chimiche del PM_{2,5}, del ferro e del carbonio elementare. Differenze significative sono state riscontrate anche rispetto alla forma della distribuzione dimensionale, con un picco nel range delle nanoparticelle (< 50 nm) ben evidente nel sito da traffico e pressoché assente nel sito residenziale.

Le campagne di misura volte a comparare i livelli di inquinamento presenti sul fronte e sul retro di un edificio posto in prossimità di una strada trafficata hanno evidenziato gradienti di concentrazione per le diverse metriche e specie chimiche in buona parte sovrapponibili a quelli ottenuti confrontando il sito da traffico e quello residenziale. È emersa una marcata diminuzione del picco di concentrazione di nanoparticelle nella dispersione delle emissioni da traffico dal fronte strada al retro dell'edificio. Si evidenziano quindi le ridottissime scale spaziali (decine di metri) e temporali (pochi minuti) in cui avvengono importanti trasformazioni delle caratteristiche fisico-chimiche delle nano-particelle emesse dal traffico veicolare.

Forti analogie con la campagna di misure di comparazione tra le zone ad alto e a basso traffico è emersa anche rispetto ai livelli di correlazione, risultati sempre molto elevati. A fronte infatti di una marcata variabilità spaziale di alcune metriche e specie chimiche si è infatti riscontrata una ottima correlazione tra i diversi siti per quasi tutti i parametri considerati. Si può quindi concludere che il forzante meteorologico modula temporalmente in modo uniforme in ambito urbano anche i parametri di qualità dell'aria che mostrano una marcata variabilità spaziale.

La campagna di misure sul profilo verticale ha voluto indagare l'esistenza e l'entità dei gradienti di esposizione della popolazione anche rispetto al piano di residenza. I risultati hanno evidenziato la notevole uniformità delle concentrazioni di PM_{2,5} rispetto alla quota. Gradienti verticali più marcati hanno mostrato invece alcune

componenti chimiche del particolato fine più legate alle emissioni da traffico (come carbonio elementare e ferro), le particelle ultrafini e soprattutto alcuni inquinanti gassosi come il biossido di azoto e i BTEX. Tali gradienti verticali sono risultati particolarmente marcati nel periodo invernale

Ringraziamenti

Questa ricerca è stata condotta nell'ambito del Progetto Supersito, che è stato sostenuto e finanziato dalla Regione Emilia-Romagna (Deliberazione del Governo Regionale n. 1971/13) e dall'Agenzia Regionale per la Prevenzione, l'Ambiente e l'Energia dell'Emilia-Romagna (Arpae Emilia-Romagna).

Bibliografia

Beelen, R., Raaschou-Nielsen, O., Stafoggia, M., et al., 2014. Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet. 383, 785-795.

Boogaard, H., Kos, G.P.A., Weijers E.P., Janssen, N.A.H., Fischer P.H., Van der Zee, S.C., De Hartog, J.J., Hoek, G., 2011. Contrast in air pollution components between major streets and background locations: Particulate matter mass, black carbon, elemental composition, nitrogen oxide and ultrafine particle number. Atmospheric Environment 45, 650-658.

Delfino, R.J., Wu, J., Tjoa, T., Gullesserian, S.K., Nickerson, B., Gillen, D.L., 2014. Asthma morbidity and ambient air pollution: effect modification by residential traffic-related air pollution. Epidemiology 25, 48-57.

Eeftens, M., Tsai, M.-Y., Ampe, C., et al., 2012. Spatial variation of PM_{2,5}, PM₁₀, PM_{2,5} absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO₂ - results of the ESCAPE project. Atmospheric Environment 62, 303-317.

Imhof, D.; Weingartner, E.; Vogt, U.; Dreiseidler, A.; Rosenbohm, E.; Scheer, V.; Vogt, R.; Nielsen, Ole John; Kurtenbach, R.; Corsmeier, U.; Kohler, M.; Baltensperger, U., 2005. Vertical distribution of aerosol particles and NOx close to a motorway. Atmos. Environ. 39, 5710-5721.

Kohler, M., Corsmeier, U., Vogt, U., Vogel, B., 2005. Estimation of gaseous real world traffic emissions downstream a motorway. Atmos. Environ. 39, 5665-5684.

Kumar, P., Fennell, P., Britter, R.E., 2008. Pseudo-simultaneous measurements for the vertical variation of coarse, fine and ultra-fine particles in an urban street canyon. Atmos. Environ. 42, 4304-4319.

Rahman MM, Karunasinghe J, Clifford S, Knibbs LD, Morawska L., 2020. New insights into the spatial distribution of particle number concentrations by applying non-parametric land use regression modelling. Sci Total Environ. 702:134708.

Ohlwein S, Kappeler R, Kutlar Joss M, Künzli N, Hoffmann B., 2019. Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence. Int J Public Health. 64(4): 547-559.

Raaschou-Nielsen, O., Andersen, Z.J., Beelen, R., et al., 2013. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 14, 813-822.

REVIHAAP, 2013. Review of evidence on health aspects of air pollution - REVIHAAP Project. Technical Report, World Health Organization, Regional Office for Europe, Copenhagen.

Weber, S., Weber, K., 2008. Coupling of urban street canyon and backyard particle concentrations. Meteorologische Zeitshrift 17, 251-261.

Zauli Sajani S, Marchesi S, Trentini A, Bacco D, Zigola C, Rovelli S, Ricciardelli I, Maccone C, Lauriola P, Cavallo DM, Poluzzi V, Cattaneo A, Harrison RM (2018), Vertical variation of PM_{2,5} mass and chimica composition, particle size distribution, NO₂, and BTEX at a high rise building, Environmental Pollution, 235, 339-349.

Zauli Sajani, S., Trentini, A., Rovelli, S., Ricciardelli, I., Marchesi, S., Maccone, C., Bacco, D., Ferrari, S., Scotto, F., Zigola, C., Cattaneo, A., Cavallo, D.M., Lauriola, P., Poluzzi, V., Harrison, R.M.. 2016. Is particulate air pollution at the front door a good proxy of residential exposure? Environmental Pollution 213, 347-358.

Zauli Sajani, S., Ricciardelli, I., Trentini, A., Bacco, D., Maccone, C., Castellazzi, S., Lauriola, P., Poluzzi, V., Harrison, R.M., 2015. Spatial and indoor/outdoor gradients in urban concentrations of ultrafine particles and PM_{2,5} mass and chemical components. Atmospheric Environment 103, 307-320.

Zhou, Y., Levy, J.I., 2008. The impact of urban street canyons on population exposure to traffic-related primary pollutants. Atmospheric Environment 42, 3087–3098.

12.2 UTILIZZO DEI DATI SATELLITARI PER LA VALUTAZIONE DEGLI EFFETTI SANITARI DELLE TEMPERATURE ESTREME E DELL'INQUINAMENTO ATMOSFERICO A ROMA

Barberini S.1, Stafoggia M.2, de'Donato F.2, Occhiuto D.1

¹ ARPA LAZIO – ² Dipartimento di Epidemiologia SSR LAZIO

RIASSUNTO

L'inquinamento atmosferico e le temperature estreme sono fattori di rischio riconosciuti per la salute umana, tuttavia la mancanza di dati di esposizione ad elevata risoluzione spazio-temporale in aree extraurbane ha storicamente limitato gli studi alle aree urbane ad elevata densità di popolazione. Il progetto ha l'intento di colmare questa lacuna grazie alla recente disponibilità di dati satellitari ad elevata risoluzione spaziale e temporale che possono complementare le reti di misura nel caratterizzare l'esposizione sul territorio.

Il progetto finanziato dal Ministero della Salute attraverso il bando Ricerca finalizzata, si propone di studiare gli effetti avversi delle temperature estreme e del PM nel Lazio, indagare l'eventuale eterogeneità spaziale degli effetti sanitari nella Regione (confronto tra aree urbane e extra-urbane) e individuare i sottogruppi di popolazione, ed infine quali siano le aree a maggior rischio sanitario sia all'interno di Roma che a livello regionale. A tal fine sono stati implementati e raccolti:

- Modelli avanzati per la stima delle esposizioni giornaliere al PM e alle temperature per ogni km2 del territorio laziale, a partire dai dati satellitari, osservati e di uso del suolo, per i periodi 2001-2010 (temperatura), 2006-2015 (PM_{10}) e 2013-2015 ($PM_{2.5}$).
- Serie storica di dati sanitari: conte giornaliere comunali di decessi per cause naturali, cardiovascolari, cardiache, cerebrovascolari, respiratorie, metaboliche, nervose e mentali e di ricoveri ospedalieri urgenti per patologie cardiovascolari e respiratorie.
- Stime dei rischi relativi di mortalità/morbosità causaspecifica per incrementi di temperature estive, decrementi di temperature invernali e incrementi di PM,

approfondendo le analisi per specifiche patologie, latenze temporali, sottogruppi di popolazione, tipologie di comuni e singole provincie del Lazio.

- Una campagna di monitoraggio di temperatura dell'aria su Roma per identificare l'isola di calore urbano e confermare le stime ottenute dal modello di esposizione.
- Un sistema di allerta, integrato su Roma, relativo ad ondate di calore-qualità dell'aria a partire dai sistemi esistenti di allerta per gli effetti del caldo sulla salute sviluppato in ambito nazionale dal DEPLAZIO e previsionale di qualità dell'aria sviluppato da ARPA Lazio che, in via sperimentale per l'estate 2018, ha generato bollettini di allerta integrata caldo-inquinamento, unici in Italia, e graduati per area di rischio, per allertare gli operatori sanitari anche in funzione dell'area di residenza.

Dallo studio è emerso che: l'esposizione acuta a PM ed alle temperature estreme aumenta il rischio di mortalità e morbosità nel Lazio; le patologie cardiovascolari mostrano una latenza immediata, con picchi di decessi/ricoveri che si manifestano nel giorno stesso del picco di PM o calore, mentre le patologie respiratorie evidenziano latenze più prolungate, fino a 5-6 giorni; gli anziani sono particolarmente suscettibili agli effetti avversi di PM e temperature estreme; esistono effetti avversi ovunque nel Lazio, anche nei comuni sub-urbani e rurali, senza chiare differenze tra le diverse province; anche all'interno della città di Roma esiste una eterogeneità degli effetti sanitari, con zone (quali il centro ed il settore est della città) caratterizzate da una maggiore esposizione congiunta.

Parole chiave: esposizione; PM; temperatura; satellite; allerta integrato

ABSTRACT

Air pollution and extreme temperatures are recognized risk factors for human health, however the lack of exposure data with high spatio-temporal resolution in suburban areas has historically limited studies to urban areas with high population density. The project has the intent to fill this gap thanks to the recent availability of satellite data with high spatial and temporal resolution that can complement the measurement networks in characterizing the exposure on the territory.

The project, financed by the Ministry of Health, aims to study the adverse effects of extreme temperatures and PM in Lazio, to investigate the possible spatial heterogeneity of health effects in the Region (comparison between urban and extra-urban areas), to identify the population subgroups, and finally which are the areas at greatest health risk both within Rome and at regional level. For this purpose we developed:

- Advanced models for estimating daily exposures to PM and temperatures for each km2 of the Lazio region, starting from satellite, observed and land use data, for the periods 2001-2010 (temperature), 2006-2015 (PM_{10}) and 2013-2015 ($PM_{2.5}$).
- Historical series of health data: Daily municipal count of deaths due to natural, cardiovascular, cardiac, cerebrovascular, respiratory, metabolic, nervous and mental causes and urgent hospitalizations for cardiovascular and respiratory diseases.
- Estimates of the relative risks of mortality / causespecific morbidity due to increases in summer temperatures, decreases in winter temperatures and increases in PM, deepening the analyses for specific pathologies, temporal latencies, population subgroups, types of municipalities and individual provinces of Lazio.
- An air temperature monitoring campaign in Rome to identify the urban heat island and confirm the estimates obtained from the exposure model.
- Integrated heat waves air quality alert system on Rome, realized from existing alert systems: HHWWS developed by the DEPLAZIO and air quality forecasting

system developed by ARPA Lazio. This integrated alert system generated integrated hot-pollution alert bulletins for summer 2019, unique in Italy, and graded by risk area, to alert health workers according to the area of residence, too.

The study found that:

- acute exposure to PM and extreme temperatures increases the risk of mortality and morbidity in Lazio;
- cardiovascular pathologies show immediate latency, with peaks of deaths / hospitalizations that occur on the day of the PM or heat peak, while respiratory pathologies show more prolonged latencies, up to 5-6 days;
- the elderly are particularly susceptible to the adverse effects of PM and extreme temperatures;
- adverse effects exist everywhere in Lazio, even in suburban and rural municipalities, without clear differences between the different provinces;

Even within the city of Rome there is a heterogeneity of health effects, with areas (such as the center and the eastern sector of the city) characterized by greater joint exposure.

Keywords: exposure; PM; temperature; satellite; integrated alert

Introduzione

L'inquinamento atmosferico e le temperature estreme sono importanti fattori di rischio per la salute umana. Recentemente, il 5° Rapporto del Panel Intergovernativo sui Cambiamenti Climatici (IPCC) ha identificato il Mediterraneo come uno degli "hot spots" più vulnerabili ai cambiamenti climatici per il 21° secolo (IPCC, 2013). Analogamente, l'Agenzia Internazionale per la Ricerca sul Cancro (IARC) ha classificato il particolato aerodisperso (PM) come carcinogeno per l'uomo (IARC, 2013). Il particolato sottile è responsabile di oltre 4 milioni di decessi al mondo ogni anno (OMS e Global Burden of Diseases).

Gli effetti sanitari del caldo e dell'inquinamento dell'aria sono documentati (de' Donato.et al., 2018; Alessandrini

et al., 2013), ma la maggior parte degli studi epidemiologici si è focalizzata sulle principali aree urbane, dove erano disponibili lunghe serie storiche di dati, dando scarsa evidenza agli effetti sulle popolazioni residenti in aree sub-urbane e rurali. Non è chiarito come l'effetto vari all'interno delle aree metropolitane senza misurazioni dell'esposizione su una scala spaziale fine. Infine, le evidenze sono ancora scarse rispetto ai sottogruppi di popolazione maggiormente vulnerabili a causa di condizioni croniche preesistenti, posizioni socioeconomiche disagiate ed aree di residenza ad elevate esposizioni ambientali.

La maggiore disponibilità di dati satellitari ad aumentata risoluzione spaziale e temporale, costituisce uno strumento alternativo per la stima delle esposizioni ambientali per gli studi epidemiologici (Kloog I. et al., 2012). Questa disponibilità è stata lo stimolo per la realizzazione del progetto di ricerca finalizzata del Ministero della Salute "Uso innovativo dei dati satellitari per la stima di esposizioni ambientali finalizzate a valutare gli effetti sanitari delle temperature estreme e dell'inquinamento atmosferico a Roma", svoltosi tra il 2016 e il 2019, coordinato dal Dipartimento di Epidemiologia del Lazio con la partecipazione di ARPA Lazio. Nel progetto sono stati accuratamente studiati gli effetti di breve e lungo periodo delle esposizioni ambientali, sviluppando dei modelli innovativi di stima spazio-temporale delle esposizioni su tutto il territorio regionale e raccogliendo dati sanitari (di mortalità e ricoveri) a base comunale, messi poi in relazione con le esposizioni ambientali. E', infine, stato sviluppato un sistema di allarme che tenesse conto dell'effetto sinergico di temperatura ed inquinamento atmosferico sulla salute delle popolazioni vulnerabili nel contesto urbano di Roma.

Metodi

Area di studio

Il Lazio è una regione dell'Italia centrale estesa su 17.242 km² ed è suddiviso in 375 comuni con una popolazione totale di circa cinque milioni di abitanti. Roma è il più grande agglomerato della regione con circa 2,8 milioni di residenti e un'area di 1.287km².

Raccolta dati di parametri spaziali e spazio temporali

I dati necessari per la stima dell'esposizione a temperatura e polveri sottili vengono richiamati di seguito e dettagliati nelle pubblicazioni (Badaloni et al. 2018; Stafoggia et al., 2017; Stafoggia et al. 2019).

Parametri spazio-temporali:

- Dal sensore MODIS a bordo dei satelliti NASA Aqua e Terra a risoluzione spaziale 1-km2: LST (Land Surface Temperature) e AOD (Aerosol Optical Depth) a risoluzione temporale giornaliera; NDVI (Normalized Difference Vegetaion Index) con risoluzione temporale mensile:
- Dati di monitoraggio della qualità dell'aria: dati giornalieri osservati di PM_{10} (2006-2015) e $PM_{2,5}$ (2013-2015) dalle centraline di monitoraggio della qualità dell'aria.
- Dati osservati di temperatura dell'aria, raccolti dalla rete di monitoraggio dell'Aeronautica Militare o dalle reti ARPA regionali;
- Dati modellati di parametri meteorologici: temperatura dell'aria, velocità e direzione del vento, precipitazioni, umidità, pressione barometrica e altezza dello strato di rimescolamento. Dati modellati e resi disponibili da ECMWF (European Centre for Medium-range Weather Forecast), a risoluzione spaziale 10x10 km e temporale giornaliera;
- Presenza giornaliera (sì/no) di un evento sahariano nel centro Italia, stimati dalla combinazione di diversi strumenti modellistici.

Parametri spaziali:

Popolazione: popolazione residente all'ultimo censimento (2011); corpi idrici; zone climatiche (ISPRA); informazioni topologiche da Corine Land Cover 2012;

densità di superficie impervia ("Impervious surfaces" – ISA fonte: NOAA); orografia: stime di altitudine da Modello Digitale di Elevazione; viabilità: shapefile di linee fornito da ESRI con aggiornamento al 2012 (TeleAtlas TomTom network); emissioni puntuali e areali: Fonte ISPRA

Modelli di stima esposizione temperatura e PM₁₀

I modelli statistici applicati e di seguito descritti si basano su una metodologia consolidata, già pubblicata in forma di articolo scientifico (Kloog I. et al., 2012; Stafoggia et al., 2019). Tutti i parametri spaziali e spazio-temporali elencati nel precedente paragrafo sono stati riportati su un grigliato comune di 306735 celle di 1-km², corrispondenti al dominio nazionale (Badaloni et al., 2018; Stafoggia et al., 2019). In secondo luogo, separatamente per temperatura, PM¹0 e PM₂,5, sono stati sviluppati modelli statistici multivariati in 3 stadi:

- Stage 1: il parametro di interesse (temperatura o PM) è stato messo in relazione ad un opportuno set di predittori spaziali e spazio-temporali, tra cui il corrispettivo parametro satellitare (LST per la temperatura, AOD per il PM) è stato il principale driver. Si è implementato un modello lineare misto con intercette e pendenze casuali per giorno, innestato nelle diverse aree geografiche (es. regioni o zone climatiche) del territorio italiano.
- Stage 2: il modello precedentemente selezionato è stato usato per predire i livelli giornalieri del parametro in studio (es. temperatura o PM) per ogni cella/giorno ove siano disponibili i dati per tutti i predittori, in primis LST e/o AOD.
- Stage 3: in tutto il resto del dominio, i dati giornalieri del parametro di interesse sono stati imputati sviluppando modelli bimestrali con tensor smoothers di latitudine e

longitudine, e random slopes delle concentrazioni di PM medie entro un buffer predefinito. Al termine della procedura, che è stata applicata separatamente per ciascun anno e per ogni parametro (PM₁₀, PM_{2,5} e temperatura), sono state ottenute in output mappe nazionali giornaliere del parametro stimato, a risoluzione spaziale 1-km², e per il periodo temporale di interesse.

Per Roma è stata valutata l'isola di calore urbano, per ogni giorno tra il 2010 e il 2015, come differenza tra un punto rurale di riferimento (Tref) e ogni singolo pixel (i) incluso nel comune di Roma (Tu):

intensità UHI i =Tui - Tref

Infine è stata calcolata la media annuale e riportato su una mappa il risultato finale in modo da avere un UHI medio a Roma.

Campagna di misura termometrica

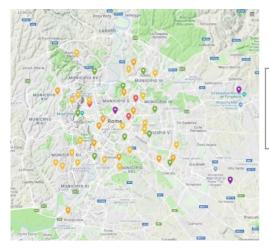

Al fine di confrontare le stime per la temperatura dell'aria ottenute su Roma col modello di esposizione sopra descritto è stata progettata una campagna termometrica con un'elevata risoluzione spaziale sul territorio della città di Roma ad integrare l'informazione sulla temperatura dell'aria già fornita da alcune stazioni di misura già esistenti. Sono stati impiegati nella campagna 30 campionatori costituiti da termometri protetti da schermi solari passivi (Figura 12.2.1). I sensori termometrici scelti sono dei logtagtrix16, datalogger di grande capacità con un'accuratezza globale di misura di 0,5°C nell'intervallo -20-40°C.

Figura 12.2.1. Sensore di temperatura su via del Corso.

Per avere un buon dettaglio dell'informazione si è scelto di limitare la campagna all'interno del raccordo anulare. Le 30 postazioni (Figura 12.2.2) sono state individuate tenendo conto della presenza dei sensori di altre reti e

preferendo le zone che, in base a studi passati, si erano rivelate maggiormente sensibili alle ondate di calore.

ARANCIONE- sensori campagna di misura

VERDE- sensori rete chimica

VIOLA- stazione micrometeorologica

ROSSO- altri sensori

Figura 12.2.2. Postazioni di misura della temperatura su Roma

La campagna di misura è iniziata il primo luglio 2018 e si è conclusa il 30 settembre con la finalità di registrare i dati estivi. Durante il periodo di misura, i sensori sono impostati per accendersi automaticamente e rilevare la temperatura ogni 15 minuti.

Effetti sulla salute del PM₁₀ e PM_{2.5}

Per studiare gli effetti di breve e lungo periodo sulla salute, nel Lazio e a Roma, dell'esposizione al particolato sono stati utilizzati diversi metodi statistici utilizzando come unità spaziali i 375 comuni del Lazio mentre Roma, in virtù della sua popolosità ed estensione geografica è stata considerate separatamente suddividendola in 155 zone urbanistiche.

L'associazione tra mortalità/ricoveri causa specifici e PM₁₀/PM_{2,5} giornalieri è stata valutata considerando un'analisi aggregata delle serie temporali a livello regionale (intera regione Lazio), combinando le serie temporali comunali.

<u>Dataset</u>: I dati considerati per costruire le serie temporali per le diverse zone/municipalità sono dettagliati qui di seguito.

- Dati di ricovero ospedaliero nel Lazio: relativi ai ricoveri ospedalieri urgenti (non programmati) verificatisi nella Regione Lazio nel periodo 2006-2015. A partire da questi dati abbiamo costruito, per ogni comune, la serie temporale con il numero giornaliero di ricoveri per patologia, ulteriormente disaggregando per classi di età e sesso.
- Dati di mortalità nel Lazio: relativi a tutti i decessi avvenuti nel Lazio nel periodo 2006-2015, aggregati per costruire le serie giornaliere comunali di decessi per causa, età e sesso.
- Dati dello Studio Longitudinale Romano (SLR): uno studio di coorte, su circa 1.2 milioni di residenti a Roma, basato su dati anagrafici dal Censimento della Popolazione del 2001 in poi. Ogni indirizzo della coorte è stato collegato agli archivi di mortalità dal 2001 al 2015, ottenendo le informazioni su date di decesso e causa di morte.
- Dati di PM $_{10}$ e PM $_{2,5}$: per ogni comune del Lazio e per ciascun giorno del 2006-2015 abbiamo utilizzato le concentrazioni medie di PM $_{10}$ e PM $_{2,5}$ (quest'ultimo solo per 2013-2015) ottenute dai sopradescritti modelli spazio-temporali di esposizione. Inoltre, per ogni indirizzo dello Studio Longitudinale Romano e per ogni

anno 2006-2015, abbiamo attribuito la concentrazione del PM medio annuo della cella 1 km x 1 km di Roma ove ricadeva l'indirizzo, come stima di esposizione cronica individuale ad inquinamento atmosferico.

<u>Metodi statistici</u>: Per la valutazione degli effetti sulla salute sono stati utilizzati diversi approcci statistici:

- É stato sviluppato un modello di regressione multivariato di Poisson con sovra-dispersione per stimare gli effetti di <u>breve periodo</u> del PM sulla mortalità causa-specifica e sulle ospedalizzazioni <u>nella Regione Lazio</u>. In tale modello sono state messe in relazione le conte giornaliere di decessi/ricoveri per ogni comune, con le concentrazioni giornaliere predette di PM, al fine di stimare la relazione tra picchi giornalieri di inquinamento atmosferico e incrementi di mortalità/ospedalizzazioni a livello regionale.
- É stato sviluppato un modello di regressione, multivariato a rischi proporzionali, di Cox per stimare gli effetti di <u>lungo periodo</u> del PM sulla mortalità causaspecifica <u>a Roma</u>, nell'ambito dello Studio Longitudinale Romano.

Effetti sulla salute dell'esposizione a temperature estreme

I risultati del modello di esposizione alla temperatura dell'aria sono stati associati ai conteggi giornalieri di mortalità in tutti i comuni del Lazio al fine di stimare gli effetti acuti delle temperature separatamente per aree rurali, sub-urbane ed urbane. Analoghe stime sono state condotte in relazione ai conteggi giornalieri di ricoveri ospedalieri. Le unità di studio considerate nel Lazio sono coincidenti con quelle dello studio per l'esposizione al PM. Per Roma l'esposizione giornaliera è stata spazialmente associata agli indirizzi dello SLR, ed è stato sviluppato un disegno di studio "case-crossover" per stimare l'effetto differenziale delle elevate temperature dovute all'UHI. Gli effetti sanitari sono stati anche distinti per sottogruppi di popolazione suscettibili per area di caratteristiche socio-demografiche residenza. condizioni cliniche pregresse.

<u>Dataset</u>: I dati considerati nello studio sono simili a quelli dello studio di esposizione alle PM, ma prendono in considerazione differenti periodi temporali. In particolare i dati di mortalità e ricoveri non urgenti, per lo studio sulla temperatura, sono riferiti al periodo 2001-2010 e suddivisi per cause naturali, cardiovascolari e respiratori.

Costruzione dei Dataset per unità spaziali: per eseguire l'analisi delle serie storiche, i comuni sono stati aggregati in base alla dimensione della popolazione utilizzando i dati sulla popolazione dell'Istituto nazionale di statistica (ISTAT) per l'anno 2006. In secondo luogo, per tenere conto dell'entità dello sviluppo urbano all'interno di ciascun comune e del conseguente effetto nel modificare le caratteristiche termiche delle unità spaziali, sono state prese in considerazione le classi di tessuto urbano di Corine. Per Roma si è adottato il medesimo criterio di definizione della percentuale di urbanizzazione delle 155 zone, ma la suddivisione è stata effettuata su percentuali più elevate in considerazione della differente distribuzione dell'urbanizzazione che caratterizza la città di Roma.

STUDIO DI EFFETTO A BREVE TERMINE: Lo studio di effetto a breve termine della temperatura ha un disegno analogo a quanto già descritto per l'effetto a breve termine del particolato fine. Poiché il focus di questo studio è sugli effetti delle temperature estive, nell'analisi sono stati inclusi solo gli eventi che si verificano tra maggio e settembre. Tutte le analisi sono state ripetute per l'intera Regione Lazio, in funzione della dimensione della popolazione comunale e per grado di urbanizzazione raggruppate in classi in base alla distribuzione del livello di urbanizzazione nella Regione Lazio e nelle zone di Roma.

Definizione di un Sistema di Allerta Integrato Aq-Temperature Elevate

Per realizzare un sistema di allerta integrato ondate di calore- qualità dell'aria siamo partiti dai due sistemi distinti già esistenti: il sistema di allarme caldo (Michelozzi et al., 2010)(HHWWS) e il sistema modellistico per la valutazione della qualità dell'aria di ARPA Lazio. L'HHWWS è stato sviluppato per Roma dal

Dipartimento di Epidemiologia del S.S.R. Lazio, fornisce dal 15 maggio al 15 settembre un'allerta graduata in 4 livelli di rischio, da nessun rischio a rischio elevato, a 72 ore su Roma. La catena modellistica di ARPA Lazio ogni giorno fornisce le previsioni a 5 giorni per le concentrazioni degli inquinanti dei principali inquinanti atmosferici, per l'area di Roma, con una risoluzione spaziale di 1km x 1km.

Per la prima progettazione del sistema di allerta integrato si è deciso di lasciare inalterata l'informazione fornita dal sistema HHWWS su Roma e di dare invece un'allerta sulla qualità dell'aria per ognuna delle aree individuate per Roma come aree di rischio omogeneo per l'effetto congiunto di esposizione a inquinanti e temperature elevate. Il sistema di allerta integrato nel periodo estivo prende in input la previsione del sistema di allarme caldo, unica su tutta Roma, e le previsioni per le concentrazioni di inquinanti in aria, ricava l'allerta di qualità dell'aria per ogni zona su Roma e restituisce un livello di allerta integrato per le 72 ore successive per ogni zona.

Per ciò che attiene all'allerta per la qualità dell'aria si è stabilito di considerare, tra tutti gli inquinanti normati per la protezione della salute umana, l'ozono, che in estate raggiunge le concentrazioni più elevate, e il PM₁₀, che mostra un maggiore effetto sinergico con le temperature elevate, sebbene raggiunga concentrazioni consistenti

solo in inverno a Roma. In particolare per la qualità dell'aria il sistema integrato prende in considerazione le previsioni per la concentrazione media giornaliera di PM_{10} e per la media mobile massima sulle otto ore di ozono. Il livello di allerta giornaliero per la qualità dell'aria per ogni zona è il peggiore tra quelli raggiunti da O_3 e PM_{10} .

Definizione livelli allerta qualità dell'aria e allerta integrato: Per entrambi i parametri scelti è stata stabilita una gradazione in quattro livelli considerando la statistica delle osservazioni degli anni passati e le evidenze in termini di effetti sulla salute. In Figura 12.2.3 sono riportate le distribuzioni in classi di concentrazione di medie giornaliere di PM₁₀ e media mobile massima di O₃ ottenute considerando i dati registrati dalle stazioni della rete di qualità dell'aria del Lazio tra maggio e settembre per il periodo 2008-2018. Nei grafici gli andamenti: di tutte le stazioni dell'agglomerato di Roma, quelle del solo Comune di Roma e quelle interne al raccordo anulare. Una differenza tra le tre serie sussiste solo per l'ozono: i valori dentro il raccordo sono inferiori a quelli su tutto il Comune e sull'agglomerato per via del carattere secondario di questo inquinante.

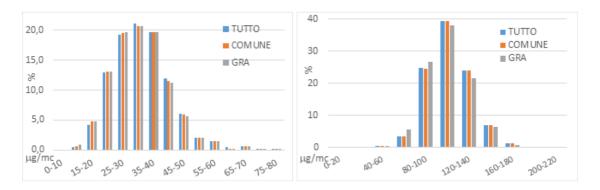


Figura 12.2.3. Occorrenze periodo estivo 2008-2018: sn-medie giornaliere PM₁₀; dx medie mobile massime su otto ore O₃. Per le medie giornaliere di PM₁₀ i valori più frequenti sono quelli tra 25 e 40 μg/m³.

Si è scelto di delimitare i diversi livelli di allerta per le medie giornaliere di PM₁₀ con valori di concentrazione che già hanno mostrato una significatività in termini di effetti sulla salute e, come tali, già utilizzati in normativa: le soglie di valutazione superiore e inferiore e il valore limite giornaliero. La suddivisione in livelli di allerta è riportata in Tabella 12.2.1. Il livello di rischio massimo per il PM₁₀ è associato a valori di concentrazione superiori al valore limite o al persistere per tre giorni della concentrazione giornaliera sopra la soglia di valutazione

superiore. Per la media mobile massima dell' O_3 le classi più rappresentate sono quelle tra 80 e $140~\mu g/m^3$, anche per questo parametro i livelli sono stati definiti riferendosi a valori già presenti in normativa o indicati dall'OMS, secondo quanto riportato in Tabella 12.2.1.

Tabella 12.2.1 - Livelli di allerta per la concentrazione media giornaliera di PM₁₀ e massima media mobile di O₃.

Allerta	μg/m³	Allerta	μg/m³		
LIVELLO 0	<=25	LIVELLO 0	<=100		
LIVELLO 1	>25 < =35	LIVELLO 1	>100 <=120		
LIVELLO 2	35.1-50	LIVELLO 2	120.1-140		
LIVELLO 3	>50 o 3gg > 35	LIVELLO 3	> 140 o >120 3gg		

Il livello di allerta giornaliero per la qualità dell'aria per ogni zona sarà il peggiore raggiunto da O₃ e PM₁₀.

Per comprendere come associare ad ogni combinazione possibile di livelli dell'HHWWS e di qualità dell'aria un livello per l'allerta congiunto sono stati incrociati i dati tra

il 15 maggio e il 15 settembre 2011-2018 dell'HHWWS con i dati monitorati dalle stazioni su Roma, ottenendo le occorrenze riportate in Tabella 12.2.2.

Tabella 12.2.2 – Frequenze combinazioni differenti livelli di allerta HHWWS-Qualità dell'aria estate 2011-2018 e matrice assegnazione livello allerta integrato.

Frequenze osservate estate 2011-2018				Assegnazione dei livelli di allerta integrato					
HHWW livello QA livello	0	1	2	3	HHWW livello QA livello	0	1	2	3
0	8.8	0.0	0.0	0.0	0	0	0	1	2
1	36.9	2.9	1.3	0.8	1	0	1	1	2
2	17.4	3.8	1.3	1.5	2	1	1	2	3
3	10.7	5.2	2.3	7.1	3	2	2	3	3

Il livello da assegnare per l'allerta congiunto per le differenti combinazioni dei livelli di allerta caldo e di qualità dell'aria è stato fissato secondo la matrice in Tabella 12.2.2.

Per definire una suddivisione di Roma in <u>aree di rischio</u> omogenee per gli effetti congiunti di inquinamento e

temperature elevate, sono stati utilizzati i risultati di analisi multi anno sulle concentrazioni di PM_{10} fornite dal sistema modellistico di Arpa Lazio (Figura 12.2.4) e i risultati della ricostruzione dell'UHI su Roma eseguita nell'ambito del modello di esposizione, Figura 12.2.10.

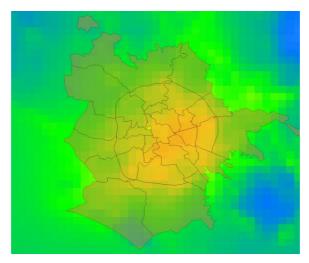


Figura 12.2.4. Concentrazione multi anno del PM₁₀ ottenuta da elaborazione con modello di dispersione (Arianet).

Sono quindi state individuate 34 zone in cui suddividere il territorio comunale, riportate nella Figura 12.2.5, ottenute a partire dalle aree municipali, ulteriormente suddivise dall'intersezione con il grande raccordo anulare e la fascia verde. Questa suddivisione è stata fatta utilizzando delle linee topografiche note e

riconoscibili della città, riguardando alle analisi multi anno e alla funzionalità per i decisori sul territorio, le ASL, di cui i municipi sono le unità elementari, e il Comune di Roma.

Figura 12.2.5. Zone per allerta integrato su Roma.

Sono state implementate delle routine di calcolo che a partire dalle previsioni di qualità dell'aria sul dominio di Roma, alla definizione del km², ricavano per ogni zona un livello di allerta per il PM₁₀_media giornaliera e uno per l'O₃_media mobile massima e assegnano poi il peggiore tra i due livelli ottenuti. Altre routine prendono in input le previsioni dell'HHWWS su Roma e di allerta qualità dell'aria su ogni zona e restituiscono il livello di allerta integrato previsto per ogni zona per le 72 ore successive.

Risultati

Modelli di esposizione a polveri sottili e temperatura dell'aria

Dalle mappe delle medie giornaliere stimate dal modello di esposizione alle polveri sottili sono state ottenute le mappe delle concentrazioni medie annue sul Lazio e su Roma, ottenute come medie dei valori giornalieri: per il PM $_{10}$ per il periodo 2006-2015, mentre per il PM $_{2.5}$ per il periodo 2013-2015. Nelle figure 6 e 8 vengono riportate come esempio le mappe relative alle concentrazioni medie annue per km 2 di PM $_{10}$ e PM $_{2.5}$ per il Lazio e per Roma per il 2015.

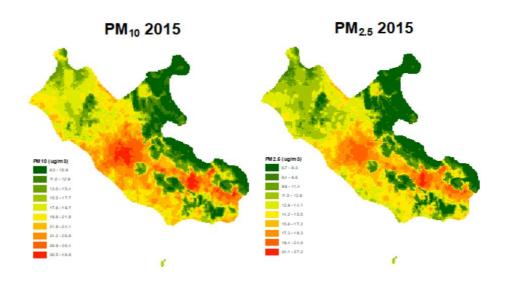


Figura 12.2.6. Mappe concentrazioni annue 2015 sul Lazio PM₁₀ e PM_{2,5} da modello statistico multivariato.

Dall'analisi effettuata è emerso che:

- Il PM₁₀ ed il PM_{2,5} tendono ad essere decisamente più elevati a Roma e nella zona della Valle del Sacco;
- Il PM_{10} negli anni 2006-2010 ha un gradiente decrescente, con livelli che poi si rialzano e stabilizzano negli anni successivi;
- Per quanto riguarda la città di Roma, si evidenzia una elevata eterogeneità spaziale delle concentrazioni di PM, con livelli più elevati nel settore est e nel centro città:
- Le distribuzioni spaziali di PM₁₀ e PM_{2,5} sono piuttosto simili all'interno di Roma.

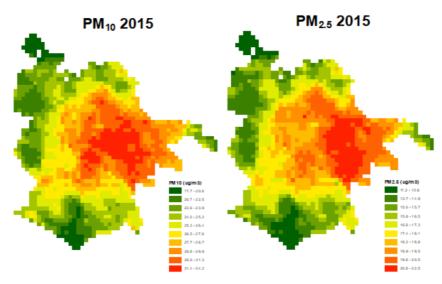


Figura 12.2.7. Mappe concentrazioni annuali 2015 su Roma PM₁₀ e PM_{2,5} da modello statistico multivariato

Analogamente dalla stima <u>dell'esposizione alla</u> temperatura dell'aria giornaliera a scala 1 km x 1 km abbiamo ottenuto le mappe di temperatura media annua per la regione Lazio e la città di Roma per gli anni tra il 2001 e il 2010. Si riportano a titolo esemplificativo le mappe ottenute del 2010 per il Lazio e Roma in Figura 12.2.8. È' inoltre stata calcolata l'intensità di isola di calore urbano (UHI) media per Roma mediata negli anni 2001-2010, Figura 12.2.9.

Si notano alcuni aspetti, riassunti nei punti successivi:

- C'è una notevole eterogeneità nella distribuzione spaziale delle temperature nel Lazio, con differenziali di oltre 5 °C tra le celle più fresche e quelle più calde per i valori annui e più elevate per i giornalieri;

- Le temperature sono considerevolmente più elevate a Roma e nelle zone costiere, più basse sugli Appennini;
- Non si evidenziano differenze sostanziali tra gli anni, né per i valori medi né per la distribuzione;
- Per quanto riguarda la città di Roma, si evidenziano differenziali importanti di temperatura, anche dell'ordine di 4-5 °C sulle medie annue: c'è un chiaro fenomeno di isola di calore nel centro storico e nel settore est della città con valori medi annui superiori di 2,5-2,9°C;
- Anche l'area urbana di Ostia risulta mediamente più calda delle zone circostanti.

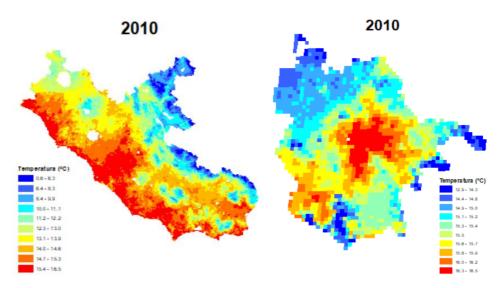


Figura 12.2.8. Mappe di temperatura dell'aria 2010 per Lazio e Roma da modello statistico multivariato.

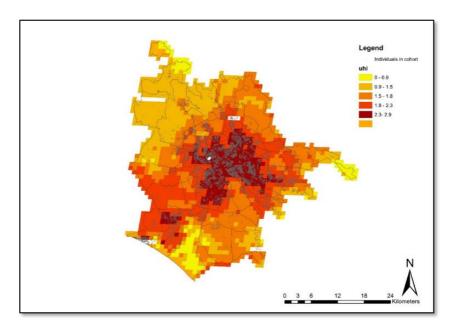


Figura 12.2.9. Mappa dell'intensità dell'isola di calore urbano di Roma, media anni 2001-2010 (°C).

Campagna di misura della temperatura su Roma

I dati raccolti durante la campagna di misura della temperatura a Roma, all'interno del grande raccordo anulare nel periodo luglio-settembre 2018, sono stati utilizzati per un confronto con le temperature stimate dal modello statistico a partire dai dati satellitari. A partire dai dati registrati dalle 30 postazioni di misura logtag e dalle stazioni di qualità dell'aria dotate di sensore di

temperatura è stata effettuata l'interpolazione delle temperature medie di periodo utilizzando il metodo dell'inverso del quadrato della distanza. La mappa risultante è stata confrontata con la mappa dell'intensità dell'UHI su Roma ottenuta con modello di stima dell'esposizione alla temperatura (Figura 12.2.10).

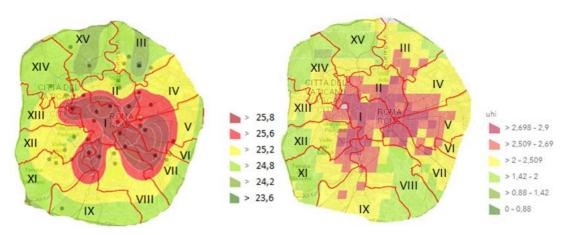


Figura 12.2.10. Confronto interpolazione dati campagna di misura 2018-intensità dell'UHI su Roma 2001-2010.

La distribuzione dei valori ottenuti dall'interpolazione delle temperature medie di periodo registrate nella campagna rispecchia la forma dell'intensità dell'UHI con l'eccezione di un'area a nord-est che nell'estate 2018 risulta più fresca. Le aree più calde sono a centro città e in due lobi che si estendono a sud-est e sud-ovest.

Risultati degli studi di effetto all'esposizione a polveri sottili

Effetti legati al PM sui ricoveri cardiovascolari: Disaggregando, per età, sesso e grado di urbanizzazione del comune di residenza, gli effetti del PM $_{10}$ e PM $_{2,5}$ sui ricoveri cardiovascolari si nota un effetto marcato, con intervalli di confidenza minori, del PM $_{10}$ nelle classi più anziane e nelle aree metropolitane del Lazio, più debole per il PM $_{2,5}$ (Figura 12.2.11).

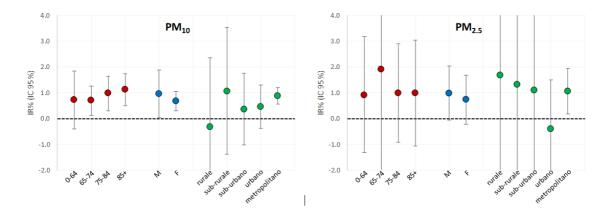


Figura 12.2.11. Effetto del PM $_{10}$ (2006-2015, lag0-1) e del PM $_{2.5}$ (2013-2015, lag0-1) sui ricoveri cardiovascolari: risultati per età, sesso e grado di urbanizzazione: incrementi percentuali di rischio (IR%) e intervalli di confidenza al 95% (IC 95%) per variazioni di 10 μ g/m 3 dell'inquinante.

Dallo studio dell'associazione tra PM₁₀ e ricoveri cardiovascolari nel Lazio, per diversi lag, nel periodo 2006-2015 si evidenziano effetti significativi ed immediati

del PM_{10} sulle cause cardiovascolari, cardiache, ischemiche e sullo scompenso cardiaco (Figura 12.2.12).

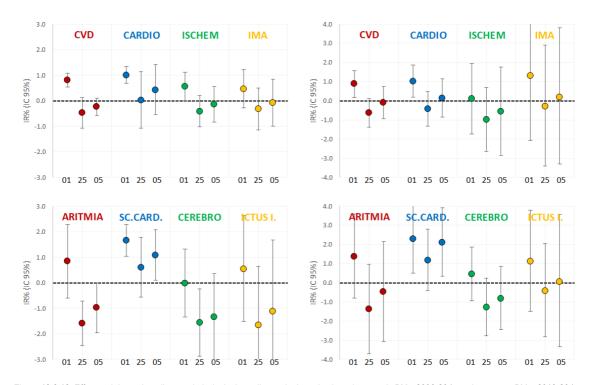


Figura 12.2.12. Effetto sui ricoveri cardiovascolari- risultati per diagnosi e lag – Lazio: colonna a $4 \times 10^{10} \times 10^{10}$ 2006-2015, colonna a $4 \times 10^{10} \times 10^{10} \times 10^{10}$ incrementi percentuali di rischio (IR%) e intervalli di confidenza al 95% (IC 95%) per variazioni di $10 \times 10^{10} \times 10^{10} \times 10^{10}$ dell'inquinante, ai diversi lag.

L'analisi per il PM_{2,5}, limitata al periodo 2013-2015, seppur di potenza statistica inferiore, evidenzia effetti significativi sui ricoveri cardiovascolari e su quelli per scompenso cardiaco.

Effetti legati al PM sui ricoveri respiratori: gli effetti del PM sui ricoveri respiratori sono inferiori rispetto ai cardiovascolari, particolarmente accentuati in età pediatrica e nei comuni rurali. Sia per i ricoveri respiratori che per i cardiovascolari, si evidenziano effetti simili tra tutte le province del Lazio.

Effetti legati al PM sui decessi per cause specifiche: sono emersi effetti significativi del PM $_{10}$ sulle cause naturali, cardiovascolari, cardiache e cerebrovascolari, mentre più deboli sono le evidenze relativamente a cause meno indagate in letteratura, come le metaboliche e le mentali (Figura 12.2.13). Di rilievo, invece, è risultata l'associazione tra PM $_{10}$ e malattie nervose. Simili risultati sono stati ottenuti anche per il PM $_{2.5}$, con la conferma di una fortissima associazione dell'esposizione con i decessi per cause nervose.

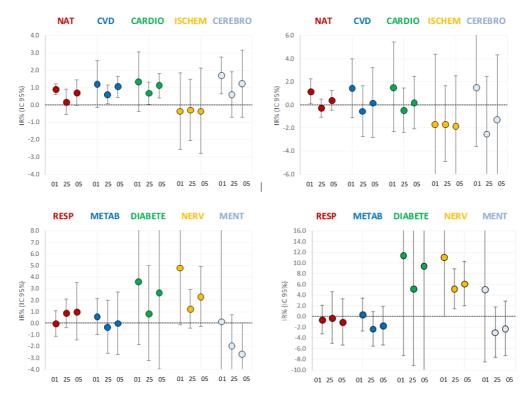
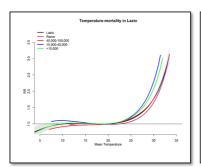
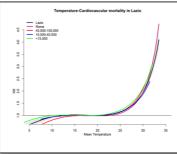


Figura 12.2.13. Effetto del PM₁₀ 2006-2015, sn, e PM₂₅ 2013-2015, dx, sulla mortalità causa-specifica: risultati per diagnosi e lag – Lazio: incrementi percentuali di rischio (IR%) e intervalli di confidenza al 95% (IC 95%) per variazioni di 10 μ g/m³ dell'inquinante.


Anche nel caso della mortalità, gli effetti del PM sono più elevati negli anziani, mentre non ci sono chiare differenze di effetto tra comuni urbani, sub-urbani e rurali, né per le diverse province.


Infine nella città di Roma indagando gli effetti del PM_{10} e $PM_{2,5}$ sulla mortalità, sul lungo periodo, per le diverse cause all'interno dello Studio Longitudinale Romano si evidenzia una forte associazione con i decessi naturali e cardiovascolari, ed una assenza di associazione con i decessi respiratori.

Risultati degli studi di effetto all'esposizione alla temperatura dell'aria

Effetti del caldo sulla mortalità nel Lazio: Il numero medio totale di decessi giornalieri in estate sui 375 comuni del Lazio è stato di 56,3, di questi, poco meno della metà erano attribuibili a cause cardiovascolari (24,8 decessi) e solo 8 a cause respiratorie. I tassi di mortalità più alti sono stati osservati nei grandi comuni e ancora più elevati a Roma per tutte le cause di morte incluse nello studio (naturale, cardiovascolare e respiratorio). Un'associazione non lineare tra temperatura media e mortalità è stata identificata in tutti i comuni della regione Lazio con un aumento della mortalità all'aumentare delle temperature durante l'estate. La relazione dose-risposta

tra la temperatura media e la mortalità naturale, cardiovascolare e respiratoria, raggruppate per dimensione del comune, è riportata in Figura 12.2.14.

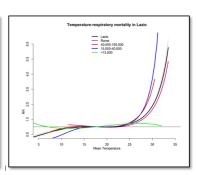


Figura 12.2.14. Relazioni dose-risposta per temperatura media e, rispettivamente, mortalità naturale, cardiovascolare e respiratoria

L'effetto del caldo sulla mortalità naturale totale nei comuni di piccole e medie dimensioni inizia ad aumentare a temperature più basse rispetto a Roma e ai grandi comuni. La curva di effetto della temperatura a Roma è spostata a destra, raggiunge valori più alti con una pendenza meno ripida, suggerendo un effetto minore. Durante l'estate, per aumenti delle temperature medie al di sopra del valore mediano è stato osservato un effetto statisticamente significativo sulla mortalità in tutti i gruppi di comuni della regione Lazio. La relazione dose-risposta di decessi cardiovascolari è simile nella forma alle curve dei decessi naturali complessivi, con un aumento del rischio di mortalità all'aumentare delle temperature ma è più ripida, raggiungendo stime di rischio relativo più elevate per esposizioni estreme. Al contrario della mortalità totale complessiva, le curve cardiovascolari per classi di comuni di diverse dimensioni sembrano omogenee in termini di forma, quindi molto più vicine tra loro. Sebbene il numero giornaliero di decessi respiratori si è dimostrato inferiore, è ancora possibile

osservare un effetto significativo del caldo per le <u>cause</u> respiratorie di morte.

Effetti legati al caldo sui ricoveri ospedalieri: Contrariamente a quanto osservato per la mortalità, non si osserva una relazione tra caldo e ricoveri ospedalieri. Un effetto del caldo si riscontra solo per i ricoveri respiratori, specialmente nei comuni di piccole e medie dimensioni.

Implementazione sistema allerta integrato caldo. Qualità dell'aria estate 2019

Una volta definiti tutti i dettagli il sistema di allerta integrato è stato implementato in via sperimentale per la stagione estiva 2019 e sta girando anche per il 2020. Per ogni giorno nel 2019 sono stati restituiti i risultati della previsione di allerta congiunta sia su mappe che in forma tabellare (Figura 12.2.15).

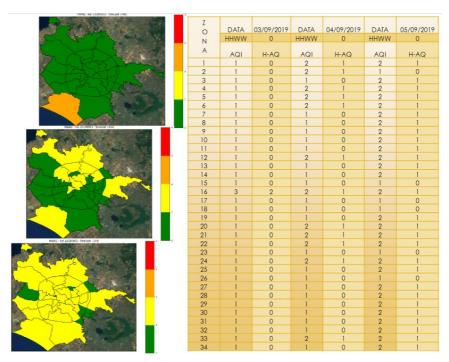


Figura 12.2.15. Esempio risultato allerta integrato 3 Settembre 2019 su Roma.

Analizzando le allerte date dal sistema integrato nell'estate 2019 il più frequente è il livello zero, come deve essere, e via via le frequenze diminuiscono salendo nei successivi livelli di allerta. Rispetto ai livelli dati dal solo sistema allerta caldo nella stessa estate le percentuali dell'allerta integrato sono minori di un 20% nel livello di allerta zero, aumentando di circa un 10% nei livelli 1 e 2 e di un 2% nel livello 3. Le allerte per la qualità dell'aria sono comandate dai livelli raggiunti per la media mobile massima dell'O₃ visto che durante l'estate 2019 i valori previsti per il PM₁₀ hanno difficilmente superato i valori del livello 0.

Gli effetti congiunti di caldo e qualità dell'aria individuano delle differenziazioni su Roma, come si può vedere dalla distribuzione dei livelli di allerta integrato per le diverse zone (Figura 12.2.16). In particolare si vede come le percentuali di rischio massimo per l'allerta crescano, non solo nelle zone più a rischio per le temperature elevate, già riconosciute dalle precedenti analisi, ma anche in quelle più verdi e soprattutto in quelle periferiche in cui più facilmente salgono i livelli di ozono (zona 16 e 24).

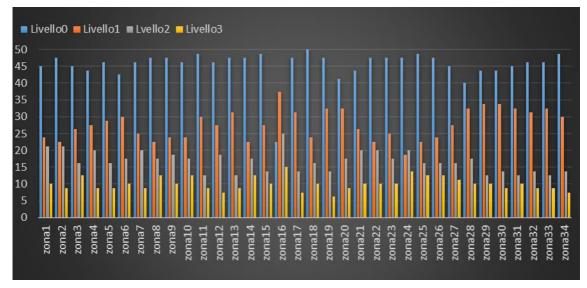


Figura 12.2.16. Percentuali livelli allerta congiunto per le diverse zone su Roma.

Confrontando i valori osservati di inquinanti (rete ARPA Lazio) e di temperatura (rete Aeronautica Militare) con quelli previsti dai sistemi, l'efficienza è migliore per l'HHWWS con qualche sovrastima e per il PM giornaliero (sottostima dei soli casi di aumento delle concentrazioni per avvezioni sahariane), mentre è peggiore per l'O₃, che viene spesso sovrastimato.

Discussione e conclusioni

Sono stati realizzati, a partire da dati satellitari, dei modelli spazio-temporali di esposizione, che hanno evidenziato una notevole eterogeneità nella distribuzione spaziale del PM e della temperatura. I modelli sviluppati si sono mostrati in grado di stimare PM e temperature nelle diverse zone del Lazio tenendo conto della complessa orografia e delle caratteristiche locali, e di distinguere tra aree urbane, suburbane e rurali. Nella regione, si sono evidenziate concentrazioni più elevate di PM nelle città, nell'area costiera e soprattutto nella zona della Valle del Sacco. Analogamente, la

temperatura era massima nelle città e minima nelle aree appenniniche. All'interno della città di Roma, le mappe di PM e temperatura erano molto simili, con le aree centrali e quelle del settore est della città caratterizzate dalla compresenza di elevato inquinamento e isole di calore urbane. La campagna di misurazione della temperatura effettuata nell'estate 2018 ha avvalorato quanto trovato per la distribuzione dell'UHI a Roma, sottolineando l'eterogeneità dell'esposizione nelle diverse aree della città

I dati satellitari e di uso del territorio sono stati utilizzati per stimare la temperatura media giornaliera (anni 2001-2010) e le concentrazioni medie giornaliere di PM_{10} (2006-2015) e $PM_{2,5}$ (2013-2015) per ogni km^2 del territorio regionale. E' stata utilizzata una metodologia random forest per attribuire un valore di AOD e LST nelle celle in cui il dato satellitare era mancante e prevedere le concentrazioni giornaliere di $PM_{10},\ PM_{2,5}$ e di temperatura dell'aria a una risoluzione spaziale fine sulla regione. La metodologia sviluppata fornisce stime della

temperatura dell'aria e del PM giornalieri per periodi prolungati con eccellenti prestazioni dei modelli.

La metodologia è tutt'altro che semplice e richiede una grande quantità di dati di input con una buona risoluzione spaziale e temporale. Tuttavia, i potenziali benefici rispetto ai dati di temperatura dell'aria e di concentrazioni di PM attualmente disponibili provenienti dai siti di monitoraggio sono notevoli e la metodologia può essere implementata ovunque tenendo conto delle caratteristiche locali.

Le stime ottenute, su considerevoli estensioni temporali, in questo studio hanno consentito per la prima volta la valutazione di effetti sanitari delle concentrazioni di particelle fini e grossolane e del calore nel Lazio, sia nelle città principali che nelle città minori, nelle aree suburbane e rurali, precedentemente escluse da molte indagini epidemiologiche perché prive di dati di esposizione. Le analisi epidemiologiche hanno confermato le evidenze di letteratura, mostrando eccessi di mortalità per cause naturali e cardiorespiratorie legati a picchi di inquinamento e temperature estive, ed eccessi di ospedalizzazioni, soprattutto per alcune patologie quali le malattie cardiache, lo scompenso cardiaco e le malattie respiratorie. Le patologie cardiovascolari mostrano una latenza immediata, con picchi di decessi/ricoveri che si manifestano nel giorno stesso del picco di PM o di calore, mentre le patologie respiratorie evidenziano latenze più prolungate, fino a 5-6 giorni.

Non si sono evidenziate differenze di associazione nelle diverse provincie e, abbiamo documentato importanti effetti avversi, tanto delle temperature estreme che del particolato, anche in comuni rurali piccoli o in comuni sub-urbani del Lazio medio-piccoli.

Infine, abbiamo riscontrato un rischio di mortalità ed ospedalizzazione crescente per età, a dimostrazione della necessità di pianificare politiche di adattamento e mitigazione per contrastare gli effetti avversi delle ondate di calore e del PM soprattutto nelle fasce maggiormente a rischio.

E' stato progettato e implementato un primo sistema integrato di allarme dell'inquinamento atmosferico e delle

ondate di calore a Roma, graduato per aree di rischio, che ha un'importanza anche da un punto di vista di sanità pubblica. E' il primo esempio in Italia, di definizione di un sistema di allerta che combini tre elementi essenziali: le temperature estive, i picchi di inquinamento e la spazializzazione di entrambi sul territorio. Ciò ha di evidenziare un'eterogeneità permesso dell'esposizione su Roma, mettendo in evidenza come, oltre alle zone centrali più soggette alle ondate di calore, ci siano anche zone periferiche, ad est della città e verso il mare in cui l'esposizione congiunta è maggiore. Su tali aree, e sulle popolazioni ivi residenti, dovrebbero concentrarsi in futuro le politiche comunali di sanità pubblica.

Questo sistema di allerta integrato è "portabile" ovvero realizzabile in qualunque città sia dotata sia di un sistema di allerta caldo (HHWWS) sia di un sistema previsionale della qualità dell'aria. Come primo esperimento è sicuramente perfettibile, il prossimo passo dovrebbe essere modulare l'allerta caldo, che in questa versione è unico su Roma e coincidente con quello istituzionale del HHWWS, nelle diverse zone, considerando quanto ottenuto nelle analisi di esposizione, scegliendo un modello meteorologico da cui ricavare le previsioni per i parametri meteorologici che entrano nella modulazione di rischio dell'allerta caldo.

Il sistema di allerta integrato, qualora fosse utilizzato a regime negli anni a venire, potrebbe entrare nella progettazione, da parte delle autorità comunali, delle misure di mitigazione del rischio, basate sull'interazione tra le due esposizioni ambientali e modulate per area geograficha, oltre che sui consueti fattori individuali di vulnerabilità.

In conclusione, lo studio ha evidenziato che l'esposizione acuta a PM ed alle temperature estreme aumenta il rischio di mortalità e morbosità nel Lazio.

Ringraziamenti

Il nostro ringraziamento ad Alessio d'Allura di ARIANET srl. per la proattiva partecipazione al progetto.

Bibliografia

Alessandrini E.R. et al., 2013. [Air:pollution and mortality in twenty-five Italian cities: results of the EpiAir2 Project]. Epidemiol Prey; 37: 220-229. Italian.

Badaloni et al. 2018: Big data in environmental epidemiology. Satellite and land use data for the estimation of environmental exposures at national level.

de' Donato F., Scortichini M., De Sario M., de Martino A., Michelozzi P., 2018: Temporal variation in the effect of heat and the role of the Italian heat prevention plan. Public Health. 2018;161:154-162. doi:10.1016/j.puhe.2018.03.030

IARC, 2013: Scientific Publication No. 161: Air Pollution and Cancer.

IPCC, 2013: Contribution of Working Group I "The Physical Science Basis". Cambridge, UK and New York, NY, USA.

Kloog I. et al., 2012: Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA. Sci. Total Environ.; 432: 85-92.

Kloog I. et al., 2012: Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM(2.5) exposures in the Mid-Atlantic states. Environ. Sci. Technol.; 46: 11913-11921.

Michelozzi P., de' Donato F., Bargagli A.M., et al., 2010: Surveillance of summer mortality and preparedness to reduce the health impact of heat waves in Italy. Int J Environ Res Public Health. 2010;7(5):2256-2273. doi:10.3390/ijerph7052256; https://pubmed.ncbi.nlm.nih.gov/20623023/; www.salute.gov.it/caldo

Stafoggia et al. 2017: Estimation of daily PM₁₀ concentrations in Italy (2006-2012) using finely resolved satellite data, land use variables and meteorology. Environ Int. 2017 Feb; 99: 234-244.

Stafoggia et al., 2019: Estimation of daily PM₁₀ and PM_{2,5} concentrations in Italy, 2013–2015, using a spatiotemporal land-use random-forest model. Environ Int. 2019, 124, pp. 170-179.

12.3 MAPPE DI SUITABILITY PER IL PROGETTO DI ADEGUAMENTO DELLA RETE DI QUALITÀ DELL'ARIA – INDICE DI RAPPRESENTATIVITÀ DELL'ESPOSIZIONE DELLA POPOLAZIONE

Acampora A.1, Crisci A.1, Mangiamele L.1, Di Pierro M.1, Zasa D.1, D'Aniello M.1

1ARPA BASILICATA

RIASSUNTO

Una delle principali finalità del D.Lgs 13 agosto 2010, n 155, è "... prevenire o ridurre effetti nocivi per la salute umana ..." (cfr. art. 1, comma 1, lettere a) e c)), focalizzando in tal modo l'attenzione sulla esposizione della popolazione.

Lo stesso decreto, all'allegato III, punto 3, definisce una serie di condizioni per la corretta ubicazione su macroscala dei siti fissi di campionamento: tra queste, la rappresentatività del sito di una zona (o agglomerato) nella quale la popolazione può essere esposta alle concentrazioni di fondo o più elevate. Obiettivo del presente lavoro è quello di individuare un metodo per la determinazione di un indice. rappresentabile spazialmente, che informa sul grado di rappresentatività dell'esposizione della popolazione alle concentrazioni massime e di fondo dell'inquinamento atmosferico (Indice di Rappresentatività di Esposizione della Popolazione - IREP). Per raggiungere questo obiettivo, la valutazione della rappresentatività spaziale (SR) di un sito si configura come un aspetto fondamentale, che, unitamente alla distribuzione della popolazione, fornisce gli elementi necessari per definire il metodo cercato. L'indice è stato poi utilizzato sul territorio della Regione Basilicata, in occasione del progetto di adeguamento della rete di qualità dell'aria. La metodologia. opportunamente elaborata con analisi spaziali in ambiente GIS, ha consentito di produrre, per gli inquinanti con maggiore criticità (PM₁₀, NO₂ ed O₃), alcune mappe di sintesi rappresentative dell'indice, consentendo di effettuare in modo oggettivo due operazioni: i. una valutazione delle stazioni della rete in termini di esposizione della popolazione sia ai valori di fondo sia alle massime esposizioni: ii. un orientamento sulla individuazione di eventuali nuove stazioni

La valutazione delle stazione della rete di monitoraggio di qualità dell'aria è stata agevolmente eseguita sovrapponendo il layer delle stazioni con la mappa dell'IREP.

L'individuazione di eventuali nuove stazioni è risultata facilitata da una semplice visione della stessa mappa che si è presentata come un insieme di areali definiti dalla variabilità dell'indice, informando sulla maggiore o minore rappresentatività dell'esposizione della popolazione.

Parole chiave: rappresentatività, esposizione della popolazione, qualità dell'aria, analisi spaziali, mappe di suitability

ABSTRACT

One of the main aims of Decree no. 155 of 13 August 2010 is to prevent or reduce harmful effects on health, thus focusing the attention on population exposure. The same Decree in annex III, point 3, defines the criteria for the correct location of the fixed sampling sites on a large scale. Among these, there is the representativeness of an area site (or agglomeration) in which the population can be exposed to background or higher concentration of pollutants.

The goal of this paper is to identify a method for the determination of an index which can be represented spatially and which informs about the degree of representativeness of population exposure to high and background concentrations of air pollution (Population Exposure Representativeness Index - IREP). It is determined through the evaluation of Spatial Representativeness (SR) and population density. The index was used in the Basilicata region when the air quality network was adjusted.

The method was worked out with spatial analyses in GIS environment, which allowed to have IREP's maps for the most critical pollutants (PM_{10} , NO_2 and O_3) in Basilicata. These suitability maps allow to cary out two operations: i. an assessment of the network stations in terms of population exposure to both background values and maximum exposures; ii. an orientation on the identification of potential new stations.

The evaluation of the stations of the air quality monitoring network was easily performed by watching the layer of the stations with the IREP map. New station were located observing the variability of the index which informs about the greater or lesser representativeness of population exposure.

Keywords: representativeness, population exposure, air quality, spatial analyses, suitability map

Introduzione

La valutazione della qualità dell'aria ambiente è effettuata, in Europa (EC, 2008) e conseguentemente in Italia (D.Lgs 155/2010), applicando specifici criteri, sia di ubicazione su macroscala dei siti fissi di campionamento. sia di utilizzo di tecniche di modellazione. Tra le condizioni di ubicazione su macroscala dei siti fissi di campionamento, il decreto 155/2010 indica la rappresentatività del sito di una zona (o agglomerato) nella quale la popolazione può essere esposta alle concentrazioni di fondo o a quelle più elevate. Il concetto elementare di rappresentatività spaziale (SR) si basa sulla determinazione dell'area alla quale si possono estendere le informazioni osservate in un sito di monitoraggio, e nel caso specifico di una stazione di monitoraggio della qualità dell'aria, la SR esprime per quale estensione una misurazione in questa stazione óua essere considerata rappresentativa concentrazioni di inquinanti dell'aria ambiente intorno alla stazione stessa (Kracht et al., 2017). Oltre alla variabile spaziale, è stato associato al concetto di rappresentatività, anche quello temporale; un punto di misura, infatti, è rappresentativo di un'area più vasta se risulta maggiore del 90% la probabilità che nel tempo la differenza tra il valore misurato nel sito e quello misurato nell'area sia minore di una fissata soglia (Nappo et al., 1982). I soli dati delle stazioni di monitoraggio, possono essere influenzati fortemente da fattori locali, e rappresentano spesso un numero abbastanza esiguo di misure puntuali, difficilmente idonee a essere spazializzate a scala regionale. L'informazione del dato nello spazio è, invece, particolarmente necessario quando si deve installare una nuova rete di misura, o quando si deve adequare, modificare o integrare una rete esistente. Per questo motivo, ai fini della valutazione della SR, occorre determinare la concentrazione degli inquinanti in tutti i punti dello spazio, e per arrivare a questo risultato ci sono due possibilità: la modellazione della qualità dell'aria, o la cosiddetta parametrizzazione, ovvero la determinazione della concentrazione di inquinanti a partire da dati sostitutivi a loro volta disponibili nello spazio (Spangl et al., 2007). Ciò ha portato allo sviluppo in letteratura di diversi approcci metodologici con diverse fonti di informazione, per la individuazione della SR, quali: metodi basati sull'analisi dei campi di concentrazione stimati da simulazioni modellistiche (Vitali et al., 2013; Busillo et al., 2014), metodi basati su simulazioni modellistiche e/o misure in sito (Martin et al., 2014; Piersanti et al., 2015), metodi basati su variabili proxy (come copertura del suolo, sorgenti emissive. Janssen et al., 2008: Janssen et al., 2010; Piersanti et al., 2013; Cremona et al., 2013; Righini et al., 2014).

Obiettivo del presente lavoro è quello di individuare un metodo per la determinazione di un indice, rappresentabile spazialmente, che informa sul grado di rappresentatività dell'esposizione della popolazione alle concentrazioni massime e di fondo dell'inquinamento atmosferico (Indice di Rappresentatività di Esposizione della Popolazione - IREP). Per raggiungere questo obiettivo, la valutazione della SR rappresenta un aspetto fondamentale, che, unitamente alla distribuzione della popolazione (ISTAT), fornisce gli elementi necessari per definire il metodo cercato. Quest'ultimo, opportunamente elaborato con analisi spaziali in ambiente GIS, genera, per gli inquinanti presi in considerazione, le mappe dell' IREP, e consente di effettuare in modo semplice ed

oggettivo due operazioni: i. la valutazione delle stazioni della rete in termini di esposizione della popolazione sia ai valori di fondo sia alle massime esposizioni; ii. l'orientamento sulla individuazione di nuove stazioni. L'indice è stato utilizzato sul territorio della Regione Basilicata, in occasione del progetto di adeguamento della rete di qualità dell'aria, in conformità al D.Lgs 155/2010. La valutazione delle stazione della rete di monitoraggio di qualità dell'aria esistente è stata agevolmente eseguita sovrapponendo il layer delle stazioni con la mappa dell'IREP. L'individuazione delle nuove stazioni è risultata facilitata da una semplice visione della stessa mappa che si presenta come un insieme di areali definiti dalla variabilità dell'indice.

Metodi

Presupposto fondamentale del metodo per la determinazione dell'IREP è la disponibilità di misure di concentrazione degli inquinanti in tutti i punti dello spazio. A tale scopo, in questo studio, si è utilizzato il

pacchetto modellistico tridimensionale ARIA Regional. Il sistema si basa sul modello euleriano fotochimico FARM (Flexible Air quality Regional Model) per la simulazione della dispersione e della chimica degli inquinanti atmosferici alle diverse scale spaziali, che consente la valutazione delle concentrazioni degli inquinanti primari e secondari e delle deposizioni al suolo. Il sistema modellistico è stato applicato per la ricostruzione delle concentrazioni di inquinanti, a scala oraria, nella regione Basilicata. La simulazione è stata condotta per l'intero anno 2018, sulla base dell'inventario delle emissioni comunalizzate, aggiornate al 2015 (ISPRA) e integrate con le informazioni fornite da Arpab sulle sorgenti puntuali. L'area di studio è costituita da un dominio di 148 x 140 km² centrato sull'intera regione Basilicata. Il dominio ha una risoluzione di 74 x 70 celle, con risoluzione spaziale di 2 km (cfr. Figura 12.3.1).

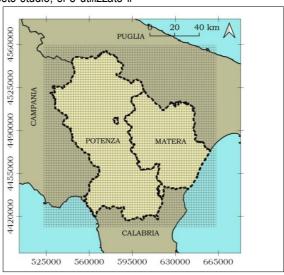


Figura 12.3.1. Dominio dell'area di studio.

Gli inquinanti sui quali è stata posta l'attenzione sono stati PM₁₀, NO₂ ed O₃, tenuto conto della loro maggiore variabilità e criticità, rispetto agli altri inquinanti,

riscontrata dall'esame dei dati storici del monitoraggio. Ai fini della valutazione dell'esposizione della popolazione alle concentrazioni massime e di fondo dell'inquinamento

atmosferico, si è fatto riferimento ai valori massimi giornalieri (per la massima esposizione) e ai valori minimi giornalieri (per il fondo). Gli output del modello sono stati comparati con i dati delle stazioni della rete di monitoraggio di qualità dell'aria della regione (n. 15 stazioni), anche per verificare che la stima dell'incertezza della modellizzazione rientrasse nei limiti previsti dal D.Lqs 155/2010.

Dagli output del modello si sono generate le mappe di SR, in accordo con la condizione di Nappo (Nappo et al., 1982), tradotta da Piersanti (Piersanti et al., 2015) nella funzione (1).

$$I_{R}(x,y) = \frac{1}{T} \sum_{i=1}^{T} f_{i} \ con \ f_{i} = \\ \begin{cases} 1, \ se \frac{|conc(x_{r},y_{r},t_{i})-conc(x_{v},y_{v},t_{i})|}{conc(x_{r},y_{r},t_{i})} \leq 0,2 \\ 0, \ se \frac{|conc(x_{r},y_{r},t_{i})-conc(x_{v},y_{v},t_{i})|}{conc(x_{r},y_{r},t_{i})} > 0,2 \end{cases}$$
(1)

dove:

Conc è la concentrazione stimata,

 x_r e y_r sono le coordinate della cella di riferimento,

 x_v e y_v sono le coordinate della v-esima cella di verifica,

 t_i è il tempo al quale fa riferimento la concentrazione (in questo studio giornaliera),

T è la lunghezza del periodo di calcolo (in questo studio un anno).

La funzione, che in questo lavoro è stata definita Indice di Rappresentatività (I_R), descrive la frequenza con cui nel tempo la differenza tra il valore di concentrazione di una cella del dominio (che abbiamo definito cella di riferimento), con i valori di concentrazione di tutte le altre celle del dominio (che abbiamo definito celle di verifica), risulta minore della soglia del 20%. L'indice ha valori compresi tra 0 (la condizione \leq 0,2 non è mai soddisfatta - I_R nullo) ed 1 (la condizione \leq 0,2 è sempre soddisfatta - I_R pari al 100%).

Ai fini del calcolo dell'I_{REP}, obiettivo del presente lavoro, è stato necessario considerare la distribuzione della popolazione sul territorio regionale, integrandola con l'I_R.

In tal senso, la banca dati ISTAT, costituita da una adeguata mole di dati geografici territoriali, è stata un'utile fonte delle informazioni. Le informazioni presenti nei dati ISTAT si riferiscono all'ultimo aggiornamento presente, ovvero quello del 2011. Con opportune elaborazioni in ambiente GIS, si è ricavata, dai dati territoriali relativi alle Sezioni di Censimento, la mappa di densità della popolazione a scala regionale. La suddetta mappa è stata prodotta su un dominio con risoluzione di 74 x 70 celle e risoluzione spaziale di 2 km. perfettamente sovrapponibile al dominio utilizzato dal modello FARM; ciò al fine di rendere agevolmente confrontabili i risultati delle stime di concentrazione ottenute dal modello, con la densità di popolazione. In maniera ricorsiva, e per ogni cella di riferimento del calcolo dell' IR, è stato definito l'IREP secondo la formula (2).

$$I_{REP(r)} = \frac{\sum_{c=1}^{n} (POP(c)^{*I}R(c))}{\sum_{c=1}^{n} POP(c)}$$
 (2)

dove:

n è il numero di celle del dominio,

 $POP_{(c)}$ è la popolazione della cella in esame,

 $I_{R_{(c)}}$ è l'indice di rappresentatività della c-esima cella di riferimento in esame.

In sostanza la (2) applica il concetto di media ponderata all' I_R , considerandolo più importante laddove è maggiore la popolazione presente nella sua stessa cella e, viceversa, meno importante laddove la popolazione è minore o assente.

La Figura 12.3.2, aiuta a comprendere il significato del calcolo. Lo schema (a) simula un'elementare composizione di celle del dominio considerato (celle A, B, C e D con relativo indice di rappresentatività - I_R - e popolazione - POP). Con bordo in rosso sono rappresentate tutte le celle di riferimento, per le quali è stato calcolato l'I_{REP} applicando la formula (2). La rappresentazione conclusiva contiene per ogni cella del dominio considerato (*cfr.* schema (b)) il relativo valore dell'indice. Più alto è il valore di tale indice, più la cella è

rappresentativa dell'esposizione della popolazione in relazione a tutte le altre celle del dominio preso in esame.

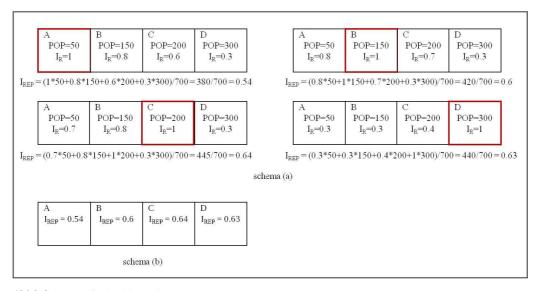


Figura 12.3.2. Schema esplicativo del metodo.

Risultati

Tenuto conto dell'obiettivo del presente lavoro (esposizione della popolazione alle concentrazioni massime e di fondo dell'inquinamento atmosferico, attraverso l'I_{REP}), si sono estrapolati dagli output del modello e per ogni cella del dominio (5180 celle) i valori

massimi giornalieri (per la massima esposizione) e i valori minimi giornalieri (per il fondo). Per gli inquinanti presi in considerazione (PM₁₀, NO₂ ed O₃), quindi, si sono prodotte 365 mappe con i valori minimi giornalieri per cella, ed uguale numero di mappe per i valori massimi giornalieri per cella, del tipo riportato in Figura 12.3.3

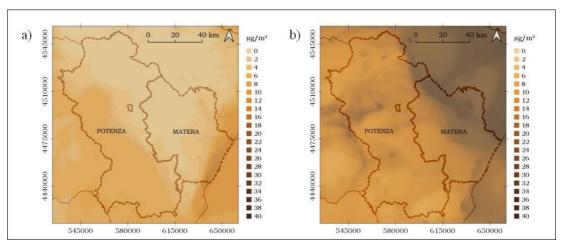


Figura 12.3.3. Output del modello FARM del giorno 21/06/2018. a) minimo giornaliero di PM₁₀; b) massimo giornaliero di PM₁₀

Dagli output del modello FARM si sono ricavate le mappe dell'I_R attraverso la (1), con l'ausilio di un opportuno script in ambiente statistico "R". L'elaborazione ha generato una corposa serie di matrici del dominio oggetto di studio, rappresentabili in forma di mappe in ambiente GIS. Per ogni inquinante sono state prodotte tante

mappe dell'indice di rappresentatività per quante sono le celle del dominio (5180 celle considerate una alla volta come celle di riferimento), sia per i valori di fondo, sia per i valori massimi. Si riportano in Figura 12.3.4 alcuni esempi di rappresentazione dell' I_R.

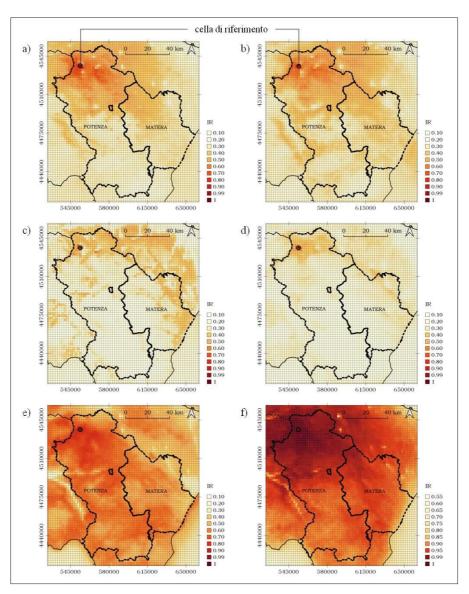


Figura 12.3.4. Esempi di output della funzione (1) – Indice di Rappresentatività della cella di riferimento indicata. a) valori di fondo di PM₁₀; b) valori massimi di PM₁₀; c) valori di fondo di NO₂; d) valori massimi di NO₂; e) valori di fondo di O₃; f) valori massimi di O₃)

Ai fini dell'individuazione dell' I_{REP}, è stata utilizzata la mappa di densità della popolazione a scala regionale rappresentata in Figura 12.3.5.

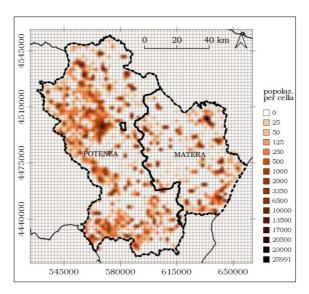


Figura 12.3.5. Mappa di densità di popolazione per cella

Applicando la (2), secondo lo schema di Figura 2, e l'utilizzo combinato delle mappe dell' IR con la mappa di densità di popolazione, è stato ricavato l'IREP delle singole celle del dominio di studio. La (2) è stata applicata per zone omogenee, tenendo conto che il territorio della Regione Basilicata è stato suddiviso in 2 zone dal progetto di zonizzazione e classificazione degli inquinanti, in conformità al D.Lgs 155/2010; per gli inquinanti presi in considerazione nel presente lavoro le zone risultano così individuate: zona A e zona B per PM₁₀ e NO₂, zona C e zona D per O₃. Anche il calcolo dell'IREP

è stato eseguito con l'ausilio di un opportuno script in ambiente statistico "R", che ha generato, per i valori di fondo e i valori massimi degli inquinanti oggetto di studio, le matrici del dominio rappresentate in forma di mappe. Le mappe dell' IREP dei valori massimi e di fondo degli inquinanti presi in considerazione, prodotte per le zone A e B, hanno evidenziato una rappresentazione, con relativo istogramma delle frequenze dell'indice, del tipo mostrato in Figura 12.3.6.

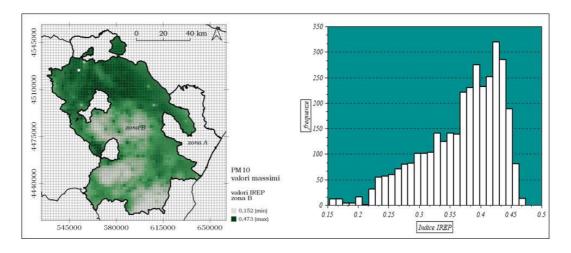


Figura 12.3.6. Zona B, mappa dell'IREP dei valori massimi di PM₁₀ e relativo istogramma delle frequenze

In tutte le mappe, ed i relativi istogrammi, la distribuzione dell'indice è del tipo non uniforme e generalmente con asimmetria negativa. Per le mappe finali dell'I_{REP} si è applicata, pertanto, una classificazione in 10 fasce, secondo il metodo "natural breaks" (Jenks, 1967) disponibile in ambiente Gis (QGIS), che ha consentito di

ridurre la varianza all'interno delle classi e massimizzare la varianza tra le classi. La Figura 12.3.7 mostra le mappe finali dell' I_{REP} , prodotte per le zone A e B (valori massimi e di fondo di PM_{10} ed NO_2) e per le zone C e D (valori massimi e di fondo di O_3).

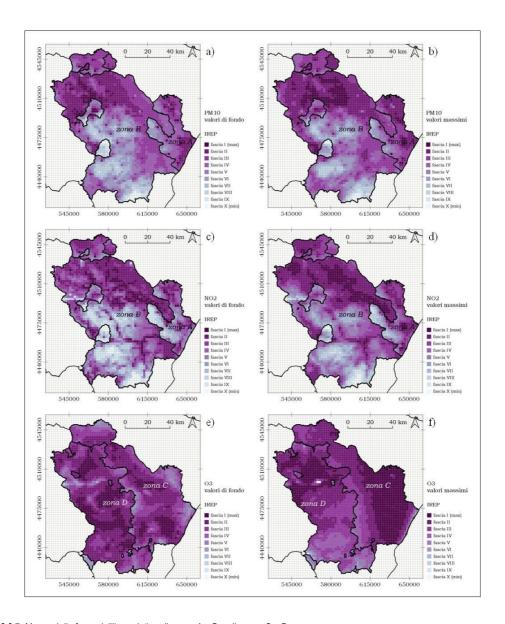


Figura 12.3.7. Mappe delle fasce dell'I_{REP} relativo alle zone A e B e alle zone C e D.
a) rappresentatività all'esposizione dei valori di fondo di PM₁₀; b) rappresentatività all'esposizione dei valori massimi di PM₁₀; c) rappresentatività all'esposizione dei valori massimi di NO₂; e) rappresentatività all'esposizione dei valori di fondo di O₃; f) rappresentatività all'esposizione dei valori massimi di O₃.

Alle fasce sono state, inoltre, assegnate delle classi di giudizio secondo la Tabella 12.3.1, sia ai fini della

valutazione delle stazioni della rete di qualità dell'aria, sia ai fini della individuazione di nuove stazioni.

FASCIA I _{REP}	CLASSI di GIUDIZIO	
Ï	OTTIMO	
II e III	BUONO	
IV e V	DISCRETO	
VI e VII	SUFFICIENTE	
VIII - IX e X	INSUFFICIENTE	

Figura 12.3.1. Corrispondenza tra fascia IREP e classi di giudizio

Discussione

Gli output del modello FARM di Figura 12.3.3, confermano le tipiche distribuzioni dei valori di fondo e dei valori massimi del PM₁₀, mostrando una bassa variabilità dei valori di fondo (*cfr.* Figura 12.3.3 a) - la mappa assume un colore più uniforme e nei valori bassi della scala di concentrazione) ed una maggiore variabilità dei valori massimi (*cfr.* Figura 12.3.3 b) - la mappa assume un colore meno uniforme e nei valori medio - alti della scala di concentrazione). Le stesse caratteristiche nella distribuzione delle concentrazioni si riscontrano anche negli output relativi al NO₂ ed O₃.

La rappresentatività mostrata con le mappe di I_R di Figura 12.3.4, evidenzia un comportamento differenziato a seconda dell'inquinante preso in considerazione. Tale comportamento risulta in linea con evidenze già presenti in letteratura (Vitali et al., 2013; Busillo et al., 2014). In particolare si evidenzia quanto segue.

L'indice relativo al PM_{10} (*cfr.* Figura 12.3.4 a) e 12.3.4 b) mostra una rappresentatività pressappoco simile tra i valori massimi ed i valori di concentrazione minimi giornalieri. L'estensione della rappresentatività, con i valori medio - alti della scala dell'indice (> di 0,7) si spinge anche oltre l'intorno della cella di riferimento.

L'indice relativo al NO₂ (*cfr.* Figura 12.3.4 c) e 12.3.4 d)) evidenzia una rappresentatività leggermente più marcata

nei valori minimi rispetto ai valori di concentrazione massimi giornalieri. In ambedue i casi, comunque, l'indice conserva valori alti della scala dell'indice (> di 0,8) quasi esclusivamente nell'intorno della cella di riferimento.

L'indice relativo all'O₃ (*cfr.* Figura 12.3.4 e) e 12.3.4 f)) mostra una rappresentatività molto diffusa nei valori medio - alti della scala dell'indice (> di 0,7) in riferimento ai valori di concentrazione minimi giornalieri, ed altrettanto diffusa nei valori altissimi della scala dell'indice (> di 0,9) in riferimento ai valori di concentrazione massimi giornalieri. Nel complesso l'ozono mostra, anche nei valori più alti della scala dell'indice, una rappresentatività più diffusa sia rispetto al PM₁₀, sia al NO₂, che si estende ben oltre l'intorno della cella di riferimento.

Le considerazioni fin qui espresse sulle mappe dell' I_R , ed i relativi valori numerici, tengono conto della soglia di probabilità del 90% presente in letteratura (Nappo et al., 1982); in questo lavoro, tuttavia, assume poco significato un valore soglia dell'indice, in considerazione del fatto che lo scopo ultimo del lavoro non è quello di definire la rappresentatività o non rappresentatività di un sito di misura, bensì quello di definire una classificazione del territorio in fasce di rappresentatività espresse dall' I_{REP} (strettamente connesso all' I_{R} , attraverso la (2)).

Dall'analisi delle mappe dell'IREP di Figura 12.3.7, che rappresentano gli output del metodo fin qui descritto, è possibile trarre le seguenti considerazioni. L'IREP relativo alla massima esposizione, ovvero generato dai valori massimi delle concentrazioni degli inquinanti presi in considerazione (*cfr.* Figura 7 b), 7 d) e 7 f)) mostra la tendenza ad una clusterizzazione omogenea e con areali più estesi rispetto alla maggiore frammentazione dell'IREP relativo ai valori di fondo (*cfr.* Figura 7 a), 7 c) e 7 e)).

L'indice relativo al PM₁₀ ed NO₂ mostra uno spettro di valori più ampi rispetto all'indice relativo all'ozono. I primi due inquinanti, infatti, caratterizzano il territorio attraverso un indice più eterogeneo; in particolare la parte di territorio centro-meridionale è caratterizzata da bassi valori dell'I_{REP}, al netto di piccole aree con indice più alto. I valori più alti dell'indice, invece, si collocano

nell'area nord nord-est. L'ozono, invece, caratterizza il territorio attraverso un indice più omogeneo, che si attesta prevalentemente sui valori più alti della scala.

Nel complesso gli output del metodo esposto rispondono alle aspettative attese, tenuto conto che le aree corrispondenti alle fasce dell'IREP risultano sufficientemente definite ed utili agli scopi prefissati. Il primo scopo, infatti, era la valutazione delle stazioni della rete in termini di esposizione della popolazione, sia ai valori di fondo sia alle massime esposizioni. La Figura 12.3.8 mostra la semplicità ed efficacia del metodo nel valutare la posizione di una stazione della rete di qualità dell'aria

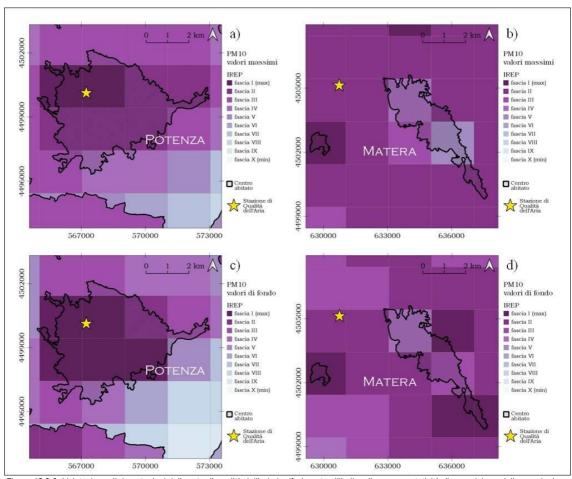


Figura 12.3.8. Valutazione di due stazioni della rete di qualità dell'aria in riferimento all'indice di rappresentatività di esposizione della popolazione relativo ai valori massimi e di fondo di PM₁₀

La rilevazione della fascia della cella nella quale ricade la stazione, consente, attraverso la Tabella 12.3.1, di assegnare alla stazione il corrispondente giudizio relativo alla cella in essa ricadente. Nella Figura 12.3.8 si evidenzia la sovrapposizione di due stazioni della rete di qualità dell'aria (ambedue in zona A, una del tipo urbano nel centro abitato di Potenza e l'altra di tipo suburbano in prossimità del centro abitato di Matera) sulle mappe dell'indice di rappresentatività di esposizione della

popolazione relativo ai valori massimi e di fondo di PM_{10} . Il giudizio della stazione di Potenza (\it{cfr} . Figura 12.3.8 a) e 12.3.8 c)) risulta "ottimo", sia nei valori di fondo, sia nei valori massimi di PM_{10} , collocandosi in una cella con I_{REP} di fascia I. La stazione di Matera (\it{cfr} . Figura 12.3.8 b) e 12.3.8 d)) ottiene un giudizio "buono", collocandosi in una cella con I_{REP} di fascia II.

La verifica della stazione di Matera mostra l'utilità del metodo anche in riferimento al secondo scopo del presente lavoro, ovvero quello di disporre di uno strumento in grado di orientare la individuazione di nuove stazioni di qualità dell'aria. In tal caso, infatti, risulta evidente che alcune celle dell'abitato di Matera ricadono in fascia I. Risulterebbe quindi opportuno installare una nuova stazione di tipo urbano o suburbano in tali celle o dislocare la stazione esistente. L'efficacia del metodo risulta ancora più evidente quando sorge la necessità di individuare la migliore localizzazione in aree alquanto

estese del territorio. La Figura 12.3.9 (Figura 9 – Localizzazione sulla fascia Jonica di una nuova stazione rurale di fondo per l'ozono. a) fascia Jonica con rappresentatività all'esposizione dei valori di fondo di O₃; b) individuazione della migliore posizione della nuova stazione) descrive la localizzazione sulla fascia Jonica di una nuova stazione rurale di fondo per l'ozono.

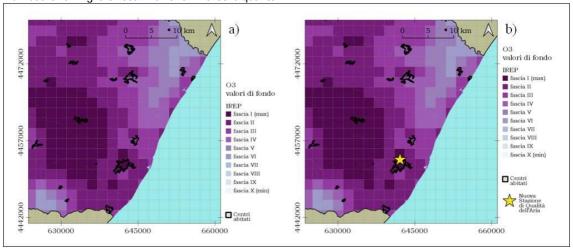


Figura 12.3.9. Localizzazione sulla fascia Jonica di una nuova stazione rurale di fondo per l'ozono. a) fascia Jonica con rappresentatività all'esposizione dei valori di fondo di O3; b) individuazione della migliore posizione della nuova stazione.

In Figura 12.3.9 a) si riporta la zona interessata con la mappa dell'I_{REP} relativa ai valori di fondo di O₃, dalla quale è possibile individuare le celle più idonee. In Figura 12.3.9 b) si riporta la stessa mappa con indicazione della localizzazione della nuova stazione, ricadente in una cella di fascia I e conseguente giudizio "ottimo".

Conclusioni

Nel complesso il metodo, applicato in questo lavoro a scala regionale, si rivela di facile implementazione è di grande utilità, configurandosi nei suoi output finali come mappe di *suitability*, e pertanto fortemente orientati verso un sistema di supporto alle decisioni.

Appare evidente che il metodo risulti fortemente condizionato dal primo *step*, legato alla modellistica; quanto più dettagliati e puntuali sono i parametri di input del modello, tanto più precisi sono i suoi output e

conseguentemente gli indici che da essi discendono (I_R ed I_{REP}).

Il metodo potrebbe essere testato anche a scala locale, su domini più limitati e con maggior dettaglio; in questo caso il modello Lagrangiano può risultare più appropriato, anche se risulterebbe necessario integrarlo con il modello Euleriano di dispersione degli inquinanti, qui utilizzato. Ciò consentirebbe di sopperire alla mancanza, nel modello Lagrangiano, del dato emissivo di fondo che caratterizza il dominio di calcolo.

Sarebbe inoltre opportuno applicare il metodo in contesti diversi da quello di questo lavoro. La regione Basilicata, infatti, si caratterizza per una antropizzazione molto bassa, e con centri urbani di modestissime dimensioni, anche se con un discreto fenomeno di *sprawl* urbano. L'applicazione in realtà dove è prevalente la dimensione metropolitana dei centri urbani potrebbe condurre a risultati diversi, evidenziare ulteriori pregi o limiti del metodo.

Ringraziamenti

Si ringrazia la società Arianet s.r.l. per il contributo fornito nell'ambito della simulazione a scala regionale.

Bibliografia

Busillo C., Calastrini F., Guarnieri F. (2014): La rappresentatività spaziale delle reti di monitoraggio attraverso l'analisi dei campi di concentrazione stimati dal sistema modellistico WRF-CAMx. http://www.lamma.rete.toscana.it/

European Commission (EC), 11.06.2008. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe (The Framework Directive). Off. J. Eur. Commun. En. Ser. L152/51.

ISPRA -http://www.sinanet.isprambiente.it/it/sia-ispra/inventaria/disaggregazione-dellinventario-nazionale-2015/view

ISTAT – basi territoriali e variabili censuarie: https://www.istat.it/it/archivio/104317

Janssen, S., Dumont, G., Fierens, F., Mensink, C. (2008). Spatial interpolation of air pollution measurements using CORINE Land Cover data. Atmospheric Environment 42, 4884-4903.

Janssen, S., Dumont, G., Fierens, F., Deutsch, F., Maiheu, B., Celis, D., Trimpeneers, E., Mensink, C., (2012). Land use to characterize spatial representativeness of airquality monitoring stations and its relevance for model validation. Atmospheric Environment. 59, 492-500.

Jenks, G.F., 1967. The data model concept in statistical mapping. Int. Yearb. Cartogr. 7, 186 e 190.

Kracht O., Santiago J.-L., Martin F., Piersanti A., Cremona G., Righini G., Vitali L., Delaney K., Basu B., Ghosh B., Spangl W., Brendle C., Latikka J., Kousa A., Pärjälä E., Meretoja M., Malherbe L., Letinois L., Beauchamp M., Lenartz F., Hutsemekers V., Nguyen L., Hoogerbrugge R., Eneroth K., Silvergren S., Hooyberghs H., Viaene P., Maiheu B., Janssen S., Roet D. and Gerboles M., Spatial representativeness of air quality monitoring sites - Outcomes of the FAIRMODE/AQUILA intercomparison exercise, EUR 28987 EN, Publications Office of the European Union, Luxembourg, 2017, ISBN 978-92-79-77218-4, doi:10.2760/60611, JRC108791.

Martin F., Fileni L., Palomino I., García Vivanco M., Garrido J. (2014). Analysis of the spatial representativeness of rural background monitoring stations in Spain. Atmospheric Pollution Research. 5. 779-788. 10.5094/APR.2014.087.

Nappo, C.J., Caneill, J.Y., Furman, R.W., Gifford, F.A., Kaimal, J.C., Kramer, M.L., Lockhart, T.J., Pendergast, M.M., Pielke, R.A., Randerson, D., Shreffler, J.H., Wyngaard, J.C., 1982. The workshop on the representativeness of meteorological-observations, June 1981, Boulder, Colorado. Bull. Am. Meteorol. Soc. 63, 761e764.

Piersanti, A., Cremona, G., Vitali, L., Righini, G., Ciancarella, L. (2013). Rappresentatività spaziale di misure di qualità dell'aria-Valutazione di un metodo di stima basato su fattori oggettivi. 10.13140/RG.2.1.1793.3923.

Piersanti, A., Ciancarella, L., Cremona, G., Righini, G., Vitali, L. (2015). Spatial representativeness of air quality monitoring stations: a grid model based approach. Atmospheric Pollution Research, No 6, 2015, pp. 953-960, doi: 10.1016/j.apr.2015.04.005

QGIS - https://www.ggis.org/it/site/

Righini G., Cappelletti A., Ciucci A., Cremona G., Piersanti A., Vitali L., Ciancarella L., (2014). GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data. Atmospheric Environment. 97. 121–129. 10.1016/j.atmosenv.2014.08.015.

Spangl, W., Schneider, J., Moosmann, L., Nagl, C., 2007: Representativeness and classification of air quality monitoring stations. Final Report, Umweltbundesamt Report. Umweltbundesamt, Vienna.

Vitali L., Ciancarella L., Cionni G., Cremona G., Piersanti A., Righini G. (2013): Rappresentatività spaziale di misure di qualità dell'aria. Valutazione di un metodo di stima basato sull'analisi dei campi di concentrazione simulati dal modello nazionale MINNI, Rapporto Tecnico RT/2013/3/ENEA, ENEA.

12.4 APPLICAZIONE DELLA TEORIA DEGLI INSIEMI SFUMATI PER LA DEFINIZIONE DELL'INDICE FEAI. STUDIO DELLA RETE REGIONALE DI QUALITÀ DELL'ARIA E DELL'ESPOSIZIONE CON MAPPE FUZZY DI ANALOGIA AMBIENTALE.

Giardina M., Buffa P., Abita A., Madonia G.

ARPA SICILIA

RIASSUNTO

Nel 2014 l'Assessorato Regionale Territorio e Ambiente (A.R.T.A.) della regione siciliana ha approvato il "Progetto di razionalizzazione del monitoraggio della qualità dell'aria in Sicilia ed il relativo programma di valutazione" redatto da ARPA Sicilia in accordo con la "Zonizzazione e classificazione del territorio della Regione Siciliana", come definita nel 2012.

Il Progetto ed il relativo programma di valutazione (PdV) hanno avuto come obiettivo la realizzazione di una rete regionale conforme ai principi di efficienza, efficacia ed economicità previsti dal D.Lgs. 155/2010. La rete è stata progettata per essere in grado di fornire un'informazione completa sulla qualità dell'aria ai fini di un concreto ed approfondito contributo alle politiche di risanamento.

Nell'ambito di una collaborazione tra ARPA Sicilia ed il Dipartimento di Ingegneria dell'Università di Palermo, è stata condotta una ricerca che ha consentito di sviluppare una metodologia innovativa, basata sulla teoria della logica fuzzy, capace di definire mappe di affinità ambientale utili a sostenere e migliorare la progettazione di reti di monitoraggio della qualità dell'aria su scala regionale.

Le mappe sono generate utilizzando un nuovo approccio metodologico che si basa sulla valutazione di un nuovo indice di *pressione ambientale del territorio* detto Fuzzy Environmental Analogy Index (FEAI).

Nel presente lavoro vengono descritti gli aspetti computazionali ed applicativi dell'indice FEAI rispetto alla formulazione del PdV della rete regionale di qualità dell'aria della regione Sicilia.

I risultati ottenuti confermano la capacità di FEAI di effettuare analisi sulle analogie che esistono tra aree

limitrofe in termini di pressioni ed esposizioni ambientali dovute a fonti antropiche e naturali e di valutare l'efficienza della rete di monitoraggio utilizzata per monitorare la qualità dell'aria negli strati bassi della troposfera.

Parole chiave: qualità dell'aria, rete di monitoraggio, teoria degli insiemi sfumati, fuzzy environmental pressure index

ABSTRACT

Today, there is more and more interest in investigating relationships of spatio-temporal variations of air pollution due to anthropic or natural sources and weather conditions, especially for contamination risks, or more generally of substances hazardous to health. Moreover. a very important strategy is to support air quality management by developing methodologies that are useful to design effective and efficient air monitoring networks on large-scale. In the framework of a cooperation between ARPA Sicilia organization and Department of Engineering, University of Palermo, research efforts have been performed to provide solutions to the above problems by developing environmental pressure maps based on new and innovative index, called fuzzy environmental pressure index (FEAI). FEAI model, based on fuzzy theory, is deduced by combining two indexes: meteorological pressure indicator (IPM) that allows, for the examined territory, to investigate analogies relevant to meteorological conditions, and anthropic pressure indicator (IPA) which takes into account the impacts related to anthropogenic or natural sources at regional scale. Finally, FEAI applications for Sicily region, Italy, are described. Analyses of results allow to confirm the robustness of FEAI index approach in modelling anthropic environmental pressures at regional scale.

Keywords: air quality, monitoring network, fuzzy set theory, fuzzy environmental pressure index

Introduzione

Tutte le attività volte a studiare le cause primarie e gli effetti dell'inquinamento atmosferico presuppongono l'utilizzo di una rete di monitoraggio della qualità dell'aria realizzata secondo standard ottimali per la valutazione dell'esposizione della popolazione e della vegetazione agli inquinanti, con riferimento ai limiti imposti dalla norma vigente.

Nell'ambito di una collaborazione tra ARPA Sicilia ed il Dipartimento di Ingegneria dell'Università di Palermo, è stata condotta una ricerca che ha consentito di sviluppare una metodologia innovativa, basata sulla teoria della logica fuzzy, capace di definire mappe di affinità ambientale utili a migliorare la progettazione di reti di monitoraggio della qualità dell'aria su scala regionale, nonché di incrementare la capacità interpretativa delle pressioni ambientali causa di inquinamento di aree geografiche limitrofe.

L'approccio metodologico messo a punto è basato sulla costruzione di regole fuzzy in modo simile a quanto riportato in (Giardina et al., 2014 e 2019). Questa struttura modellistica permette di definire le regole interpretative delle variabili in studio ricorrendo alla teoria degli insiemi sfumati applicata attraverso le variabili linguistiche fuzzy che sacrificano la precisione a favore del significato.

In particolare, è stato creato un nuovo indice chiamato Fuzzy Environmental Analogy Index (FEAI) dedotto combinando due indici: l'indicatore di pressione meteorologica (IPM) e l'indicatore di pressione antropica (IPA).

IPM permette di studiare, per il territorio esaminato, le analogie meteorologiche (in particolare anemologiche) tra aree geografiche confinanti, nonché di confrontarne il funzionamento fluidodinamico nello strato basso della troposfera; IPA mette in relazione le analogie orografiche del territorio e gli impatti legati a fonti antropiche o naturali su scala regionale, verificando la somiglianza in termini di effetti ambientali su zone limitate appartenenti alle medesime aree funzionali (agglomerati urbani, agglomerati industriali, altre zone).

Per testare il modello e le regole fuzzy utilizzati per il calcolo degli indici sopra descritti, sono stati impiegati processi di ragionamento basati sull'opinione degli esperti insieme alle deduzioni legate alle esperienze tecniche del Sistema nazionale per la protezione dell'ambiente. Inoltre, sono state eseguite analisi di sensibilità variando la distribuzione delle funzioni fuzzy delle variabili esaminate per verificare la congruenza e convergenza dei risultati.

Il modello FEAI è stato applicato per l'analisi della rete della regione siciliana e i risultati ottenuti confermano la capacità di tale indice di indagare analogie tra aree limitrofe, in termini di pressioni ambientali connesse a fonti antropiche e naturali. Inoltre, il suo utilizzo ha consentito di mettere in evidenza nuovi aspetti di funzionamento della rete e confermarne altri che già da tempo si erano manifestati, come evidenze empiriche, nelle attività di monitoraggio della qualità dell'aria.

In questo contesto, questo documento è dedicato ad illustrare il nuovo approccio modellistico e i principali risultati nell'ambito delle attività di ricerca sopra descritte.

La logica fuzzy

La teoria della logica fuzzy (sfumata) è stata introdotta da Zadeh per affrontare problemi in cui i fenomeni sono imprecisi e vaghi o per modellare esperienze definite da espressioni linguistiche (Zadeh, 1975; 1992).

La teoria degli insiemi di tipo classico (aristotelico) si basa su una logica bivalente in cui un numero, oppure un oggetto, è un membro di un insieme, oppure no (l'enunciato "l'oggetto appartiene all'insieme" può assume il valore vero, oppure falso).

Al contrario, la logica sfumata attribuisce all'oggetto un grado di verità di appartenenza all'insieme che può assumere un valore compreso tra 0 ed 1, estremi 0 ed 1 compresi. Quindi, l'insiemistica basata sull'approccio classico diventa un sottoinsieme dell'insiemistica fuzzy e la teoria fuzzy estende la logica tradizionale a due valori (vero e falso, oppure 0 e 1) ad un "continuo di sfumature" di verità.

Definito con X un set di numeri, o oggetti (set Fuzzy), chiamato universo del discorso, i cui elementi sono indicati da x, un sottoinsieme fuzzy A in X è caratterizzato da una funzione di appartenenza $\mu_A(x)$ che associa ciascun elemento x in X ad un numero reale, nell'intervallo [0,1]. La funzione $\mu_A(x)$ rappresenta il grado di appartenenza di x in A.

I numeri fuzzy più comunemente usati sono impostati come relazioni fuzzy triangolari o trapezoidali.

Per i numeri sfumati triangolari, x_2 restituisce il valore massimo di μ_A (x), cioè μ_A (x_2) = 1, rendendolo il valore più probabile, mentre x_1 e x_3 sono i limiti inferiore e superiore dell'area di variabilità dei dati valutati.

Per i numeri fuzzy trapezoidali, i valori più probabili di $\mu_A(x)$ rientrano nell'intervallo [x_2 ; x_3], mentre x_1 e x_4 sono i limiti inferiore e superiore di variabilità dei dati.

Per brevità, i numeri sfumati triangolari e trapezoidali sono indicati $con(x_1, x_2, x_3)$ e (x_1, x_2, x_3, x_4) , rispettivamente.

Sugli insiemi fuzzy è possibile applicare tutte le operazioni fondamentali degli insiemi classici quali unione, intersezione e negazione.

Zadeh (1975) suggerisce l'uso dell'operatore minimo per l'intersezione e dell'operatore massimo per l'unione, come descritto di seguito.

Detti A e B due insiemi fuzzy dello stesso universo X, con funzioni di appartenenza μ_A e μ_B , l'intersezione fuzzy e l'unione fuzzy sono definite attraverso le seguenti operazioni (Hong e Leeb, 1996):

 $A \cap B \equiv \{\langle x, \mu_{A \cap B}(x) \rangle | x \in X \text{ and } \mu_{A \cap B}(x) = \min[\mu_A(x), \mu_B(x)]\}_{[1]}$

 $A \cup B \equiv \{\langle x, \mu_{A \cup B}(x) \rangle | x \in X \text{ and } \mu_{A \cup B}(x) = \max[\mu_A(x), \mu_B(x)]\}_{[2]}$

La combinazione di questi due operatori è stata

impiegata nelle regole fuzzy *if-then* (operazione di inferenza fuzzy) utilizzate per valutare i nuovi indici messi a punto nell'ambito della ricerca, come descritto nel paragrafo seguente.

Il sistema inferenziale Fuzzy

Come è noto, l'uso più importante della teoria degli insiemi Fuzzy è costituito dalla definizione di sistemi di regole applicabili con successo ad una vasta gamma di problemi in cui sono presenti incertezze ed imprecisioni in modi differenti (Pedrycz,1996;Zimmermann, 2001).

Spesso non si ragiona con calcoli e numeri, ma con pensieri logici, espressioni linguistiche e incertezza non-probabilistica (intrinseca al fenomeno, non al suo verificarsi). In questo ambito, i modelli fuzzy, che sono robusti (tolleranti al rumore), consentono di gestire informazioni incerte attraverso regole logiche multivalenti.

Un tale strumento può essere utile in settori quali la modellistica ambientale che spesso comporta l'elaborazione di indici e l'analisi di un numero significativo di dati che sono oggetto d'imprecisione.

In genere, le operazioni funzionali nei sistemi basati su regole fuzzy procedono secondo i seguenti passaggi:

- processo di fuzzificazione;
- costruzione del sistema di inferenza fuzzy (FIS);
- aggregazione degli output;
- processo di defuzzificazione.

La Figura 12.4.1 riporta la struttura di un tipico sistema Fuzzy.

La procedura di fuzzificazione ha lo scopo di trasformare il valore reale del dato da elaborare in sets fuzzy, attraverso la definizione delle funzioni di appartenenza, come descritto in precedenza.

Il processo, denominato FIS, serve ad elaborare i fuzzy sets di input e produrre i fuzzy sets di output tramite la costruzione di regole fuzzy del tipo *if-then*.

In altre parole, l'inferenza fuzzy è il metodo che interpreta i valori del vettore di input e, sfruttando gli operatori fuzzy, quali ad esempio l'unione e l'intersezione (cfr. Eq.s [1] e [2]), assegna i valori del vettore di output.

Se consideriamo un set di input fuzzy definito nell'universo del discorso $X \subset R_n$, ed un set di output fuzzy definito nell'universo del discorso $Y \subset R_m$, attraverso i principi base della logica fuzzy (Zadeh, 1992), le regole fuzzy *if-then* possono essere determinate come segue:

If x_1 is A_{j1} and ... and x_n is A_{jn} then y is $B_{jj}(w_j)$ [3]

dove A_{ij} e B_{j} sono le variabili linguistiche definite negli insiemi fuzzy X e Y, citate come universodi input e di output del discorso.

La parte *if* della regola " x_n is A_{jn} " è chiamata *premessa* o antecedente, mentre la parte then della regola "y is B_j " è chiamata *consequente*.

ll parametro w_j nell'equazione, indica il grado d'importanza della regola nell'intervallo $[0,\ 1]$. Spesso questo fattore viene utilizzato per descrivere l'incertezza della valutazione della regola da parte di un esperto.

Esistono diversi metodi per combinare le regole ed ottenere un unico insieme fuzzy di output, tra questi, in letteratura, è molto utilizzato il metodo Min-Max (Zadeh,1992).

In Figura 12.4.2 viene mostrato un esempio di applicazione di inferenza Min-Max.

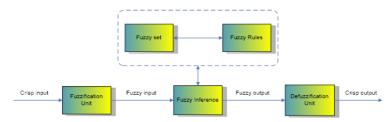


Figura 12.4.1. Struttura di un tipico sistema Fuzzy

La procedura Min-Max inizia con la selezione del valore minimo delle funzioni di appartenenza (intersezione) degli antecedenti *if* (minimo tra $\mu(x_1)$ e $\mu(x_2)$ per ciascuna premessa A_{ij} come riportato in Figura 12.4.2).

La funzione di appartenenza degli output è ottenuta dall'aggregazione (unione) degli insiemi fuzzy conseguenti, dopo aver ridotto il grado di appartenenza a quello minimo degli antecedenti e aver definito l'insieme dei minimi (cut-off di B_i in Figura 12.4.2).

Con riferimento alla Figura 12.4.2, se la regola Eq. [3] viene utilizzata con l'attribuzione di un peso (w_i), le funzioni di appartenenza dei conseguenti, *then*, vengono modificate come segue:

$$\mu_j^*(x) = \max \{w_j \mu_j(x): j = 1, 2, ...m\}$$
 [4]

dove w_{j} è il peso della conseguenza e m il numero di variabili linguistiche.

In Figura 12.4.2 il risultato di conseguente fuzzy senza peso viene rappresentato con area grigia, mentre il risultato di conseguente fuzzy con peso, (cioè attraverso l'uso dell'Eq. [4]), con area nera.

Il passo finale è il processo di *defuzzificazione* che consente di trasformare il set fuzzy di output (cioè il risultato dell'operazione di aggregazione fuzzy), in un singolo valore reale (crisp).

Tra i metodi proposti in letteratura il centro di gravità (COG*),utilizzato nel presente lavoro, è ampiamente adottato per il suo semplice significato geometrico (Hellendoom e Thomas, 1993; Ramli e Mohamad, 2009):

$$COG^* = \frac{\int x \,\mu^*(x) \,dx}{\int \mu^*(x) \,dx}$$
 [5]

dove la funzione di appartenenza $\mu^{\star}(x)$ è valutata con l'Eq[4].

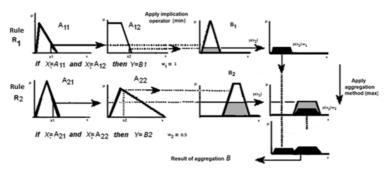


Figura 12.4.2. Esempio di processo inferenziale Fuzzy Min-Max

Processo di fuzzificazione per la valutazione degli indici IPM e IPA

Indice di Pressione Meteorologica (IPM)

L'indice IPM è stato sviluppato utilizzando le seguenti variabili per la definizione dei set di input fuzzy e le relative funzioni di appartenenza:

- velocità del vento (WS) [m/s];
- frequenza del vento (WF), espressa in percentuale [%].

Le classificazioni fuzzy sono basate sulle distribuzioni linguistiche riportate nelle Tabelle 1 e 2 e rappresentate in forma grafica nelle figure 3 e 4.

Tabella 12.4.1. Regole linguistiche per la velocità del vento

Linguistic value of WS parameter [m/s]	Fuzzy linguistic number $(x_1; x_2; x_3; x_4); (x_1; x_2; x_3)$	Weight W_{WS}
Very Low (SVL)	(0; 1.5; 3.3)	1/5 = 0.2
Low (SL)	(1.5; 3.3; 6)	2/5 = 0.4
Medium (SM)	(3.3; 5.5; 7; 10)	3/5 = 0.6
High (SH)	(6; 9.5; 11; 14)	4/5 = 0.8
Very High (SVH)	(10; 14; 100; 100)	1

Tabella 12.4.2. Regole linguistiche per la frequenza del vento

Linguistic value of WF parameter [%]	Fuzzy linguistic number $(x_1; x_2; x_3; x_4); (x_1; x_2; x_3)$	weight W_{WF}
Very Low (FVL)	(0; 0; 5; 10)	1/5 = 0.2
Low (FL)	(5; 10; 15)	2/5 = 0.4
Medium (FM)	(10; 15; 20)	3/5 = 0.6
High (FH)	(15; 20; 25)	4/5 = 0.8
Very High (FVH)	(20; 25; 100; 100)	1

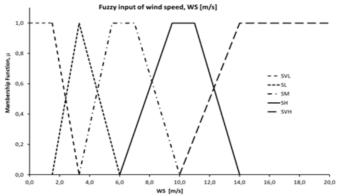


Figura 12.4.3. Rappresentazione delle variabili fuzzy relative a WS

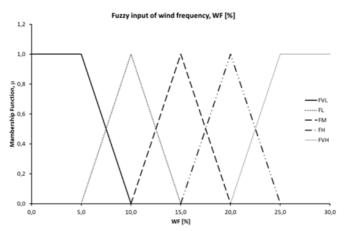


Figura 12.4.4.Rappresentazione delle variabili fuzzy relative a WF

La procedura Min-Max inizia con la selezione del valore

Si noti che la scala di Beaufort (Barua, 2005), riguardante le condizioni osservate delle velocità del vento in mare o

sulla terra, è stata usata per definire le rappresentazioni linguistiche della variabile WS.

Gli output fuzzy dell'indice IPM sono riportati in Tabella 12.4.3 (Figura 12.4.5).

La Figura 12.4.5 mostra le distribuzioni delle funzioni di appartenenza dell'IPM, definite considerando le combinazioni delle due variabili indipendenti velocità del vento (WS) [m/s] e frequenza del vento (WF) [%].

I dati di velocità e frequenza del vento, utilizzati per i calcoli su un dominio costituito da una griglia regionale organizzata con maglie (celle) di risoluzione 3x3 km, sono stati ottenuti con il codice CALMET(California Meteorological Model).

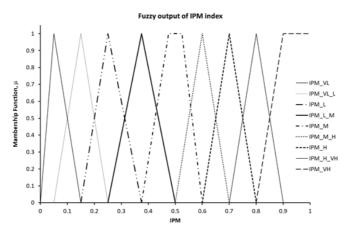


Figura 12.4.5. Rappresentazione delle variabili fuzzy dell'indice IPM

CALMET è un modello meteorologico diagnostico che, a partire da dati osservati (al suolo e di profilo verticale) e dati geofisici, produce campi orari tridimensionali di vento, insieme ad altre grandezze meteorologiche (Scirè et al., 1999). L'elaborazione fuzzy ha riguardato i primi tre strati verticali che, nelle simulazioni CALMET, schematizzano le condizioni atmosferiche a 10, 20, 40 m in quota.

Indice di Pressione Antropica (IPA)

Per il calcolo dell'indice IPA,sono stati utilizzati i seguenti parametri come set di input Fuzzy:

- indice di complessità orografica (ICO);
- portata dell'inquinante emessa da ciascuna sorgente (media annuale), normalizzata rispetto al valore massimo presente all'interno dell'area geografica di interesse (P);
- distanza della cella generica dalla cella in cui è ubicata la sorgente di emissione (D).

Le variabili linguistiche Fuzzy utilizzate per la definizione dei parametri ICO, P e D sono riportate nelle tabelle da 4 a 6, mentre quelle per l'indice IPA in Tabella 12.4.7.

Tabella 12.4.3. Variabili linguistiche per ICO

Linguistic value of ICO index [m]	Fuzzy linguistic number $(x_1; x_2; x_3; x_4); (x_1; x_2; x_3)$	weight W _{ICO}
Extremely complex (EHC)	(200; 270; 620; 620)	1/5 = 0.2
High complexity (HC)	(130; 200; 270)	2/5 = 0.4
Medium complexity (MC)	(70; 120; 150; 200)	3/5 = 0.6
Low complexity (LC)	(15; 70; 130)	4/5 = 0.8
Very Low complexity (VLC)	(0; 15; 70)	1

Tabella 12.4.4. Variabili linguistiche per P

Linguistic value of P parameter [-]	Fuzzy linguistic number $(x_1; x_2; x_3; x_4); (x_1; x_2; x_3)$	weight Wp
Very Low (PVL)	(0; 0.166; 0.333)	1/5 = 0.2
Low (PL)	(0.166; 0.333; 0.5)	2/5 = 0.4
Medium (PM)	(0.333; 0.5; 0.666)	3/5 = 0.6
High (PH)	(0.5; 0.666; 0.833)	4/5 = 0.8
Very High (PVH)	(0.666; 0.833; 1; 1)	1

Tabella 12.4.5. Variabili linguistiche per D

Linguistic value of D parameter [km]	Fuzzy linguistic number $(x_1; x_2; x_3; x_4); (x_1; x_2; x_3)$	weight W _D
Very High (DVH)	(9; 10; 12; 12)	1/9 = 0.111
Between High and Very High (DH_VH)	(8; 9; 10)	2/9 = 0.222
High (DH)	(7; 8; 9)	3/9 = 0.333
Between Medium and High (DM_H)	(6; 7; 8)	4/9 = 0.444
Medium (DM)	(5.25; 6; 7)	5/9 = 0.556
Between Low and Medium (DL_M)	(4.5; 5.25; 6)	6/9 = 0.667
Low (DL)	(3.75; 4.5; 5.25)	7/9 = 0.778
Between Very low and Low (DVL_L)	(3.25; 3.75; 4.5)	8/9 = 0.889
Very Low (DVL)	(0; 3; 3.25;3.75)	1

Tabella 12.4.6. Variabili linguistiche per IPA

Linguisticvalue ofIPA [-]	Fuzzy linguistic number $(x_1; x_2; x_3; x_4); (x_1; x_2; x_3)$	weight W_{IPA}
Very Low (API_VL)	(0; 0.1; 0.2)	1/9 = 0.111
Between Very low and Low (API VL L)	(0.1; 0.2; 0.3)	2/9 = 0.222
Low (API_L)	(0.2; 0.3; 0.4)	3/9 = 0.333
Between Low and Medium (API_L_M)	(0.3; 0.4; 0.5)	4/9 = 0.444
Medium (API_M)	(0.4; 0.475; 0.525; 0.6)	5/9 = 0.556
Between Medium and High (API_M_H)	(0.5; 0.6; 0.7)	6/9 = 0.667
High (API_H)	(0.6; 0.7; 0.8)	7/9 = 0.778
Between High and Very High (API_H_VH)	(0.7; 0.8; 0.9)	8/9 = 0.889
Very High (API_VH)	(0.8; 0.9; 1;1)	1

L'indice ICO è calcolato come media delle differenze tra l'altezza geodetica della cella C[i,j] e quella di ciascuna delle otto celle confinanti (Figura 12.4.6).

Queste elaborazioni vengono eseguite utilizzando un algoritmo, sviluppato nel linguaggio R-CRAN, che consente di elaborare i dati delle mappe topografiche USGS.

Le portate d'inquinante fanno riferimento ai dati emissivi georeferenziati riportati nell'Inventario delle Emissioni (ARPA, 2012). La normalizzazione dei dati emissivi ha facilitato la classificazione dell'intensità delle emissioni che, quindi, varia nell'intervallo [0, 1] (0 nessuna emissione, 1 emissione massima).

L'indice ICO è stato valutato con la seguente relazione:

$$ICO_{i,j} = \frac{\sum_{n=i-1}^{i+1} \sum_{m=j-1}^{j+1} |\overline{h_{i,j}} - \overline{h_{n,m}}|}{8} \underset{i=2,r-1;j=2,c-1}{\underset{[6]}{|}} [6]$$

dove:

- $\overline{h_{i,j}}$ è l'altezza media della generica cella C[i, j] (Figura 12.4.6);
- $\overline{h_{n.m}}$ è l'altezza media della cella confinante;
- r è il numero di celle che compongono il dominio lungo la coordinata x;
- c è il numero di celle che compongono il dominio lungo la coordinata y.

I dati di input, necessari per il calcolo, sono stati ottenuti a partire da file GeoTIFF elaborati tramite il preprocessore Terrel, e relativi alla missione topografica radar Shuttle (SRTM). Inoltre, per aumentare la risoluzione delle linee di costa, è stato utilizzato il file

GSHHS_F.B (Global Self-consistent Hierarchical High-resolution Shorelines).

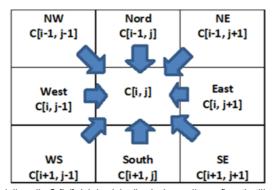


Figura 12.4.6 - Schematizzazione della cella C [i, j] del dominio di calcolo e celle confinanti utilizzate per l'elaborazione degli indici IPM [i, j] e ICO [i, j]

In Figura 12.4.7 viene mostrata la rappresentazione cartografica, in falsi colori, dell'indice ICO, mentre la Figura 12.4.8 mostra la stessa mappa ottenuta con QGIS per evidenziare le differenze orografiche tra celle confinanti.

Il confronto tra la mappa dell'indice ICO, riportata in Figura 12.4.7 e la mappa topografica, riportata in Figura 12.4.8, consente di verificare la corrispondenza tra aree caratterizzate da più elevata variazione di quota.

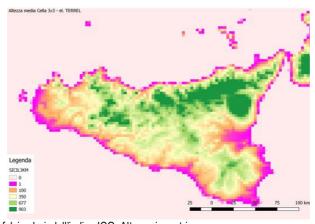


Figura 12.4.7. Cartografia, in falsi colori, dell'indice ICO. Altezze in metri.

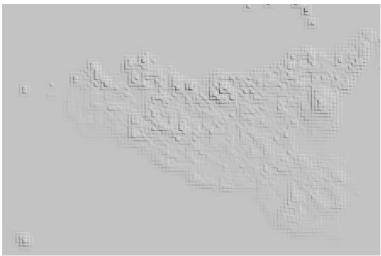


Figura 12.4.8. Mappa dell'indice ICO ottenuta tramite elaborazioni QGIS.

Costruzione del sistema FIS degli indici IPM e IPA

Il metodo per la costruzione del FIS si basa sulla metodologia proposta in (Giardina et al., 2014). Ogni regola Fuzzy viene determinata tenendo conto

dell'importanza relativa, R, delle variabili Fuzzy di input, riportate nelle tabelle 8 e 9, e dei pesi, w_j , attribuiti alle variabili linguistiche, come riportato nelle tabelle $1 \div 7$.

Tabella 12.4.7. Importanza relativa attribuita agli input per le regole FIS dell'indice IPM

Relative importance	Fuzzy variable	Value of Relative importance, 1° layer	Value of Relative importance, 2° and 3° layer
R _{WS}	wind speed	0.5	0.4
R _{WF}	wind frequency	0.5	0.6

Tabella 12.4.8. Importanza relativa attribuita agli input per le regole FIS dell'indice IPA

Relative importance	Fuzzy variable	Value of Relative importance	
R_{ICO}	Orography complex index	0.375	
R_{P}	normalised pollutant mass flow rates	0.375	
R_D	distance between cells	0.275	

.

I pesi w_i sono ottenuti assumendo relazioni lineari tra le distribuzioni linquistiche.

Di seguito si riportano due esempi di procedura di definizione di regole Fuzzy per l'indice IPM.

Prendiamo in esame i sets Fuzzy di input velocità del vento WS e frequenza del vento WF (Tab.s 2 e 3), i pertinenti pesi W_{WS} e W_{WF} e gli insiemi Fuzzy di output dell'indice IPM con i pesi W_{IPM} riportati in Tab. 3.

Il termine linguistico dell'output di IPM viene definito partendo dal calcolo del peso W_{IPM} utilizzando la seguente relazione:

essendo Rws = 0.4 e RwF = 0.6 (cfr.Tab. 9); e Wws e WwF, come già detto, i pesi riportati nelle Tab.s1 e 2.

Sulla base della relazione Eq. [7], è stato possibile identificare, per esempio, le seguenti regole *if-based*:

Rule 1: If the wind speed (WS) is Very Low (SVL with Wws = 0.2) and wind frequency (WF) is Low (FL with WwF = 0.4) then the consequent part is obtained using Eq. [5], namely WIPM= 0.4x0.2 + 0.6x0.4 = 0.32. This number is placed between WIPM= 0.222 of IPM as Between Very Low and Low (IPM_VL_L) and WIPM = 0.333 of IPM as Low (MPI_L); by using minimum condition the result is as follows: IPM is Between Very Low Low (IPM VL L) with WIPM=0.32;

Rule 2: If the wind speed (WS) is Very High (SVH with Wws = 1.0) and wind frequency (WF) is Very Low (FVL with WS = 0.2), then the consequent part is obtained using Eq. [5], namely WIPM = 0.4x1.0 + 0.6x0.2 = 0.52. This number is placed between WIPM = 0.444 of IPM as Between Low and Medium (IPM_L_M) and WIPM = 0.556 of IPM as Medium (IPM_M); by using minimum condition the result is as follows: IPM is Between Low and Medium (IPM_L_M) with WIPM=0.52.

Utilizzando l'approccio descritto sopra, sono state sviluppate 25 regole per IPM e 225 per IPA.

Il processo di aggregazione, in base al quale gli insiemi fuzzy di output di ogni regola sono combinati in un singolo set fuzzy, è stato eseguito utilizzando la procedura Min-Max descritta in precedenza.

La fase di defuzzificazione è stata eseguita utilizzando la relazione riportata nell'Eq [5] per il calcolo di COG*.

Va notato che l'importanza relativa, R, delle variabili Fuzzy di input del primo strato atmosferico assegna lo stesso peso alle variabili WS e WF (Tab. 8), mentre, per il secondo e il terzo strato viene attribuito un peso leggermente più elevato alla variabile WF.

Ciò viene fatto per tenere in considerazione che l'attrito della superficie terrestre ha un impatto sempre meno importante sui valori della velocità del vento negli strati superiori al primo, quindi, la differenza dei valori della velocità del vento tra celle confinanti diventa meno significativa. Di contro la frequenza del vento diventa il parametro che meglio rappresenta scambi reciproci tra celle

Calcolo degli indici IPA e IPM

Per il calcolo degli indici IPA e IPM, l'algoritmo utilizza i seguenti pacchetti software:

- modello di inferenza regole fuzzy Mamdani;
- COG*:
- t-norm: min:
- s-norm: max:
- funzione di implicazione: "ZADEH"

Per l'applicazione del metodo Min-Max, la costruzione delle regole FIS ed il calcolo di COG* è stato necessario implementare in R-CRAN nuovi pacchetti software o modificare opportunamente alcuni pacchetti utilizzati in ambiente statistico.

Inoltre, è stata modificato l'algoritmo di calcolo della funzione d'implicazione di "ZADEH" sulla base dei modelli riportati in (Giardina et al., 2014).

Nelle Figura 12.4.9-11 sono riportati i risultati IPA ottenuti per gli inquinanti SO_x, NO_x, PM₁₀ mentre nelle Figura 12.4.12 a)÷e) i risultati di IPM per gli anni dal 2010 al 2014.

Nelle mappe i layers degli indici sono stati sovrapposti su una mappa che mostra i centri urbani principali, le autostrade e le strade provinciali sul territorio siciliano.

In tutte le figure, le diverse gradazioni di azzurro individuano celle caratterizzate da valori che ricadono nelle classi dal 85° percentile in poi. Dai risultati ottenuti si può dedurre che le celle con colore più intenso sono contraddistinte da alta affinità in termini di pressioni ambientali e significativi interscambi meteorologici tra celle adiacenti.

Per le altre celle si può solo evincere che le celle presentano bassa affinità in termini di pressioni ambientali o interscambi meteorologici con le celle adiacenti.

Va sottolineato che la rappresentatività territoriale delle informazioni fornite dai due indici deve essere strettamente correlata alle aree che sono rigorosamente confinanti, dato che la costruzione del modello si basa su valutazioni che riguardano la singola cella con le celle limitrofe. Quindi, l'intensità degli interscambi meteorologici, ad esempio, nella zona di Palermo non deve essere, ovviamente, messa in relazione con quanto si verifica in altre aree regionali non confinanti. La stessa considerazione va fatta per l'indice IPA.

Calcolo dell'indice FEAI

Come è noto l'uso di un singolo indice, derivato dall'integrazione di diversi indicatori, ha il vantaggio di fornire in modo sintetico le informazioni necessarie per monitorare/individuare condizioni complesse.

Questo compito risulta particolarmente difficile se siamo in presenza di informazioni frammentate.

Ciò potrebbe portare alla perdita di informazioni utili, o all'amplificazione delle distorsioni derivanti dai singoli indicatori.

L'uso di attribuzioni linguistiche simili per l'indice IPM e IPA ha permesso, tuttavia, di ridurre la complessità semantica e, quindi, agevolare le relative operazioni di integrazione.

La procedura per valutare l'indice FEAI si basa sulla somma degli indici IPM e IPA normalizzati utilizzando l'attribuzione di un punteggio che varia nell'intervallo [0, 10]. Tale punteggio viene assegnato sulla base della distribuzione dei percentili, così come suggerito in (OECD, 2008). Quindi, per l'attribuzione del valore alla generica cella C[i, j] del dominio di calcolo, viene utilizzata la seguente relazione:

$$\label{eq:interpolation} \text{IPM [i,j], or IPA[i,j]} = \begin{cases} 0 \text{ } if \text{IPM , IPA } < P^{20} & 5 \text{ } if p^{60} \leq \text{IPM , IPA } < P^{70} \\ 1 \text{ } if P^{20} \leq \text{IPM , IPA } < P^{30} & 6 \text{ } if P^{70} \leq \text{IPM , IPA } < P^{80} \\ 2 \text{ } if P^{20} \leq \text{IPM , IPA } < P^{40} & 7 \text{ } if P^{80} \leq \text{IPM , IPA } < P^{80} \\ 3 \text{ } if P^{40} \leq \text{IPM , IPA } < P^{50} & 8 \text{ } if P^{85} \leq \text{IPM , IPA } < P^{90} \\ 4 \text{ } if P^{50} \leq \text{IPM , IPA } < P^{60} & 9 \text{ } if P^{90} \leq \text{IPM , IPA } \geq P^{95} \end{cases}$$

Il parametro Pⁱ è l'i-esimo percentile della distribuzione degli indici IPM, o IPA.

L'indice FEAI, per ogni cella C[i, j] della griglia, viene valutato sommando gli indici IPM e IPA, normalizzati secondo l'Eq. [8]:

$$FEAI_{[i, j]} = IPM_{[i, j]} + IPA_{[i, j]}$$
 [8]

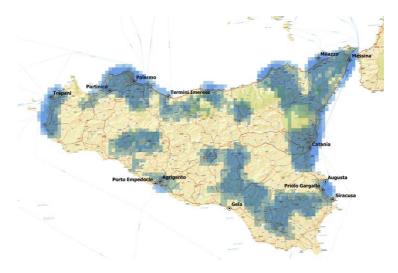


Figura 12.4.9. 85° percentile, dell'indice IPA per SOX per l'anno 2012

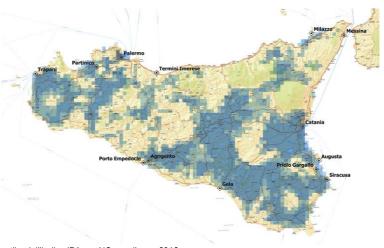


Figura 12.4.10. 85° percentile, dell'indice IPA per NO_X per l'anno 2012

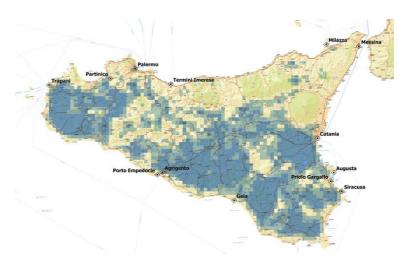


Figura 12.4.11. 85° percentile, dell'indice IPA per PM₁₀ per l'anno 2012

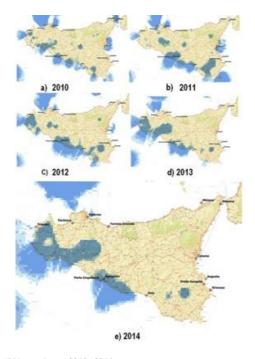


Figura 12.4.12. 85° percentile, dell'indice IPM per gli anni 2010÷2014

.

La Figura 12.4.13 riporta la flow chart della procedura messa a punto per il calcolo finale dell'indice FEAI sulla

base dei processi di calcolo descritti nei paragrafi precedenti.

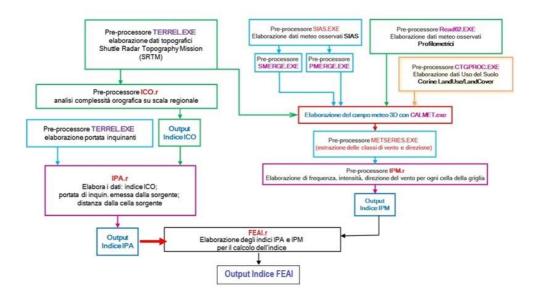


Figura 12.4.13. Flow Chart del processo di calcolo dell'indice FEAI

Descrizione dei principali risultati ottenuti

Le simulazioni CALMET, utilizzate per il calcolo dell'indice IPM, sono state svolte utilizzando le misure di temperatura, umidità relativa, radiazione solare incidente e direzione e velocità del vento di 77 stazioni superficiali, distribuite nel territorio siciliano, e i dati profilometrici verticali della stazione di osservazione del Servizio Meteorologico dell'Aeronautica Militare, ubicata vicino all'aeroporto di Trapani Birgi.

Le stazioni superficiali, per la misura delle condizioni atmosferiche a 2 e 10 m di quota, hanno riguardato 60 punti di misura della rete del SIAS (Servizio Informativo Agrometeorologico Siciliano), 13 della rete WMO (World Meteorological Organization) e 4 della rete Mareografica.

I dati sono stati impiegati per valutare i campi meteorologici tridimensionali, con intervallo orario per un periodo di un anno, su un dominio con risoluzione 3x3 km. Sono state svolte cinque simulazioni per gli anni dal 2010 al 2014.

348 =

I dati dell'inventario delle emissioni per SO_x, NO_x e PM₁₀, utilizzati per lo studio, si riferiscono a fonti naturali ed antropogeniche, classificate come puntuali (centrali elettriche, o impianti industriali), lineari (trasporto stradale) e areali diffuse (area urbana).

Poiché uno degli obiettivi della ricerca è stato individuare il sottogruppo di stazioni di misura dell'assetto di rete, utile ai fini delle valutazioni con approcci modellistici, è stato necessario procedere con la sovrapposizione dei layer dell'indice FEAI per i cinque anni in studio (i.e. 2010 al 2014). Ciò ha consentito di raggiungere un risultato più robusto in quanto ha permesso d'individuare le zone caratterizzate da elevate analogie ambientali per un intervallo temporale significativo

Le Figure 14, 15 e 16 mostrano le aree in cui è presente un'elevata analogia ambientale per un intervallo temporale significativo rispettivamente per SO_x , NO_x e PM_{10} .

Si noti che in queste figure le celle evidenziate in grigio sono caratterizzate da un valore FEAI>60. Il valore 60 è stato scelto poiché ricade nella classe a cui corrisponde una probabilità di accadimento di circa il 90% (ipotesi conservativa), considerando una funzione di

distribuzione della probabilità delle classi FEAI di tipo esponenziale,.

Ai fini della validazione di questi risultati, è stato condotto uno studio attraverso la tecnica multivariata della cluster analysis (o analisi di aggregazione). Lo scopo della cluster analysis è raggruppare i dati in classi secondo criteri di similarità, cioè determinare un certo numero di classi in modo tale che le osservazioni siano il più possibile omogenee all'interno delle classi ed il più possibile disomogenee tra le diverse classi. Per la condizione di similitudine è stato utilizzato l'algoritmo K-means. Per brevità si riportano in Figura 12.4.17 i risultati ottenuti per il solo SO_x. Il confronto con la mappa di Figura 12.4.14 consente di confermare la robustezza del metodo proposto.

Dall'esame della Figura 14 si evince che gli agglomerati urbani e parti di alcune aree industriali mostrano analogie (celle grigie) per SO_x. Pertanto la qualità dell'aria in queste celle confinanti può essere misurata da stazioni ubicate al loro interno. I dati di qualità dell'aria delle stazioni posizionate nelle aree non grigie (i.e. non sono presenti analogie ambientali), risultano rappresentative solo del loro limitatissimo intorno.

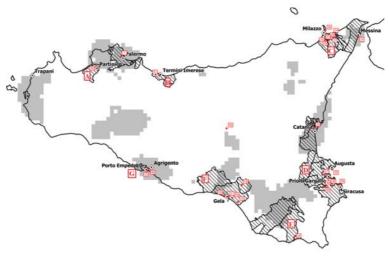


Figura 12.4.14. FEAI per SOx, layers sovrapposti dal 2010-2014.

Analogamente per NO_x (Figura 12.4.15) l'agglomerato di Messina, le AERCA del Comprensorio del Mela e di Priolo, le aree industriali di Termini e Partinico e parte delle altre aree industriali, non mostrano aree grigie e, quindi, non presentano analogie ambientali. Pertanto i

dati di qualità dell'aria delle stazioni ubicate in queste aree risultano rappresentative di aree con estensione molto limitata.

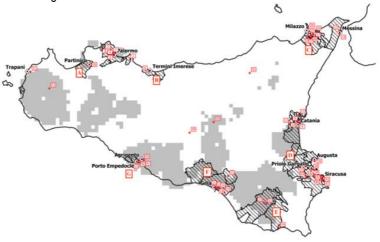


Figura 12.4.15. FEAI per NOx, layers sovrapposti dal 2010-2014.

La Figura 16-a si riferisce all'indice FEAI del PM₁₀.

Rispetto alla zonizzazione, si nota che esso mostra le maggiori analogie ambientali nella zona altro, nell'area industriale di Porto Empedocle ed in parte delle aree industriali del ragusano, probabilmente perché si risente molto del contributo naturale al particolato, in analogia alla mappa della stima delle concentrazioni in aria di PM₁₀, elaborata nella redazione del *Piano di Tutela della qualità dell'aria in Sicilia* con il modello Chimere (Figura

qualità dell'aria in Sicilia con il modello Chimere (Figura 12.4.16-b). Anche in questo caso possiamo affermare che le stazioni esterne alle aree grigie risultano rappresentative solo della loro limitata area di ubicazione.

Le immagini riportate in Figura 12.4.16-a e 16-b vanno confrontate osservando che la prima fornisce indicazioni in ordine al grado di sensibilità allo scambio tra le celle, mentre la seconda si riferisce alle concentrazioni di ricaduta del PM₁₀. E' interessante osservare che nella zona centrale della Sicilia c'è una sostanziale congruenza tra i risultati dei due modelli. Laddove la logica fuzzy indica facilità di relazione tra celle e quindi disponibilità alla dispersione degli inquinanti, il modello Chimere fornisce le minori concentrazioni; viceversa nel caso di scarsa comunicazione tra le celle (zone bianche di "ristagno") le concentrazioni PM₁₀ stimate da Chimere appaiono più grandi.

350 =

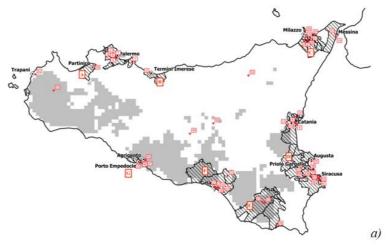


Figura 12.4.16-a. FEAI per PM₁₀, layers sovrapposti dal 2010-2014.

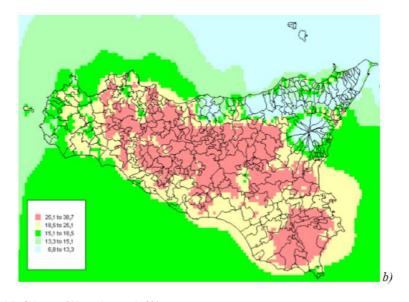


Figura 12.4.16-b. Modello Chimere – PM₁₀ totale annuale 2017

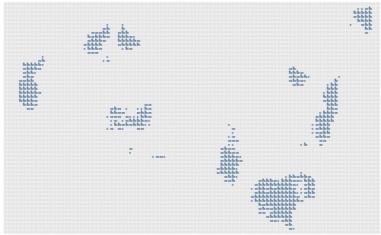
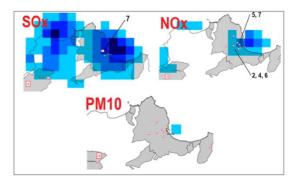


Figura 12.4.17. Risultati dell'analisi cluster per SOx

.


Di seguito, sulla base dei risultati dell'indice FEAI e con riferimento alla zonizzazione siciliana, vengono definiti i sottogruppi delle centraline previste nel PdV della qualità dell'aria, che possono essere utilizzate come punti di misura di riferimento per gli studi modellistici.

Nelle figure riportate di seguito, le celle del dominio di studio vengono colorate con gradazioni di blu se il corrispondente valore di FEAI risulta essere maggiore di 60. Il colore blu notte identifica le celle con valore di FEAI maggiore di 80.

ZONA IT1911, AGGLOMERATO DI PALERMO

Per l'inquinante SO_x, l'analisi dell'indice FEAI di Figura 12.4.18 evidenzia una buona analogia ambientale su buona parte dell'agglomerato e la centralina n. 7 è rappresentativa della zona urbana e suburbana dell'agglomerato di Palermo.

Per l'inquinante NOx, si evidenzia una buona analogia ambientale nell'area cittadina con il maggiore traffico veicolare e pertanto l'insieme dei punti di misura rappresentativi di tale area e utili a supporto degli studi modellistici sono da scegliersi tra le centraline n. 2, 4, 5, 6 e 7 (Figura 12.4.18).

Se si vuole effettuare una differenza tra la zona urbana e suburbana, possono essere fatte le seguenti scelte:

- nella zona urbana, il sottogruppo è costituito dalle centraline n. 5 e 7.
- nella zona suburbana, il sottogruppo è costituito dalle centraline n. 2. 4. e 6.

Le centraline n. 1 e 3 ricadono in aree in cui le pressioni ambientali hanno una effetto primariamente locale (FEAI<60), quindi, rappresentano singoli punti di misura per il riferimento modellistico e rappresentative del loro limitato intorno.

Per l'inquinante PM₁₀ non si evidenzia alcuna analogia ambientale nell'agglomerato urbano e quindi tutte le centraline rappresentano singoli punti di misura per il riferimento modellistico e sono rappresentative del loro limitato intorno.

ZONA IT1912, AGGLOMERATO DI CATANIA

Per l'inquinante SOx, risulta che la centralina n. 10 (Figura 12.4.19) consente di rappresentare un territorio che si estende lungo la costa del mar Ionio, dalla piana di Catania fino alla zona prossima alla città di Acireale e, quindi, è rappresentativa dell'agglomerato urbano.

Per l'inquinante NOx, le centraline n. 8, 9, 10 e 12 costituiscono un sottogruppo di riferimento in quanto il territorio in cui sono ubicate presenta analogie ambientali. La centralina n. 11 rappresenta un singolo punto di misura per il riferimento modellistico e i dati relativi sono rappresentativi del limitato intorno.

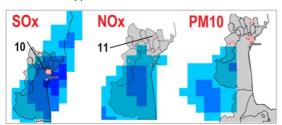


Figura 12.4.19. Valutazione FEAI per l'Agglomerato di Catania

ZONA IT1913 AGGLOMERATO DI MESSINA

Per l'inquinante SO_x, la centralina n. 14 (Figura 12.4.20) è localizzata in una cella con elevato valore dell'indice FEAI>80, per cui è rappresentativa della zona urbana e suburbana di Messina

Per gli inquinanti NO_x e PM_{10} , le centraline n. 13 e 14 rappresentano singoli punti di misura per il riferimento modellistico, tenendo presente che l'indice FEAI è risultato minore di 60.

Riguardo all'NO_x va precisato che l'indice FEAI ottenuto per l'agglomerato di Messina, che evidenzia l'assenza di scambio tra le celle, sebbene apparentemente si palesi come un'anomalia rispetto ai risultati ottenuti con il modello CHIMERE, in realtà è congruente se si tiene conto del valore soglia impostato per il FEAI (60) al di sotto del quale le deboli interazioni di scambio vengono trascurate.

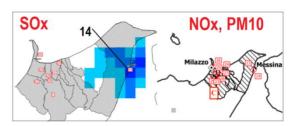



Figura 12.4.20. Valutazione FEAI per l'Agglomerato di Messina

ZONA IT1914, AREE INDUSTRIALI

Per semplificare la descrizione dei risultati riguardanti la zona industriale, si è attribuita una lettera identificativa alle varie aree che fanno parte della Zona IT1914 (Zona $A \div G$).

Zona A

Per l'inquinante SO_x, si evidenzia che la centralina n. 30 è rappresentativa di un'area che si estende fino all'aeroporto Falcone-Borsellino.

Per l'inquinante NO_x, la centralina n. 30 ricade in una zona in cui le pressioni ambientali hanno una effetto primariamente locale (FEAI<60), per cui è da considerare come singola unità di misura ai fini modellistici.

Per l'inquinante PM_{10} valgono le stesse considerazioni fatte per NO_x .

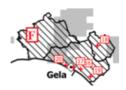
Zona B

Per tutti gli inquinanti la centralina n. 31 è da considerarsi singolo punto di riferimento ai fini modellistici.

Zona C

Per tutti gli inquinanti le centraline n. da 23 a 29 sono da considerasi singoli punti di riferimento ai fini modellistici non rappresentative dell'AERCA del Comprensorio del Mela nel suo complesso.

Zona D


Per l'inquinante SO_x , le centraline n. da 35 a 39, e n. 44 sono da considerasi singoli punti di riferimento ai fini modellistici; per gli inquinanti NO_x e PM_{10} , le centraline da n. 35 a 44 sono da considerasi singoli punti di riferimento ai fini modellistici. Nessuna delle stazioni prevista nel PdV per l'AERCA di Priolo è quindi rappresentativa per gli inquinanti studiati del territorio, ma solo del suo limitato intorno.

Zona E

Per l'inquinante SO_x , la centralina n. 34 è da considerasi singolo punto di riferimento ai fini modellistici; per gli inquinanti NO_x e PM_{10} le centraline n. 32 e33 sono da considerasi un sottogruppo di punti di riferimento ai fini modellistici, e quindi rappresentative dell'area industriale del ragusano, mentre la centralina n. 34 è da considerasi singolo punto di riferimento.

Zona F

Per l'inquinante SO_x , le centraline da n.16 a 19 sono da considerasi singoli punti di riferimento ai fini modellistici. Per l'inquinante NO_x , le centraline da n.16 a 18, e n.21 sono da considerasi un sottogruppo di punti di riferimento ai fini modellistici, mentre le centraline n.19, 20 e 22 sono da considerarsi singoli punti di riferimento ai fini modellistici. Per l'inquinante PM_{10} le centraline da n.16 a 19, e n. 21 e 22 sono da considerarsi singoli punti di riferimento ai fini modellistici.

Zona G

Per tutti gli inquinanti, la centralina n.15 è da considerarsi punto di riferimento ai fini modellistici.

Per tutti gli inquinanti, la centralina n.15 è da considerarsi punto di riferimento ai fini modellistici.

La Tabella 12.4.10 riassume quanto descritto in precedenza, mentre la Figura 12.4.21 riporta la distribuzione delle stazioni del PdV.

Tabella 12.4.9. Sottoinsiemi o singoli punti di misura previsti nel PdV, di riferimento per gli studi modellistici nelle aree industriali.

Zona IT1911	Sottogruppi per SOx	Sottogruppi per NO _X	Sottogruppi per PM ₁₀
Zona A	30	30	30
Zona B	31	31	31
Zona C	23	23	23
	24	24	24
	25	25	25
	26	26	26
	27	27	27
	28	28	28
	29	29	29
Zona D	35	35	35
	36	36	36
	37	37	37
	38	38	38
	39	39	39
	44	40	40
		41	41
		42	42
		43	43
		44	44
Zona E	34	32, 33	32, 33
		34	34
Zona F	16	16, 17, 18, 21	16
	17		17
	18	19	18
	19	20	19
	20	22	21
			22
Zona G	15	15	15

Figura 12.4.21. Distribuzione delle Stazioni facenti parte del PdV

ZONA IT1915

Per l'inquinante SO_x, l'analisi dell'indice FEAI evidenzia che la centralina n. 50 ricade in aree in cui le pressioni ambientali hanno un effetto primariamente locale (FEAI<60), quindi rappresenta un singolo punto di misura per il riferimento modellistico. Per gli inquinanti NO_x e PM₁₀, le centraline n.49÷52 sono singoli punti di riferimento ai fini modellistici.

Vale la pena sottolineare che nel caso della zona di Trapani e per l'inquinante NO_x le centraline n. 51 e 53 potrebbero essere considerate come un sottogruppo.

Conclusioni

Nell'ambito della presente attività di ricerca è stata messa a punto una nuova metodologia, basata sulla teoria degli insiemi Fuzzy, che consente di valutare un nuovo indice, chiamato FEAI (Fuzzy Environmental Analogy Index - FEAI) finalizzato a trovare relazioni esistenti tra aree oggetto di pressioni ambientali connesse alle emissioni di inquinanti di origine antropica e naturale.

Per le analisi sono state utilizzate le informazioni fornite in (ARPA, 2012) riguardanti l'Inventario delle emissioni su scala regionale.

In particolare, FEAI è un indice composito, dedotto dalla combinazione di un indicatore di pressione meteorologica (IPM) che, per celle confinanti nel dominio di calcolo, indaga le affinità connesse a fattori meteorologici tridimensionali e l'indice di pressione antropica (IPA) che trova relazioni tra le caratteristiche orografiche del territorio e l'intensità delle sorgenti inquinanti.

L'IPM è stato valutato elaborando i dati di frequenza e velocità del vento ottenuti utilizzando i risultati delle simulazioni CALMET, un modello meteorologico diagnostico che, a partire da dati osservati e da dati geofisici, produce campi orari tridimensionali di vento e bidimensionali di diverse variabili meteorologiche e micro-meteorologiche.

Per le simulazioni sono state utilizzate le misure di temperatura, umidità relativa, radiazione solare incidente, direzione e velocità del vento di 77 stazioni

superficiali, distribuite sul territorio siciliano, insieme ai dati della stazione di osservazione profilometrica del Servizio Meteorologico dell'Aeronautica Militare, ubicata presso l'aeroporto di Trapani-Birgi.

Va sottolineato che sono state svolte analisi di sensibilità, variando ad esempio i valori degli insiemi Fuzzy di input, i metodi di aggregazione dell'indice FEAI e i pesi utilizzati per la costruzione del sistema FIS,nonché studi di robustezza della metodologia, eseguendo perturbazioni della velocità e frequenza del vento. Queste attività hanno permesso di confermare la solidità e la coerenza della metodologia Fuzzy proposta per studi ambientali.

L'applicazione della metodologia messa a punto ha riguardato le emissioni di SO_x , NO_x e PM_{10} per un periodo di cinque anni (dal 2010 al 2014).

L'analisi dei risultati ottenuti ha consentito di determinare i sottoinsiemi, dell'insieme delle stazioni del PdV, più adatte per gli studi modellistici e per lo scambio di dati previsto con decisione della Commissione Europea 97/101/CE del 27 gennaio 1997 (Exchange of Information – EoI).

Per rafforzare le conclusioni ottenute dall'analisi dei risultati FEAI, è stata svolta anche una cluster analysis (o analisi di aggregazione), che ha confermato le conclusioni riportate nel presente rapporto.

L'analisi dettagliata dei risultati ha mostrato che:

- per gli agglomerati di Palermo e Catania, è stato possibile individuare sottogruppi di centraline di

riferimento per il supporto modellistico. Le stazioni possono essere considerate rappresentative anche delle aree sub-urbane:

- per gli agglomerati industriali, nella zona di Milazzo (zona C) e di Siracusa (zona D), l'indice FEAI risulta essere inferiore a 60, cioè il valore soglia imposto per l'individuazione di affinità territoriali in termini di analogie ambientali. Pertanto, le centraline che insistono in queste aree risultano essere rappresentative, al più, delle pressioni ambientali che ricadono nella cella in cui sono ubicate. Quindi, risultano essere singoli punti di misura per il riferimento modellistico, senza possibilità di estensione a celle circostanti. Di contro, per gli agglomerati industriali di Ragusa (zona E) e Gela (zona F), l'indice FEAI consente di individuare sottogruppi di centraline di riferimento, con possibile estensione territoriale.
- Per la zonizzazione definita "altro", le centraline sono rappresentative delle pressioni ambientali locali, per cui sono tutte da considerarsi singoli punti di misura per il riferimento modellistico. Ciò del resto era da attendersi, tenendo presente che la loro rappresentatività riguarda aree del territorio siciliano molto estese.

Il metodo messo a punto ed il lavoro di convalida hanno, in conclusione, consentito di confermare la solidità dell'indice FEAI nella modellazione delle pressioni ambientali antropiche su scala regionale.

Bibliografia

Giardina M, Buffa P. Abita A. Madonia G. 2019. Fuzzy environmental analogy index to develop environmental similarity maps for designing air quality monitoring networks on a large-scale. Journal Stochastic Environmental Research and Risk Assessment, 2019.https://doi.org/10.1007/s00477-019-01723-w

Barua D.K. 2005. Beaufort Wind Scale. In: Schwartz M.L. (eds) Encyclopedia of Coastal Science. Encyclopedia of Earth Science Series. Springer, Dordrecht, doi: 10.1007/1-4020-3880-1_45

Giardina M., Castiglia F., Tomarchio E. 2014. Risk assessment of component failure modes and human errors using a new FMECA approach: application in the safety analysis of HDR brachytherapy. J Radiol Prot., 34(4), 891-914. doi: 10.1088/0952-4746/34/4/891.

Hanss M., 2005. Applied Fuzzy Arithmetic, An Introduction with Engineering Applications. Springer, ISBN 3-540-24201-5

Hellendoorn H., Thomas C. 1993. Defuzzification in fuzzy controllers, Intell. Fuzzy Syst., vol. 1, pp. 109-123.

Hong T., Leeb C. 1996. Induction of fuzzy rules and membership functions from training examples Fuzzy Sets Syst. 84 33-47.

Pedrycz W. 1996. Fuzzy Modelling. Paradigms and Practice (Dordrecht: Kluwer).

Ramli N., Mohamad D. 2009 A comparative analysis of centroid methods in ranking fuzzy numbers, Eur. J. Sci. Res., 28, 492-501

Zadeh L. A. 1975. The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci.Part I and II. 8

Zadeh L.A. 1992. The calculus of fuzzy if/then rules. Al Expert, 7, 23-7.

Zamonin. 2006.https://en.wikipedia.org/wiki/File:Topography_of_Sicily.png#filehistory

Zimmermann H. 2001. Fuzzy Set Theory-and Its Applications, Springer Science & Business Media

13. ASPETTI FENOMENOLOGICI E ANALISI DEI TREND

13.1 SIMULTANEITÁ DEI SUPERAMENTI DEL VALORE LIMITE GIORNALIERO DI PM₁₀ NELLA PIANURA PADANA NEL TRIENNIO 2014-2016.

F. Lollobrigida, C. Bussi, A. Bruno, E. Calderaro, M. Leogrande, M. Maringo, L. Milizia, F. Romeo, M. Sacco,

R. Sergi, C. Strumia

ARPA PIEMONTE

RIASSUNTO

Le concentrazioni di PM_{10} in pianura padana sono caratterizzate da una elevata omogeneità spaziale e temporale. Per verificare in che misura tale omogeneità implichi una simultaneità delle giornate di superamento o non superamento del valore limite giornaliero di PM_{10} sono state prese in considerazione le concentrazioni medie giornaliere del triennio 2014-2016 di sei stazioni di fondo urbano collocate in città di dimensioni e popolazione significativamente diverse. Per ogni coppia di stazioni sono state estratte le giornate in cui sono disponibili entrambe le medie giornaliere validate di PM_{10} ; la percentuale di coppie di dati estratte è compresa tra 80% e il 94% del totale teorico.

Tutte le coppie di serie di dati presentano un'elevata correlazione lineare, con valori di r di Pearson compresi tra 0,7 e 0,9. Per ogni coppia di stazioni è stata calcolata la percentuale di giorni in cui entrambe superano o entrambe non superano il valore limite giornaliero (giornate "concordi"). La percentuale di giornate concordi è compresa tra l'83% e il 93% e non è correlata in modo significativo con la distanza geografica.. Se si estraggono dalla base dati complessiva le giornate in cui è presente il dato validato per tutte le sei stazioni e almeno una di esse presenta una concentrazione di PM₁₀ superiore al valore limite giornaliero, si osserva che in più del 60% dei casi il superamento riguarda contemporaneamente almeno tre stazioni. In questo insieme di giornate anche la dispersione delle medie giornaliere di PM₁₀ appare limitata: in più del 60% dei casi, infatti, la deviazione standard relativa è minore o uquale al 30%.

Parole chiave: PM₁₀, bacino padano

ABSTRACT

It is of common knowledge that in the Po Valley PM₁₀ concentrations show a high spatial homogeneity. In order if such homogeneity investigate simultaneousness of days when PM₁₀ concentration exceeds or does not exceed limit value, daily means of six urban background monitoring stations in 2014-2016 three-year period were collected. The six monitoring sites (Torino Lingotto, Milano Pascal, Mantova Ariosto, Parma Cittadella, Ferrara Villa Fulvia, Padova Mandria) cover OMSIe Po Valley and are located in cities with different extent and population. The days when both PM₁₀ means are available were extracted from the validated dataset for every couple of sites; the percentage of extracted couple of data is between 80% and 94% of the total days. All couples of extracted data series show high linear correlation because Pearson correlation coefficient is between 0.7 e 0.9.

The percentage of days when both sites exceed or both do not exceed PM_{10} daily limit value ("concordant" days) were calculated for every couple of sites. Concordant days percentage is between 83% and 93% and does not depend on geographical distance.

If days when PM_{10} mean is available for all six stations and at least one of them exceeds daily limit value are extracted from the OMSle dataset, more of 60% of the days show exceedances in at least three sites. In this dataset also daily mean dispersion is low, because the coefficient of variation is lower or equal to 30% in more than 60% of the days.

Keywords: PM₁₀, Po Valley

Introduzione

La particolare conformazione orografica del bacino padano, unita alle sue caratteristiche meteoclimatiche, fanno sì che la componente di origine secondaria del particolato aerodisperso abbia una particolare rilevanza, in special modo nel periodo invernale, quello più critico per questo inquinante. Poiché i fenomeni di formazione secondaria del particolato interessano per loro natura aree vaste che possono ampiamente travalicare i confini regionali , le politiche di risanamento debbono di

necessità agire alla stessa scala spaziale e quindi prevedere un coordinamento delle azioni a livello sovraregionale. Tale principio è stato riconosciuto a livello ufficiale in documenti tecnici del Ministero dell'Ambiente sin dal 2012 (1) ed ha trovato attuazione concreta negli Accordi di Programma sottoscritti dal Ministero stesso e dalle Regioni interessate nel 2013 e nel 2017 e con l'avvio in tale anno del progetto LIFE-prepAIR (Po Regions Engaged to Policies of Air).

Sotto il profilo tecnico-scientifico i fenomeni descritti fanno sì le concentrazioni di PM₁₀ nella pianura padana presentino - soprattutto a livello di stazioni di fondo urbano - una elevata omogeneità che risulta particolarmente evidente durante i mesi freddi dell'anno caratterizzati da elevati livelli di PM₁₀ (Figura 13.1.1 e Figura 13.1.2).

PM10 dicembre 2011 -febbraio 2012 Confronto stazioni di fondo urbano Torino e Milano

Figura 13.1.1. PM₁₀- Confronto stazioni di fondo urbano di Torino e Milano Dicembre 2011 – Febbraio 2012

PM10 novembre-dicembre 2015 Confronto stazioni di fondo urbano Torino e Milano

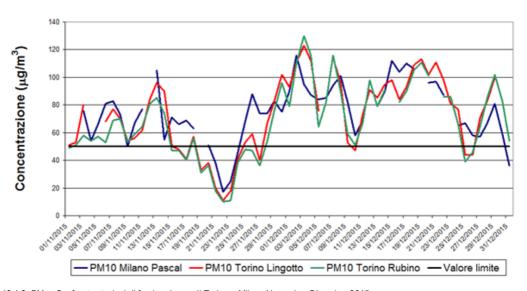


Figura 13.1.2. PM₁₀- Confronto stazioni di fondo urbano di Torino e Milano Novembre-Dicembre 2015

Obiettivi e metodologia dello studio

Lo studio si propone di verificare in che misura l'omogeneità spaziale e temporale delle concentrazioni di PM_{10} nella pianura padana implichi su base statistica una simultaneità delle giornate di superamento o non superamento del valore limite giornaliero.

Sono state prese in considerazione le concentrazioni medie giornaliere del triennio 2014-2016 di sei stazioni di

fondo urbano - Torino Lingotto, Milano Pascal, Mantova Ariosto, Parma Cittadella, Ferrara Villa Fulvia, Padova Mandria - distribuite sull'intera pianura padana e collocate in città di dimensioni e popolazione significativamente diverse e con distanze in linea d'aria che vanno dai 66 km tra Ferrara e Padova ai 330 Km tra Torino e Padova (Figura 13.1.3).

Figura 13.1.3. Posizione delle sei stazioni di fondo urbano oggetto dello studio.

È stato scelto il triennio 2014-2016 perché maggiormente rappresentativo delle condizioni meteorologiche medie del bacino padano rispetto a quello più recente (2017-2019), che è stato caratterizzato nell'ultimo biennio - in particolare in Piemonte - da una elevata piovosità . Le serie storiche di medie giornaliere sono state ricavate dai database messi a disposizione dalle Agenzie regionali per l'Ambiente e elaborate con due diverse modalità.

Nella prima modalità per ogni coppia di punti di misura sono state estratte dalla base dati complessiva le giornate in cui sono disponibili entrambe le medie giornaliere validate di PM₁₀; la percentuale di coppie di dati estratte risulta ampiamente rappresentativa poiché è compresa tra 80% e 94% del totale teorico nel caso dell'intera annualità e tra 82% e 97% se si considera solo il semestre freddo. Per ogni coppia di serie di dati estratti è stata calcolata la r di Pearson e la percentuale di giorni in cui i due punti di misura superano entrambi o non superano entrambi il valore limite giornaliero di PM₁₀ (percentuale di giornate "concordi").

Nella seconda modalità dalla base dati complessiva di tutti i punti di misura sono state estratte le sole giornate in cui è presente il dato validato per tutte e sei le stazioni e almeno una di esse supera il valore limite di PM₁₀. Sui dati estratti è stata calcolata la percentuale di giornate nelle quali un numero" "n" di stazioni supera il valore limite (con "n" compreso tra 1 e 6) e la deviazione standard relativa (CV%) per ogni giornata come indicatore di dispersione dei dati.

In entrambe le modalità le elaborazioni sono state effettuate considerando sia l'intera annualità che il solo semestre freddo (ottobre-marzo), il più critico per il PM₁₀.

Risultati e discussione

I risultati evidenziano innanzitutto che tutte le coppie di stazioni presentano una correlazione significativa in termini di r di Pearson, con valori tra 0,68 e 0,91 per l'intera annualità e tra 0,57 e 0,90 nel semestre freddo (Figura 13.1.4).

1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0.00 10.FE MAPR MAPO 70.PD ■intero anno ■ semestre freddo

r di Pearson - triennio 2014-2016

Figura 13.1.4. r di Pearson per tutte le copie di serie di dati delle sei stazioni.

Analogamente tutte le coppie di stazioni mostrano un'elevata percentuale di giornate "concordi", compresa

tra 83% e 93% sull'intera annualità e tra 70% e 89% per il semestre freddo (Figura 13.1.5).

100,0% 90.0% 80,0% 70,0% 60.0% 50,0% 40,0% 30,0% 20,0% 10.0% 0.0% P.FE 40.PD NH-PO PR.RO ■intero anno ■ semestre freddo

% giornate concordi - triennio 2014-2016

Figura 13.1.5. Percentuale di giornate "concordi" per tutte le copie di serie di dati

La percentuale di giornate "concordi", a parità di stazione, è maggiore sull'intera annualità perché questa comprende il semestre caldo maggio-settembre in cui la quasi totalità delle giornate risulta "concorde" in quanto – grazie alle maggiori capacità dispersive dell'atmosfera – in tutta la pianura padana le giornate di superamento del valore limite di PM₁₀ risultano estremamente rare.

La percentuale di giornate "concordi" non presenta alcuna dipendenza significativa dalla distanza in linea

d'aria tra due punti di misura (Figura 13.1.6); in particolare nel triennio considerato la percentuale di giornate "concordi" tra il sito ubicato più a Ovest (Torino) e quello immediatamente più vicino (Milano, 125 km) è pari a quella tra i due siti ubicati alle estremità del bacino (Torino e Padova, che distano 330 km).

100% 90% $R^2 = 0.115$ 80% $R^2 = 0.0977$ 70% 60% % di giornate concorsi 50% 40% 20% 10% 0% 50 100 150 200 250 300 350 400

distanza in linea d'aria (km)

Lineare (Intero anno)

Correlazione percentuale giornate concordi - distanza tra le stazioni

■ semestre freddo Figura 13.1.6. Correlazione tra percentuale di giornate "concordi" e distanza tra le stazioni di monitoraggio.

In più del 60% delle giornate in cui almeno una stazione supera il valore limite giornaliero il superamento riguarda in contemporanea almeno tre punti di misura e come è lecito aspettarsi nel semestre freddo - quello più critico per il PM₁₀ - la percentuale di giornate di superamento

Intero anno

simultaneo è sempre maggiore che sull'intera annualità (Figura 13.1.7).

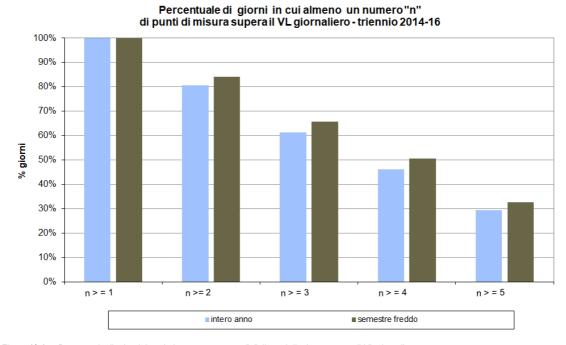


Figura 13.1.7: Percentuale di giorni in cui almeno un numero "n" di punti di misura supera il VL giornaliero

Inoltre in più del 60% delle giornate in cui almeno una stazione supera il valore limite giornaliero la deviazione standard relativa (CV%) delle misure di PM₁₀, calcolata su tutti e sei i punti di misura, è minore o uguale al 30%; di conseguenza, tenendo conto della vastità dell'area geografica considerata, nelle giornate più critiche i dati

risultano relativamente poco dispersi. In termini generali ciò significa che in tali giornate critiche anche i punti di misura in cui il limite è rispettato

presentano statisticamente valori prossimi al limite stesso (Figura 13.1.8).

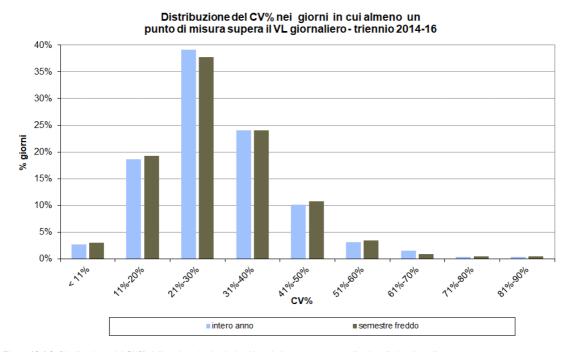


Figura 13.1.8: Distribuzione del CV% delle sei stazioni nei giorni in cui almeno una supera il valore limite giornaliero.

Conclusioni

In pianura padana le stazioni di fondo urbano - che per loro natura sono rappresentative delle condizioni medie di esposizione della popolazione - presentano su base statistica un elevato grado di simultaneità temporale degli eventi di superamento o non superamento del valore limite giornaliero di PM₁₀, indipendentemente dalla distanza geografica tra i punti di misura. Nelle giornate di superamento simultaneo del valore limite tale omogeneità spaziale e temporale si esprime anche in termini di una dispersione relativamente bassa dei valori assoluti di concentrazione misurati nelle diverse stazioni.

Bibliografia

(1) AA.VV., a cura di I Allegrini e F. Romeo (2012). Gruppo di lavoro per l'individuazione delle misure per la riduzione dell'inquinamento atmosferico – Attività tecniche e proposte - MATT.

13.2 CONTROLLO QUALITÀ SULLE MISURE DI PARTICOLATO ATMOSFERICO PM₁₀: L'ESPERIENZA DI ARPA VENETO

De Bortoli A., Zagolin L., Voltarel G., Marson G., Patti S.

ARPA VENETO

RIASSUNTO

La misura delle frazioni di particolato atmosferico PM₁₀ e PM_{2,5} in aria ambiente è un'importante attività istituzionale che le diverse Agenzie per l'Ambiente Regionali e Provinciali portano avanti da ormai due decenni. Il PM₁₀ e il PM_{2,5} sono tra i parametri più critici della qualità dell'aria in Italia e in Europa, con superamenti sistematici dei relativi limiti di legge. È molto importante che queste misure, effettuate sempre più spesso anche con analizzatori automatici, siano riferibili al metodo ufficiale, descritto nella norma UNI EN 12341:2014. Strumenti che non rispettino i criteri di equivalenza a tale metodo, possono portare a sottostime o sovrastime che si riflettono in un calcolo errato degli indicatori di qualità dell'aria di PM₁₀ e PM_{2,5}, con pesanti conseguenze sulle scelte politiche per la riduzione dell'inquinamento atmosferico.

Pertanto, al fine di garantire il mantenimento nel tempo degli obiettivi di qualità riportati nell'allegato I del D.Lgs. 155/2010 e s.m.i., è richiesta ai gestori delle reti regionali e provinciali la partecipazione ai circuiti di interconfronto organizzati dal Laboratorio Nazionale di Riferimento di ISPRA, a sua volta allineato periodicamente con il riferimento europeo (JRC-IES-ERLAP). La "catena di riferibilità" così costruita consente di stabilire se le misure di un dato strumento che opera su una rete locale sono confrontabili a livello nazionale ed europeo, entro il margine di incertezza massima consentita dal citato decreto.

Negli anni dal 2010 al 2019, ISPRA ha organizzato una serie di interconfronti a cui hanno partecipato le varie agenzie regionali e provinciali, tra cui ARPAV-Osservatorio Aria, ciascuna con strumenti di riferimento operanti nelle rispettive reti. La fase finale e più importante del lavoro consiste nel garantire la riferibilità

delle misure anche a scala locale mediante la pianificazione di circuiti di interconfronto interni (regionali e/o provinciali).

Nel presente lavoro sono illustrati i risultati degli interconfronti condotti su misure della frazione di particolato PM₁₀ organizzati dall'Osservatorio Aria (di seguito ORAR) presso alcune delle stazioni appartenenti alla Rete Regionale di Qualità dell'Aria di ARPAV, sia su strumenti manuali che automatici.

I risultati hanno permesso di avere un primo quadro conoscitivo dello stato di qualità degli strumenti della rete aria di ARPAV, evidenziando l'importanza di effettuare periodicamente queste verifiche, soprattutto su strumenti automatici. Inoltre, le stesse prove applicate a strumenti di nuovo acquisto, devono costituire una pratica necessaria e irrinunciabile in fase di verifica di conformità, ai fini dell'accettazione delle forniture.

Parole chiave: (PM₁₀, interconfronto, riferibilità)

ABSTRACT

PM₁₀ and PM_{2,5} particulate matter measures in ambient air are among the most important activities that Regional (or Local) Environment Agencies have carried on for about twenty years.

PM₁₀ and PM_{2.5} are very critical pollutants in Italy and in many other European Countries, with many exceedances of limit values. The increasing use of PM automatic analysers in local networks raises the issue of their equivalence to the EN 12341:2014 reference method. Instruments that don't comply with the standard method, may lead to wrong measures and air quality

indicators calculation, with heavy consequences on the air pollution reduction policies.

Therefore, to ensure the maintainance of PM analysers equivalence over the time, local network managers periodically have to participate, with their own instruments, to intercomparisons with ISPRA's National Reference Laboratory, which, in turn, takes part in European circuits. This work ensures PM measures traceability for the OMSle of Europe, within the data quality objectives of the 2008/50/EC Directive.

From 2010 to 2019 ARPAV Regional Air Observartory (ORAR) has taken part in ISPRA's intercomparisons with its own PM reference instruments. The final purpose is to transfer the traceability to local networks instruments. In this work, the first results about local PM $_{10}$ instruments intercomparisons conducted by ORAR are shown. The results reveal a first knowledge of local PM $_{10}$ instruments quality level. Furthermore, the same methods, applied in order to purchase new instruments, were essential in accepting the supply. 1 –

Introduzione

Il presente documento illustra i risultati degli interconfronti condotti sulla frazione di particolato PM₁₀ organizzati da ARPAV Osservatorio Regionale Aria (di seguito ORAR), presso alcune stazioni di monitoraggio della Rete Regionale di Qualità dell'Aria del Veneto. Si tratta di una prima serie di interconfronti programmati da ORAR tra il 2017 e il 2020 con la collaborazione dei Dipartimenti ARPAV Provinciali, per ottemperare a quanto richiesto dal D.Lgs. n. 155/2010, come modificato dal D.Lgs. n. 250/2012 (D.Lgs. n. 155/2010; D.Lgs. 250/2012). Infatti, tale decreto richiede, alle Istituzioni che gestiscono le reti di monitoraggio, la partecipazione a programmi di garanzia della qualità a livello nazionale. e successivamente la verifica anche a scala locale (regionale e/o provinciale), e il mantenimento nel tempo degli obiettivi di qualità riportati all'allegato I, secondo le procedure della "Guide to the demonstration of equivalence of ambient air monitoring methods" (Guide, 2010). É noto infatti che la misura delle frazioni di particolato atmosferico PM₁₀ e PM_{2,5} in aria ambiente, descritta nella norma UNI EN 12341:2014 (UNI EN 12341, 2014), non può essere considerata riferibile in modo rigoroso alle unità del Sistema Internazionale (SI), nonostante le grandezze fisiche che la compongono lo siano (massa, flusso e tempo), in quanto il metodo di campionamento è definito per convenzione attraverso una ben specificata geometria della testa di prelievo. Per questo motivo è richiesta ai Laboratori Nazionali di Riferimento la partecipazione ai circuiti organizzati dal Laboratorio Europeo di Riferimento (JRC-IES-ERLAP) e ai gestori delle reti la partecipazione ai circuiti organizzati dai rispettivi Laboratori Nazionali.

Dal 2010 ad oggi ISPRA, in qualità di Laboratorio Nazionale di Riferimento per la Qualità dell'Aria in Italia, ha organizzato una serie di circuiti di interconfronto a cui le varie agenzie regionali e provinciali hanno partecipato. ciascuna con strumentazione utilizzata nelle rispettive reti. In questi dieci anni il laboratorio di ISPRA ha svolto un notevole lavoro nell'organizzare e condurre interconfronti sugli inquinanti della qualità dell'aria (non solo per le polveri), che sono diventati anche importanti occasioni di scambio su aspetti tecnici comuni tra i vari partecipanti, in un clima di aperta condivisione delle informazioni. Per ARPAV, l'ORAR ha impiegato i propri laboratori mobili partecipando alla maggior parte degli interconfronti. In tali circuiti, per motivi logistici, le Agenzie possono mettere in campo un numero limitato di strumenti, pertanto si rende necessario estendere successivamente le prove a ciascuna rete mediante degli interconfronti interni.

Le prove e i criteri di valutazione adottati negli interconfronti interni sono stati inoltre estesi anche alla verifica di conformità degli strumenti automatici di nuovo acquisto, come richiesto dal D.M. 30 marzo 2017 (D.M. 30 marzo 2017).

In entrambe le tipologie di prove lo scopo finale è la verifica dell'obiettivo di qualità del 25% di incertezza massima (D.Lgs. n. 155/2010): se questo non viene rispettato è necessario intervenire con opportune correzioni sugli strumenti e sui dati.

Metodi

Nella conduzione delle prove sono state seguite le indicazioni riportate nella "Guide to the demonstration of equivalence of ambient air monitoring methods" (di seguito Guide (Guide, 2010)) e i contenuti delle norme UNI EN 12341:2014 (metodo gravimetrico di riferimento per la misura di PM_{10} e $PM_{2,5}$, (UNI EN 12341,2014)). UNI EN 16450:2017 (metodi automatici per la misura di PM₁₀ e PM_{2.5}. (UNI EN 16450, 2017)), e infine il D.M. 30 marzo 2017 (Procedure di garanzia di qualità per verificare il rispetto della qualità delle misure dell'aria ambiente, effettuate nelle stazioni delle reti di misura, (D.M. 30 marzo 2017)). Si è inoltre attinto all'esperienza maturata nella partecipazione ai circuiti di interconfronto nazionali organizzati da ISPRA e ai vari report emessi (Report ISPRA, 2019). La Guide (Guide, 2010), nel capitolo 9, prevede che periodicamente ciascun analizzatore delle reti regionali e/o provinciali sia sottoposto ad un interconfronto con due strumenti di riferimento gravimetrici, per un totale di 80 giorni equamente distribuiti nell'arco di un anno, in cui almeno il 20% dei dati abbia concentrazione superiore alla soglia di valutazione superiore per il valore limite annuale del PM₁₀ (cioè 28 µg/m³). Gli strumenti di riferimento ideali sono quei campionatori che abbiano partecipato ad uno o più interconfronti a livello nazionale e di cui si conoscono lo scostamento e l'incertezza rispetto ai campioni primari del laboratorio di ISPRA. I parametri che si ottengono come risultato degli interconfronti sono:

- la retta di regressione ortogonale (intercetta, coefficiente angolare e coefficiente di determinazione R²);
- l'incertezza tra campionatori (between sampler, ubs);
- l'incertezza del metodo di misura per confronto con il metodo di riferimento effettuato in accordo alla Guide (Guide, 2010).

La retta di regressione ortogonale, nella forma y = a + bx, i cui coefficienti a e b sono calcolati in modo diverso dalla regressione ordinaria dei minimi quadrati, tiene conto degli errori di entrambe le variabili x e y: essa rappresenta la relazione esistente tra le misure di riferimento (x) e le misure dello strumento candidato (y). La valutazione del coefficiente angolare e dell'intercetta viene effettuata secondo i seguenti criteri:

- il coefficiente angolare "b" deve essere non significativamente differente da 1:

$$|b-1| \le 2 u(b)$$

- l'intercetta "a" deve essere non significativamente differente da 0:

$$|a| \le 2 u(a)$$

dove u(b) e u(a) sono rispettivamente le incertezze tipo del coefficiente angolare e dell'intercetta, calcolate come la radice quadrata delle loro varianze. Le formule per il calcolo dei parametri a e b e le relative incertezze u(a) e u(b) si trovano in appendice alla Guide (Guide, 2010) e non vengono qui riportate. La valutazione del coefficiente di determinazione R^2 è stata condotta in analogia a ISPRA, che nei suoi report sugli interconfronti nazionali considera accettabili valori di R^2 maggiori o uguali a 0,950 (Report ISPRA, 2019).

La stima dell'incertezza between sampler (u_{bs}) rispetto al campionatore di riferimento di ORAR, è stata ottenuta tramite la seguente equazione, che fomisce lo scarto medio quadrato tra le misure dei due strumenti (di riferimento e candidato):

$$U_{bs}^{2} = \frac{\sum_{i=1}^{n} (X_{i,1} - X_{i,2})^{2}}{2n}$$
 (1)

Dove

 $X_{i,1}$ = valore di PM_{10} del giorno i-esimo misurato dallo strumento 1

 $X_{i,2}$ = valore di PM $_{10}$ del giorno i-esimo misurato dallo strumento 2

n = numero di risultati delle medie giornaliere.

Questo parametro permette di avere una stima della variabilità tra campionatori, dovuta alle differenze delle misure in campo. I valori ottenuti di ubs sono stati confrontati con quelli rilevati dal laboratorio di riferimento europeo JRC-IES-ERLAP in analoghi interconfronti a livello europeo e con i risultati ottenuti negli interconfronti nazionali condotti da ISPRA.

La stima dell'incertezza dei risultati dei metodi di misura in esame derivante dal confronto con il metodo di riferimento è stata effettuata, in accordo alla citata linea guida europea, utilizzando la seguente equazione, che descrive l'incertezza in funzione della concentrazione di particolato atmosferico x_i:

$$u_{CR}^{2} = \frac{RSS}{(n-2)} - u^{2}(x_{i}) + [a + (b-1)x_{i}]^{2}$$
 (2)

dove

RSS = somma dei residui relativi derivanti dalla regressione ortogonale;

 $u(x_i)$ = incertezza dei risultati del metodo di riferimento calcolata come $u_{bs,RM}/\sqrt{2}$, dove $u_{bs,RM}$ è l'incertezza tra campionatori di riferimento ottenuta dall'equazione 1; nel caso specifico non è stato possibile determinare tale incertezza per via dell'uso di un solo campionatore di riferimento per interconfronto, pertanto la guida europea consiglia di usare al posto di $u^2(x_i)$ il valore di 0.67 ($\mu g/m^3$)²;

a e b sono rispettivamente l'intercetta e il coefficiente angolare della retta di regressione ortogonale;

 u^2_{CR} è stata calcolata per un valore di x_i pari a 50 $\mu g/m^3$ per il PM_{10} .

La somma dei residui relativi è calcolata a sua volta con la seguente equazione:

$$RSS = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$
(3)

Quindi l'incertezza estesa relativa del metodo di misura in esame viene calcolata con la seguente equazione:

$$U_{CM} = k \sqrt{\frac{u^2_{CR}(y_i)}{y_i^2}}$$
(4)

dove

k = fattore di copertura pari a 2.

Ai fini della valutazione del rispetto degli obiettivi di qualità, l'incertezza del metodo di misura relativa al PM_{10} deve essere calcolata per un valore di y_i = $50 \mu g/m^3$. Tale valore viene confrontato con il valore dell'obiettivo di qualità per l'incertezza di misura fissato dal D.Lgs. 155/2010, pari al 25%.

In questa prima fase esplorativa della rete, non avendo ancora a disposizione strumenti di riferimento dedicati esclusivamente ad attività di controllo qualità, la scelta è ricaduta su tre campionatori gravimetrici normalmente utilizzati per campagne di misura sul territorio, i quali non sono stati utilizzati di recente nei circuiti nazionali di ISPRA. Inoltre, per poter coprire un maggior numero di stazioni su cui condurre gli interconfronti, è stato scelto di utilizzare un solo campionatore per volta anziché due come richiesto dalla Guide (Guide, 2010). Per analoghi motivi la durata degli interconfronti è stata limitata a circa 40 giorni, scelti in periodi dell'anno, tipicamente tra l'inizio di ottobre e la fine di marzo, con valori elevati di PM₁₀, al fine di soddisfare il criterio che almeno il 20 % dei dati sia superiore alla soglia di valutazione inferiore per il PM₁₀, consentendo di esplorare un intervallo di concentrazioni compreso tra circa 20 e 80-100 µg/m³, in cui entrambi i valori limite di legge del PM₁₀ sono compresi. Prima dell'inizio di ogni interconfronto sono stati verificati il flusso, la temperatura e la pressione ambiente, misurati alla testa di campionamento degli strumenti di riferimento, e valutati in base alla norma sul PM₁₀ (UNI EN 12341, 2014). Sono stati inoltre utilizzati due filtri bianchi da campo, pesati in laboratorio e posti nel campionatore per tutta la durata di ciascun interconfronto. Al termine delle attività, tali filtri sono stati ripesati e le differenze sono state valutate come richiesto dalla norma sul PM₁₀ (UNI EN 12341, 2014): sono ammesse differenze fino a 60 µg, mentre valori più elevati meritano un approfondimento. Con criteri di lavoro

simili a quelli sopra esposti sono state condotte, su un numero di giorni variabile (20-90), le prove per il rilascio della dichiarazione di conformità di alcune recenti forniture di analizzatori automatici, di cui saranno sinteticamente riportati i risultati. Per le prove sono stati utilizzati come riferimenti strumenti diversi da quelli impiegati negli interconfronti di cui sopra; in particolare, in alcuni casi i confronti sono stati effettuati tra le concentrazioni fornite dagli analizzatori e i valori ottenuti pesando in laboratorio i filtri campionati dagli stessi, senza l'impiego di ulteriori strumenti gravimetrici. Anche se questo modo di operare non è contemplato nelle norme di riferimento sul PM (UNI EN 12341, 2014; UNI EN 16450, 2017) e nella Guide (Guide, 2010), si è rivelato comunque adatto per gli scopi prefissati.

Risultati

I tre strumenti utilizzati come riferimento negli interconfronti sono costituiti da due campionatori TCR Tecora mod. Charlie+Sentinel, ciascuno installato all'interno di automezzi Fiat Doblò cargo, adattati a laboratori mobili e denominati "D407" e "D409", e un terzo campionatore TCR Tecora mod. Skypost (da esterno), denominato "SKY1". Tutti gli strumenti sono dotati di testa PM₁₀ a geometria CEN, secondo la norma EN 12341:1998, operanti ad un flusso di 2,3 m³/h. La scelta delle stazioni dove condurre gli interconfronti è stata fatta in accordo con i gestori delle reti dipartimentali, valutando la disponibilità di alimentazione elettrica per gli strumenti e lo spazio a disposizione nei pressi delle cabine (aree pubbliche, parcheggi) per il posizionamento dei due laboratori mobili D407 e D409. Le singole stazioni esaminate sono state rinominate per comodità con la sigla della Provincia in cui sono dislocate, seguita da un numero seguenziale e da una lettera che indica il tipo di strumento indagato, 'A' per strumenti automatici e 'M' per quelli che impiegano il metodo gravimetrico manuale. I risultati del lavoro sono riportati sinteticamente in Tabella 13.2.1, in cui in prima colonna compare il codice assegnato alle singole stazioni/strumenti, con l'aggiunta della frazione di particolato misurato PM₁₀ e del campionatore di riferimento usato (D407, D409 o SKY1). Per ciascuna stazione, nelle successive colonne sono riportati i principali parametri della retta di regressione (coefficiente angolare b, intercetta a e coefficiente di determinazione R2), l'incertezza between sampler ubs, l'incertezza estesa relativa del metodo al valore limite U_{CM} % e il numero di coppie di dati per ciascun interconfronto; infine, in ultima colonna, è riportata una sintetica valutazione nel caso uno o più parametri escano dagli intervalli di accettabilità: quando è indicato che a o b o entrambi sono significativi si intende che, secondo i criteri della Guide (Guide, 2010), espressi nel paragrafo precedente. tali parametri risultano rispettivamente diversi da 0 o da 1 in modo statisticamente significativo. In ultima riga compare l'interconfronto denominato "ORAR1M", che consiste in una prova eseguita mettendo in parallelo entrambi i campionatori dei laboratori mobili D407 e D409 per un periodo limitato di 22 giorni, come utile parametro di confronto per tutti gli altri. Nel calcolo di tutti i parametri di Tabella 13.2.1 (ma anche per Tabella 13.2.2) sono state utilizzate le formule da (1) a (4), oltre a quelle per i coefficienti della retta di regressione e di determinazione (Guide, 2010), e inserite in un opportuno foglio di calcolo.

Con criteri analoghi a quelli di Tabella 13.2.1, sono riportati in Tabella 13.2.2 i risultati delle prove per il rilascio della dichiarazione di conformità di strumenti automatici per la misura di PM₁₀ e PM_{2,5} acquistati da ARPAV tra il 2017 e il 2019. Gli strumenti di riferimento impiegati di volta in volta sono stati dei campionatori TCR Tecora o Zambelli, indicati in tabella, con i guali gli stessi gestori provinciali hanno condotto le prove, mentre ORAR si è occupato di valutarne i risultati. Nella codifica delle stazioni di Tabella 13.2.2 è stata aggiunta la dicitura "Ripesato" quando il confronto è avvenuto tra dati automatici e dati gravimetrici, questi ultimi ottenuti dagli stessi filtri dell'analizzatore, pesati anche in laboratorio; in alternativa è stato indicato il campionatore usato come riferimento. TCR Tecora o Zambelli. Sono stati verificati analizzatori per la misura sia di PM₁₀ che di PM_{2,5}.

Tabella 13.2.1 – Risultati interconfronti PM₁₀ ORAR 2017-20

Codice Stazione/ strumento	Parametri regressione ortogonale			Incertezza between sampler u _{bs} (µg/m³)	relativa del metodo al valore limite U _{CM} (%)	N. coppie di dati	Valutazione
	Coeff. angolare b±u(b)	Intercetta a±u(a)	Coeff. determinazione R ²				
TV1M-PM ₁₀ D409	0,946 ± 0,015	0,585 ± 0,775	0,991	2,31	11,9%	42	b significativo
TV1A-PM ₁₀ D409	1,079 ± 0,021	-4,565 ± 1,133	0,984	2,62	13,0%	42	a e b significativi
TV2M-PM ₁₀ D409	0,934 ± 0,016	1,648 ± 0,714	0,986	2,35	12,3%	53	a e b significativi
BL1A-PM ₁₀ D407	1,086 ± 0,047	-4,701 ± 2,027	0,928	3,14	17,3%	40	R ² < 0,950
PD1M-PM ₁₀ D407	0,973 ± 0,014	-1,398 ± 0,565	0,993	2,02	12,1%	36	a significativo
PD2A-PM ₁₀ D407	1,017 ± 0,027	-1,719 ± 1,095	0,972	2,47	13,7%	42	
VR1A-PM ₁₀ SKY1	1,003 ± 0,024	-1,322 ± 1,069	0,973	2,58	14,5%	50	
ORAR1M-PM ₁₀ D407-D409	1,015 ± 0,012	0,308 ± 0,626	0,997	1,09	5,4%	22	

Tabella 13.2.2 – Risultati verifiche di conformità ARPAV per nuovi analizzatori di PM₁₀/PM_{2,5}, anni 2017-2020

0 1: 0: 1				Incertezza	relativa del metodo		
Codice Stazione/	ъ			between sampler	al valore limite U _{CM}	N. coppie di	
strumento	Parametri regressione ortogonale			u _{bs} (μg/m³)	(%)	dati	Valutazione
	Coeff. angolare b±u(b)	Intercetta a±u(a)	Coeff. di determinazione R ²				
RO1A-PM ₁₀ Ripesato	1,036 ± 0,040	-0,526 ± 1,720	0,971	2,58	15,4%	21	
VE1A-PM _{2,5} Tecora	1,039 ± 0,013	-0,324 ± 0,631	0,986	2,32	19,8%	91	b significativo
VE1A-PM ₁₀ Zambelli	1,073 ± 0,017	1,225 ± 0,884	0,978	4,37	24,4%	95	b significativo
VE2A-PM ₁₀ Ripesato	1,019 ± 0,014	2,959 ± 0,619	0,994	3,07	18,2%	33	a significativo
VE2A-PM _{2,5} Ripesato	1,018 ± 0,031	2,152 ± 0,698	0,973	2,16	20,9%	31	a significativo
VI1A-PM _{2,5} Tecora	1,071 ± 0,027	-0,267 ± 0,936	0,98	2,03	17,4%	32	b significativo
VI1A-PM ₁₀ Ripesato	0,959 ± 0,041	2,541 ± 1,763	0,948	2,60	14,0%	31	R ² < 0,950
BL2A-PM ₁₀ Ripesato	0,983 ± 0,040	0,320 ± 0,955	0,955	1,72	9,6%	29	

Incertezza estesa

Discussione

La Guide (Guide, 2010) detta i criteri di valutazione per stabilire l'equivalenza di un metodo di misura candidato rispetto ai metodi di riferimento dei singoli inquinanti di qualità dell'aria (inquinanti gassosi e particolato). Gli stessi criteri valgono sia che lo strumento candidato sia sottoposto per la prima volta ad una certificazione di equivalenza, sia che venga testato a seguito di un acquisto da parte delle Agenzie per l'Ambiente o, ancora. in caso di verifica del mantenimento nel tempo dell'equivalenza, come richiesto dalle norme sugli inquinanti dell'aria in generale e nello specifico da quelle sul particolato (UNI EN 12341, 2014; UNI EN 16450, 2017), oltre al DM 30 marzo 2017 (D.M. 30 marzo 2017). Le prove che ORAR ha condotto su alcuni strumenti della Rete Regionale di Qualità dell'Aria del Veneto si collocano in questi ultimi due casi. Nella valutazione dell'equivalenza, la Guide (Guide, 2010) stabilisce quale criterio primario la verifica del rispetto dell'obiettivo di qualità (Data Quality Objective, DQO) in prossimità del valore limite. Per il particolato PM₁₀ e PM_{2.5} equivale a

rispettare il limite del 25% di incertezza riportato nell'allegato I del D.Lgs. 155/10 (D.Lgs. n. 155/2010). L'incertezza calcolata con la formula (4), pur non contemplando in modo esatto il contributo derivante dai campionatori usati da ORAR rispetto al riferimento nazionale di ISPRA, può essere comunque considerata una buona approssimazione dell'incertezza complessiva del metodo. Se questa incertezza ottenuta nei singoli interconfronti risulta essere inferiore al 25%, l'equivalenza è dimostrata, altrimenti si deve applicare una correzione ai dati attraverso l'inversa dell'equazione di regressione ortogonale e verificare nuovamente il rispetto dell'incertezza ricalcolata con i nuovi valori ottenuti. Anche se non richiesto dalla Guide. ISPRA nei suoi report (Report ISPRA, 2019) valuta anche il coefficiente di determinazione R2, che per valori al di sotto di 0.950 può indicare una dispersione eccessiva dei dati dovuta a problemi strumentali o di laboratorio (nel caso di strumenti gravimetrici).

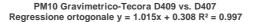
Tabella 13.2.3 - Confronto tra i valori di incertezza between sampler ottenuti negli interconfronti di ORAR sul PM₁₀ e quelli medi ottenuti dal JRC

	confronto gravimetrico/gravimetrico (ubs) medio	confronto gravimetrico/automatico (ubs) medio		
JRC/NRLs (medio)	2.62	4.52		
JRC/local networks (medio)	3.56	7.61		
	confronto gravimetrico/gravimetrico (ubs)	confronto gravimetrico/automatico (Ubs)		
TV1M-PM ₁₀ -D409	2,31			
TV1A-PM ₁₀ -D409		2,62		
TV2M-PM10-D409	2,35			
BL1A-PM10-D407		3,14		
PD1M-PM ₁₀ -D407	2,02			
PD2A-PM ₁₀ -D407		2,47		
VR1A-PM ₁₀ -SKY1		2,58		
ORAR1M-PM ₁₀ -D407-D409	1,09			

Scostamenti eccessivi dei coefficienti della retta di regressione dai rispettivi limiti si riflettono sull'incertezza complessiva e sono quindi valutati in considerazione di questa, ma non in modo vincolante. Infine l'incertezza between sampler ubs è valutata per confronto con i valori medi registrati dal laboratorio di riferimento europeo (JRC-IES-ERLAP) nel corso degli interconfronti organizzati con i laboratori nazionali e le reti locali (Report ISPRA, 2019), (Tabella 13.2.3).

Fatte le dovute premesse, in Tabella 13.2.1 è evidente che l'obiettivo di qualità per l'incertezza Ucm è stato rispettato in tutti gli interconfronti, con valori sempre inferiori al 25%; a parte il valore più basso pari a 5,4%, ottenuto per confronto tra i due campionatori usati per riferimento, tutti gli altri variano da un minimo di circa 12 ad un massimo di circa 17 %. Le tre stazioni in cui sono stati confrontati campionatori manuali, TV1M, TV2M e PD1M, presentano le incertezze minime, circa il 12 %, mentre gli altri siti in cui sono stati confrontati analizzatori automatici (TV1A, BL1A, PD2A, VR1A), presentano incertezze mediamente un po' più alte. I coefficienti di determinazione R² sono tutti maggiori di 0,950, indicando una buona correlazione, ad eccezione dello strumento automatico della stazione BL1A che risulta pari a 0,928. Questo coefficiente così basso è dovuto alla presenza di un outlier nella serie di dati, evidente nel grafico di dispersione di Figura 13.2.3. Se questo dato viene eliminato, infatti, la correlazione diventa paragonabile a quella riscontrata negli altri interconfronti. I parametri della retta di regressione, ovvero il coefficiente angolare e l'intercetta a, risultano in alcuni casi significativamente diversi da 1 o da 0, rispettivamente, ma poiché è stata rispettata l'incertezza massima, non è stato necessario applicare nessuna correzione ai dati. La Tabella 13.2.3 mette in evidenza per l'incertezza between sampler ubs, una situazione pienamente in linea o addirittura migliore rispetto a quanto riscontrato negli interconfronti del laboratorio di riferimento europeo JRC-IES-ERLAP con le altre reti nazionali.

Un breve accenno sui risultati relativi ai filtri bianchi di campo utilizzati negli interconfronti: le differenze di peso


osservate oscillano da un minimo di 5 fino ad un massimo di 105 µg, con valori che si assestano mediamente intorno a 44 µg. Solo in due casi i valori sono stati superiori ai 60 µg accettabili secondo la norma sul particolato (UNI EN 12341, 2014). In particolare il valore massimo di 105 µg è stato riscontrato presso la stazione di BL1A. Al momento non si possono trarre conclusioni in merito a questo caso isolato, ma sarà sicuramente oggetto di approfondimenti futuri.

In Tabella 13.2.2 tutti gli strumenti nuovi hanno rispettato l'obiettivo di qualità relativo all'incertezza, anche se è evidente che in media i valori di U_{CM} sono più alti di quelli riscontrati in Tabella 13.2.1. Ciò è dovuto in parte al fatto che alcune prove sono state condotte in periodi dell'anno (estate) con concentrazioni di polveri molto basse e in parte perché sono stati usati strumenti e metodi diversi rispetto agli interconfronti condotti direttamente da ORAR (strumenti gravimetrici e ripesate dei filtri degli analizzatori). Entrambi i fattori hanno contribuito ad aumentare la dispersione dei dati che ha quindi inficiato la stima dell'incertezza. Altri aspetti che vanno considerati nelle verifiche di conformità di Tabella 13.2.2 sono: l'aver testato unicamente analizzatori automatici. di cui alcuni per la frazione PM2.5, il diverso numero di giorni di campionamento e il personale che si è avvicendato nelle prove. È risaputo che in genere gli analizzatori automatici presentano una variabilità maggiore nelle misure rispetto al metodo gravimetrico che si riflette in una maggiore incertezza, aspetto già evidenziato in Tabella 13.2.1. La determinazione del PM_{2.5} è sicuramente una misura più sensibile del PM₁₀ al variare delle condizioni e richiede quindi una gestione più attenta. Il diverso numero di giorni di test e il personale impiegato non sembrano aver contribuito in modo sostanziale. Il numero di giorni di campionamento è molto variabile, da un minimo di 21 per RO1A ad un massimo di 95 per VE1A, ma ciò non sembra evidenziare differenze sistematiche nei risultati. Nel complesso le incertezze variano da un minimo di 9,6% per BL2A fino ad un massimo di 24,4% per VE1A. Il coefficiente di determinazione R2 risulta molto buono per tutti gli strumenti testati ad eccezione di VI1A, che pur

possedendo un'incertezza accettabile, presenta un R² leggermente inferiore a 0,950. Analogamente ai casi di Tabella 13.2.1, anche in Tabella 13.2.2 compaiono come significativi alcuni coefficienti della retta di regressione di alcuni strumenti testati, ma non vi è stata necessità di apportare correzioni sui dati per via del rispetto dell'incertezza massima UCM. Infine, l'incertezza between sampler ubs, anche se non riportata in Tabella 13.2.3, risulta mediamente in linea con quella di Tabella 13.2.1 e con i valori medi riscontrati dal JRC-IES-ERLAP.

Si riportano infine i grafici di dispersione relativi ad alcuni degli interconfronti di Tabella 13.2.1 (Figure da 1 a 4). La Figura 13.2.1 mostra il grafico di dispersione e la retta di regressione ortogonale relativi ai dati di PM₁₀ misurati in parallelo per 22 giorni dagli strumenti di ORAR usati

come riferimenti negli interconfronti, in cui si può notare l'elevata linearità dei punti. La Figura 13.2.2 riporta il grafico relativo all'interconfronto del campionatore gravimetrico TV1M, in cui la linearità è buona ma si nota una leggera sottostima alle medio-alte concentrazioni. Nelle Figure 3 e 4 sono riportati i casi di due analizzatori automatici, BL1A e PD2A, in cui nonostante la buona linearità, è evidente una maggiore dispersione dei punti rispetto ai grafici precedenti. Inoltre in Figura 13.2.3 si nota pure un punto più distante dalla retta di regressione che è un evidente outlier, come già discusso in precedenza a proposito del basso coefficiente di determinazione di questo interconfronto.

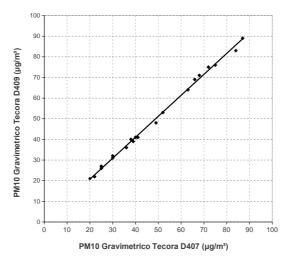


Figura 13.2.1. Grafico di dispersione dei dati dell'interconfronto tra strumenti di riferimento di ORAR.

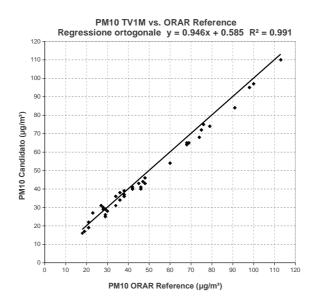


Figura 13.2.2. Grafico di dispersione dei dati dell'interconfronto tra TV1M e riferimento di ORAR.

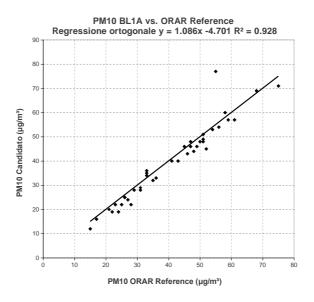


Figura 13.2.3. Grafico di dispersione dei dati dell'interconfronto tra BL1A e riferimento di ORAR.

Regressione ortogonale y = 1.017x -1.719 R² = 0.972

PM10 PD2A vs. ORAR Reference

Figura 13.2.4. Grafico di dispersione dei dati dell'interconfronto tra PD2A e riferimento di ORAR.

Conclusioni

Questa prima fase esplorativa dello stato di qualità delle misure di particolato PM₁₀ presso alcune stazioni della rete aria di ARPAV ha portato a risultati molto positivi e ha posto le basi per un modo di operare che dovrà diventare una prassi. I risultati degli interconfronti condotti sui campionatori gravimetrici hanno confermato la buona affidabilità delle misure con questo metodo attraverso un iter iniziato con la partecipazione di ORAR ai circuiti nazionali organizzati da ISPRA.

La necessità di fornire dati di PM₁₀ e PM_{2,5} in tempo reale per l'informazione alla popolazione, ha portato ARPAV a dotarsi sempre di più di analizzatori automatici. Tali strumenti necessitano però di controlli periodici per confermare l'equivalenza al metodo di riferimento gravimetrico. Deviazioni sistematiche anche contenute degli strumenti automatici rispetto ai gravimetrici, seppur all'interno dell'incertezza massima di legge, possono portare ad un errato calcolo degli indicatori di qualità dell'aria che si riflettono poi sulle azioni per la riduzione

dell'inquinamento da polveri. Sulla base dei primi risultati ottenuti si intende quindi rafforzare l'attività di interconfronto, estendendola a tutti gli analizzatori e comprendendo anche le misure di PM_{2,5}. Recentemente è stata implementata una funzionalità software all'interno del sistema centrale di validazione dei dati di qualità dell'aria di ARPAV, che consentirà in modo automatico di apportare ai dati di PM le correzioni derivanti dalle regressioni ortogonali degli interconfronti.

La stessa metodologia applicata ai nuovi analizzatori acquistati si è rivelata uno strumento imprescindibile per il rilascio delle dichiarazioni di conformità, ottemperando anche al DM 30 marzo 2017 (D.M. 30 marzo 2017), il quale richiede che all'atto di una nuova installazione in stazione sia verificato che le condizioni sito-specifiche consentano di rispettare gli obiettivi di qualità del D.Lgs. 155/10 (D.Lgs. n. 155/2010).

Ringraziamenti

Dipartimento Laboratori (ARPAV) : Marina Raris, Gianmaria Formenton

Dipartimenti ARPAV Provinciali: Riccardo Tormen, Massimo Simionato, Claudia luzzolino, Enzo Tarabotti, Luca Coraluppi, Ermes Zanella, Silvia Rebeschini, Antonella Pagano, Enrico Cosma, Roberta Millini, Antonio Carollo, Andrea Salomoni.

Bibliografia

D.Lgs. n. 155/2010, "Attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa".

D.Lgs. 250/2012, "Modifiche ed integrazioni al decreto legislativo 13 agosto 2010, n. 155, recante attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa".

D.M. 30 marzo 2017 - "Procedure di garanzia di qualità per verificare il rispetto della qualità delle misure dell'aria ambiente, effettuate nelle stazioni delle reti di misura".

"Guide to the demonstration of equivalence of ambient air monitoring methods", January 2010.

Report degli interconfronti ISPRA, Misure delle frazioni di PM_{10} e $PM_{2,5}$ di materiale particolato in aria ambiente, Aosta 2010 - IC018 rev4, Roma 2012 - IC022 rev3, Terni 2014 - IC028 rev1, Roma-Castel Romano 2019-IC044.

UNI EN 12341:2014, "Aria ambiente – Metodo gravimetrico di riferimento per la determinazione della concentrazione in massa di particolato sospeso PM₁₀ o PM_{2.5}".

UNI EN 16450:2017, "Aria ambiente – Sistemi di misura automatici per la misurazione della concentrazione del particolato (PM₁₀; PM_{2,5})".

13.3 ANALISI STATISTICA PER LA VALUTAZIONE DELLA RIDONDANZA DEI DATI DELLE STAZIONI DI MONITORAGGIO DI QUALITÀ DELL'ARIA

Mangiamele L., Crisci A. M., Lovallo M., Esposito R.

ARPA BASILICATA

RIASSUNTO

Nell'ambito della predisposizione del Progetto di Adeguamento della rete di misura e del relativo Programma di Valutazione della Regione Basilicata, è stata individuata una metodologia, mediante l'applicazione di analisi statistiche alle serie storiche di dati delle stazioni di monitoraggio di qualità dell'aria, ai fini di valutare quelle stazioni che esprimono misure ridondanti.

Lo studio ha riguardato tutta la rete regionale di qualità dell'aria, costituita da 15 centraline di differente classificazione e tipologia. I parametri oggetto dell'analisi sono stati gli inquinanti gassosi di cui al D.lgs 155/2010, il PM_{10} in tutte le quattro aree, oltre al $PM_{2,5}$ e all' H_2S in Val d'Agri.

Parole chiave: statistica, inquinante, stazioni di monitoraggio, correlazione.

ABSTRACT

In the framework of carrying out of the Basilicata Region Evaluation Program, part of the Project of the monitoring network optimization, a methodology was identify by applying statistical analisys to the historical data of the air quality measurement stations, aiming to identify those stations express redundant measures.

The study concerns the entire regional air quality network which consists of 15 monitoring stations of different classification and type. The parameters analysed are the gaseous pollutants mentioned in the Legislative Decree 155/2010, PM_{10} for all the macro-areas, in addition to $PM_{2,5}$ and H_2S for Val d'Agri.

Keywords: statistics, pollutant, monitoring stations, correlation.

Introduzione

Al fine di indagare eventuali ridondanze tra i dati della rete regionale di qualità dell'aria si è ritenuto opportuno condurre uno studio statistico e in tale ottica si è suddiviso il territorio regionale in quattro aree principali (Figura 13.3.1): l'area della Val d'Agri con 5 stazioni (Viggiano-VGZ, Masseria De Blasiis – MDB, Costa Molina Sud 1 – CMS, Viggiano 1 – VG1, Grumento 3 –

GR3), l'area del Vulture-Melfese con 3 stazioni (Melfi – MEL, Lavello – LAV, San Nicola di Melfi – SNM), l'area del Materano con 3 stazioni (Matera La Martella – LMR, Pisticci – PIS, Ferrandina – FER) e la città di Potenza con 4 stazioni (San Luca Branca –SLB, Viale dell'Unicef – VLU, Viale Firenze – VLF, C.da Rossellino – ROS).

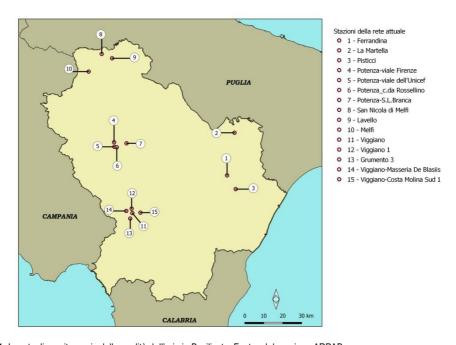


Figura 13.3.1. La rete di monitoraggio della qualità dell'aria in Basilicata. Fonte: elaborazione ARPAB.

Nella Figura 13.3.2 vengono sintetizzati in una tabella, per ogni inquinante e per le quattro aree analizzate, i risultati ottenuti con le analisi statistiche mediante una scala di colori che indica il livello di similarità tra le coppie di stazioni, basato su una valutazione qualitativa. La Tabella 13.3.riporta all'interno delle matrici ciascuna delle quali rappresenta il comportamento di un

determinato inquinante in una determinata zona. L'informazione viene visualizzata sulla parte superiore alla diagonale principale delle matrici per le quali si otterrebbe, essendo simmetriche, la stessa informazione nella parte inferiore alla diagonale principale, che pertanto si presenta di colore grigio. Fa eccezione la matrice relativa alle polveri della Val d'Agri nella quale

vengono sintetizzate le informazioni sia del PM₁₀ (parte superiore rispetto alla diagonale principale) sia del PM_{2,5} (parte inferiore rispetto alla diagonale principale).

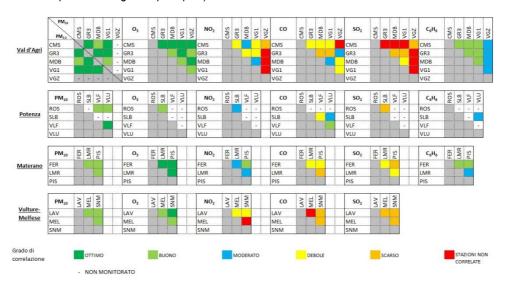


Figura 13.3.2. Tabella 13.3.di sintesi dei risultati ottenuti con le analisi statistiche relativamente agli inquinanti gassosi di cui al D.lgs 155/2010 e al particolato atmosferico. Fonte: elaborazione ARPAB.

Metodi

L'elaborazione statistica proposta prevede una prima analisi volta ad individuare l'andamento dei dati e consiste nella determinazione della distribuzione di probabilità dei parametri di QA applicando il metodo non parametrico del Kernel, la rappresentazione grafica mediante box-plot e bar-Plot e relativa determinazione dei principali indicatori della statistica descrittiva. In seguito per indagare la ridondanza delle misure si procede con l'analisi della correlazione tra le serie di dati per ogni coppia di stazioni all'interno di una stessa area. la valutazione del grado di accuratezza e di precisione delle precedenti correlazioni tramite il calcolo del coefficiente di Pearson e del coefficiente di concordanza e l'analisi delle componenti principali (PCA - Principal Component Analysis). In ultimo risulta utile lo studio delle serie temporali al fine di individuare alcuni

comportamenti caratteristici degli inquinanti sulla base di particolari periodi di mediazione.

Risultati

Particolato Atmosferico

Il particolato atmosferico PM_{10} , le cui medie annuali si distribuiscono intorno ai $15\text{-}20~\mu\text{g/m}^3$, ha come limite normativo la media giornaliera di $50~\mu\text{g/m}^3$, da non superare più di 35~volte nell'anno civile, e limite annuale $40~\mu\text{g/m}_3$. Nella regione Basilicata, fino ad oggi, si sono avuti soltanto superamenti di $50~\mu\text{g/m}^3$ ma non del limite di 35~volte e di quello annuale. Nei casi in cui si verifica la contemporaneità degli incrementi di concentrazione su diverse stazioni della rete di monitoraggio, è frequente che la causa sia il trasporto di polveri desertiche e successiva intrusione a livello locale. Il PM_{10} può essere considerato all'interno di tutte le quattro aree,

generalmente correlato ed in maniera più evidente nella Val d'Agri. Allo stesso modo il PM_{2,5} presenta un comportamento analogo.

Nelle Figure 3 e 4 si riportano le regressioni lineari ottenute per la coppia di stazioni di monitoraggio

Viggiano 1 - Grumento 3 dell'area della Val d'Agri rispettivamente per il PM_{10} e per il $PM_{2,5}$. In entrambi i casi si è ottenuta una correlazione dell'89%.

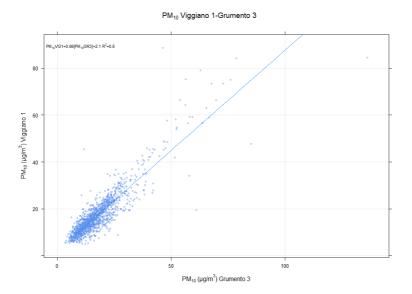


Figura 13.3.3. Regressione lineare per la coppia di stazioni Viggiano 1-Grumento 3 per il parametro PM₁₀. Fonte: elaborazione ARPAB.

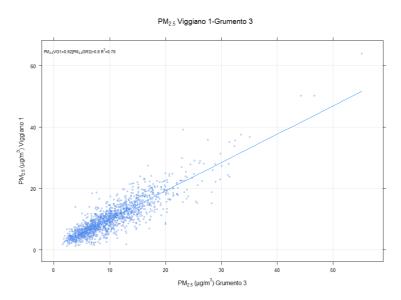


Figura 13.3.4. Regressione lineare per la coppia di stazioni Viggiano 1-Grumento 3 per il parametro PM2,5. Fonte: elaborazione ARPAB.

Ozono

L'ozono (O₃) è il parametro che in Basilicata presenta frequenti superamenti dei limiti normativi (valore obiettivo per la protezione della salute umana pari a 120 μ g/m³). È un inquinante secondario che fa parte delle sostanze che costituiscono lo smog fotochimico e non ha un carattere locale, ma piuttosto si distribuisce omogeneamente su scala regionale. Infatti, come si evince dalla Figura 13.3.2, le analisi statistiche, effettuate sia sui dati orari sia sui massimi giornalieri, mostrano una generale correlazione tra le stazioni di una stessa area. Inoltre con una analisi delle componenti principali

applicata a tutte le stazioni della rete, risulta che anche stazioni di aree differenti sono in prima approssimazione correlate tra loro. Infatti, poiché la PCA permette di descrivere il sistema anche con la sola prima componente principale in quanto quest'ultima spiega il 71% della varianza totale, il grafico di Figura 13.3.5 evidenzia che le ascisse dei vettori che rappresentano le stazioni della rete risultano prossime tra loro. In particolare emerge la similarità tra le coppie di stazioni Lavello-Viggiano e Masseria De Blasiis-San Nicola di Melfi appartenenti ad aree differenti della regione.

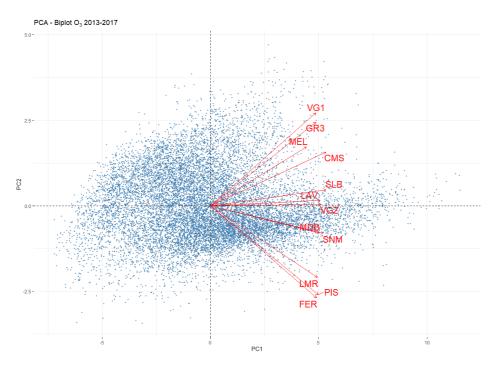


Figura 13.3.5. Grafico Biplot dell'analisi delle componenti principali per il parametro O₃. Fonte: elaborazione ARPAB.

Biossido di Azoto

Il limite orario del biossido di azoto (NO2) è di 200 μ g/m³ mentre il limite annuale è di 40 μ g/m³. In Basilicata le medie orarie risultano essere piuttosto al di sotto del limite orario e le medie annuali si distribuiscono intorno ai 10-15 μ g/m³ per le stazioni di monitoraggio dell'area del Materano e della città di Potenza; risultano invece un po' più alte nel Vulture-Melfese, in particolare a Lavello e Melfi, con concentrazioni tra 10 e 25 μ g/m³; di contro in Val d'Agri risultano più basse, tra 4 e 7 μ g/m³ con l'eccezione della stazione di monitoraggio di Viggiano, le cui medie annuali si distribuiscono intorno ai 12-17 μ g/m³.

Le analisi statistiche mostrano la presenza di correlazione buona o moderata tra le stazioni all'interno dell'area del Materano, della città di Potenza e tra alcune

stazioni della Val d'Agri; per il resto invece si evince debole, scarsa o assenza di correlazione. Tuttavia dall'analisi delle serie temporali settimanali e giornaliere, per le quali si sono utilizzati come indicatori le medie orarie, si evidenziano due picchi giornalieri, uno tra le 8:00 e le 9:00 e l'altro tra le 21:00 e le 23:00 dai quali è possibile dedurre che la fonte sia il traffico. Si evince inoltre che i picchi diurni del fine settimana risultino generalmente inferiori a quelli dei giorni feriali. Si riporta in Figura 13.3.6 un esempio di grafico delle serie temporali settimanali dell'area del Vulture-Melfese. Si sottolinea che nella stazione di Melfi i picchi sono meno evidenti ma comunque presenti così come in Val d'Agri sono più accentuati quelli delle stazioni di Viggiano e Masseria De Blasiis rispetto ai picchi delle altre stazioni.

I grafici delle serie temporali annuali, ottenuti utilizzando come indicatori le medie giornaliere mostrano

l'andamento stagionale del biossido di azoto per cui le concentrazioni più alte si verificano in inverno quando l'altezza di rimescolamento diminuisce, e più basse in estate; tuttavia si nota in alcuni casi un aumento delle concentrazioni nei mesi tra Luglio e Agosto, la cui causa è presumibile che sia l'aumento del traffico estivo. In

Figura 13.3.7 viene riportato il grafico delle serie temporali annuali dell'area del materano.

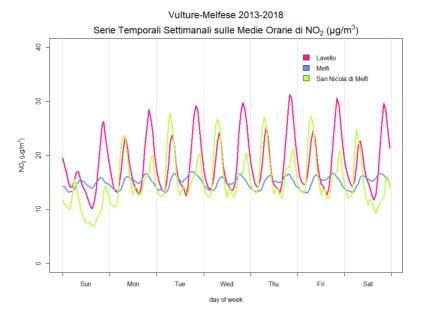


Figura 13.3.6. Grafico delle serie temporali settimanali di NO2 dell'area del Vulture-Melfese dal 2013 al 2018. Fonte: elaborazione ARPAB.

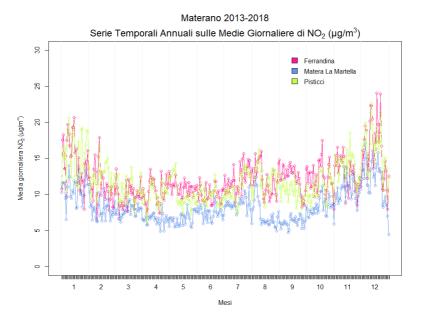


Figura 13.3.7. Grafico delle serie temporali annuali di NO₂ dell'area del materano dal 2013 al 2018. Fonte: elaborazione ARPAB.

Monossido di Carbonio

I valori di concentrazione di monossido di carbonio (CO) risultano piuttosto bassi in tutte le stazioni della Rete con medie annuali inferiori a 1 mg/m³. Il limite normativo del CO è di 10 mg/m³ e si utilizza come indicatore la media massima giornaliera calcolata su 8 ore; i massimi annuali di tale indicatore sono in generale minori di 4.5 mg/m³. Anche in questo caso, con le serie temporali si evidenziano picchi giornalieri, anche se in minor misura rispetto al biossido di azoto; quelli maggiormente evidenti si presentano nelle stazioni di Lavello e di Potenza di Viale dell'Unicef e Viale Firenze.

Anidride Solforosa

L'anidride solforosa (SO₂), il cui limite orario è di 350 μ g/m³ mentre il limite giornaliero è di 125 μ g/m³, presenta bassi valori di concentrazione, prossimi ai limiti inferiori di rilevabilità strumentali, con medie annuali distribuite intorno a 1,2 – 7 μ g/m³. L'analisi statistica, in questo caso, ha evidenziato che le coppie di stazioni

all'interno di una stessa area sono non correlate o presentano debole o scarsa correlazione e anche l'analisi delle serie temporali, le quali non hanno mostrato particolari andamenti, non ha prodotto utili risultati.

Benzene

Il benzene (C_6H_6), pur non presentando valori molto alti, risulta correlato tra le stazioni in maniera buona o moderata. In questo caso le correlazioni aumentano considerevolmente eliminando gli outliers eseguendo le regressioni lineari al 90°, al 95° e al 99° percentile sulle differenze tra le concentrazioni, misurate nella stessa data, dalla coppia di stazioni presa in esame. Le medie annuali si distribuiscono intorno a 0,24-1,93 $\mu g/m^3$ con concentrazioni maggiori nella città di Potenza e nella stazione di Viggiano. Nell'area della Val d'Agri e nella città di Potenza sono individuabili nelle serie temporali due picchi giomalieri dai quali quindi, analogamente al biossido di azoto e al monossido di carbonio, si evince il contributo del traffico.

Acido Solfidrico

L'acido solfidrico o idrogeno solforato (H₂S) non ha un limite normativo nazionale di riferimento, tuttavia la Regione Basilicata con D.G.R. 983/2013 "Norme tecniche e azioni per la tutela della qualità dell'aria nei comuni di Viggiano e Grumento Nova", ha adottato nella Val d'Agri, caratterizzata da un'intensa attività estrattiva e dalla presenza del centro di primo trattamento dell'olio (COVA, Centro Olio Val d'Agri), una soglia di intervento pari a 32 μ g/m³ calcolata come media giornaliera (operando una riduzione del 20% del valore limite di 40 μ g/m³ previsto dal D.P.R. 322/1971 abrogato dalla Legge 4 aprile 2012). L'inquinante in questione viene monitorato nella suddetta area in tutte e cinque le stazioni della rete di monitoraggio. Inoltre si fa presente

che le Linee Guida dell'Organizzazione Mondiale di Sanità indicano un valore di riferimento per la soglia olfattiva pari a $7 \mu g/m^3$ calcolato come valore semiorario. Lo studio statistico non ha rilevato correlazioni tra le stazioni di monitoraggio.

Al fine di dare un'idea dell'andamento dei dati si riporta in Figura 13.3.8 il grafico box-plot nel quale è evidente che le concentrazioni più alte si registrano nella stazione di Viggiano; non si verificano superamenti del limite giornaliero tuttavia nella stazione in questione sono presenti picchi orari che in alcuni casi arrivano a superare 200-300 $\mu g/m^3$.

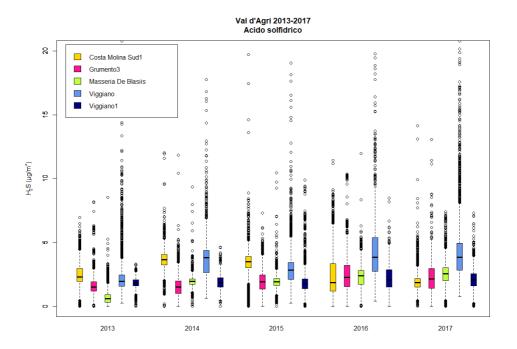


Figura 13.3.8. Box-plot delle misure orarie di H₂S a scala annuale dell'area della Val d'Agri. Fonte: elaborazione ARPAB.

Conclusioni

I risultati dello studio hanno evidenziato misure pressoché ridondanti del particolato e dell'ozono all'interno di una stessa area e in minor misura anche del benzene. Per il biossido di azoto e per il monossido di carbonio soltanto in alcune coppie di stazioni è possibile individuare una moderata correlazione; tuttavia in generale i valori di concentrazione, se pur piuttosto bassi

rispetto ai valori limite in particolare per il CO, presentano due picchi giornalieri in corrispondenza delle ore di maggiore traffico. Relativamente all'anidride solforosa, le coppie di stazioni all'interno delle aree risultano non correlate; si riscontra,in tal caso, che i valori di concentrazione si presentano generalmente bassi, prossimi ai limiti inferiori di rilevabilità strumentali.

Bibliografia

Biggeri A., Bellini P., Terracini B., 2004, Metanalisi italiana degli studi sugli effetti a breve termine dell'inquinamento atmosferico MISA 1996-2002.

Carslaw, D.C., 2015. The openair manual — open-source tools for analyzing air pollution data. Manual for version 1.1-4, King's College London.

Galeotti P., Elementi di Probabilità e Statistica.

Lin L., Hedayat A. S., Sinha B., and Yang M., 2002 Statistical Methods in Assessing Agreement: Models, Issues, and Tools.

Lu Wei-Zhen, He Hong-Di, Dong Li-yun, 2010. Performance assessment of air quality monitoring networks using principal component analysis and cluster analysis.

Montanari M., STATISTICA AMBIENTALE Analisi Multivariata Metodologie di Ordinamento

Pérez-Arribas L. V., León-González M. E., and Rosales-Conrado N., 2017. Learning Principal Component Analysis by Using Data from Air Quality Networks.

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Saulo Helton, Leiva Vı'ctor, Ziegelmann Flavio A., Marchant Carolina, 2013, A nonparametric method for estimating asymmetric densities based on skewed Birnbaum–Saunders distributions applied to environmental data.

Telesca L., Lovallo M., 2017. On the performance of Fisher Information Measure and Shannon entropy estimators. Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484.

Tukey J.W., 1977, Exploratory Data Analysis Addison-Wesley, Reading, Massachusetts, USA...

13.4 OZONO: MISURE DI QUALITÀ DELL'ARIA E MISURE METEOROLOGICHE IN QUOTA.

De Vita A.1, Budillon G.1, Capozzi V.1, Onorati G.2, D'Auria P.2, Autorino J.2, Ballirano A.2

¹ UNIVERSITÀ DEGLI STUDI DI NAPOLI "PARTHENOPE" - DIPARTIMENTO SCIENZE E TECNOLOGIE

²ARPA CAMPANIA

RIASSUNTO

L'ozono è un inquinante secondario presente in troposfera e prodotto nel corso di reazioni chimiche in presenza della radiazione solare a partire da inquinanti primari, quali il biossido di azoto e i COV. È molto importante comprendere il contributo troposferico alle concentrazioni di ozono misurate a livello del suolo. quindi è stata svolta una ricerca sulle variazioni di concentrazione ozono in relazione agli episodi di caldo e di freddo estremi. Per la prima volta in Campania è stata effettuata una campagna di monitoraggio in stazioni di bassa quota ubicate nei comuni di Ariano Irpino e di Avellino, e nella stazione di alta quota di Montevergine in periodi significativi del 2016 e 2017. La campagna è stata mirata ad analizzare il legame che sussiste tra l'ozono troposferico e la temperatura e la rilevanza di tale relazione nelle stazioni selezionate e presso la stazione di riferimento nazionale di Monte Cimone gestita da AM e CNR-ISAC

Le concentrazioni mensili di ozono nelle stazioni esaminate mostrano un andamento rappresentativo delle condizioni di fondo della troposfera: l'elevata radiazione solare e le condizioni meteorologiche stagionali favoriscono produzione ed accumulo di ozono. con un massimo estivo nel mese di agosto e minimo invernale nel mese di dicembre. Assieme ai fenomeni di trasporto su scala continentale dell'ozono e dei suoi precursori in troposfera, non sembrano essere trascurabili processi associati alla fotochimica locale per le stazioni a bassa quota. I dati esaminati hanno confermato che le concentrazioni di ozono a quote elevate sono maggiori rispetto alle zone di piana soprattutto d'inverno e nelle ore serali, quindi, in tali condizioni il contributo di origine troposferica è superiore a quello dovuto all'inquinamento locale. Tale aspetto è da considerare nella valutazione dei livelli di inquinamento di ozono di origine antropica, discriminando fra l'ozono "naturale" e quello troposferico.

Parole chiave: ozono, monitoraggio, meteorologia, suolo, quota

ABSTRACT

Ozone is a secondary pollutant present in the troposphere and produced during chemical reactions in the presence of solar radiation from primary pollutants. such as nitrogen dioxide and VOCs. It is very important to understand the tropospheric contribution to ozone concentrations measured at ground level, therefore research has been carried out on changes in ozone concentration in relation to episodes of extreme heat and cold. For the first time in Campania, a monitoring campaign was carried out in low altitude stations located in the municipalities of Ariano Irpino and Avellino, and in the high altitude station of Montevergine in significant periods of 2016 and 2017. The campaign was aimed at analyze the link between the ground level ozone and the temperature and the relevance of this relationship in the selected stations and at the Monte Cimone national reference station managed by AM and CNR-ISAC.

The monthly ozone concentrations in the examined stations show a seasonal trend representative of the underlying conditions of the troposphere: the high solar radiation and seasonal weather conditions favor the production and accumulation of ozone, with a summer maximum in August and a winter minimum in the month of December. Together with the transport phenomena on a continental scale of ozone and its precursors in the troposphere, processes associated with local

photochemistry for low altitude stations do not seem to be negligible. The examined data confirmed that the ozone concentrations at high altitudes are higher than in the flat areas especially in winter and in the evening hours, therefore, in these conditions the contribution of tropospheric origin is higher than that due to local pollution. This aspect is to be considered in the assessment of anthropogenic ozone pollution levels, discriminating between "natural" and tropospheric ozone.

Keywords: ozone, monitoring, meteorology, soil, altitude

Introduzione

Questo lavoro nasce dall'intento di individuare un legame tra due tematiche: cambiamento climatico e della qualità dell'aria. e comprenderne le relative influenze. Tra tutti i fattori che andrebbero presi in considerazione per valutare l'entità del cambiamento climatico e la tendenza della qualità dell'aria ad influenzare gli ecosistemi, sono stati selezionati due parametri notevolmente rappresentativi e apparentemente connessi tra loro: la temperatura e la concentrazione di ozono, una correlazione rintracciata sulla base dei dati osservati e finalizzata all'elaborazione di proiezioni per evoluzioni future. La correlazione tra ozono e parametri meteorologici è stata approfondita valutando la variabilità della concentrazione dell'inquinante

in relazione alla temperatura nel biennio 2016- 2017 nelle stazioni di Ariano Irpino, Avellino 41, Montevergine e Monte Cimone durante gli eventi di caldo e di freddo estremi.

Ozono

L'ozono è un gas instabile, di colore bluastro, costituito da tre atomi di ossigeno (O_3) , è una molecola allotropica dell'ossigeno, che si scinde facilmente, liberando ossigeno molecolare (O_2) e un atomo di ossigeno estremamente reattivo $(O_3 \rightarrow O_2 + O)$. E 'un energico ossidante, capace di reagire sia con materiali organici che inorganici. La formazione dell'ozono stratosferico in natura avviene a più di 30 km di altezza, dalle zone equatoriali, dove si produce, per poi essere trasportato

verso i poli dai venti. Per effetto della circolazione atmosferica, viene in piccola parte trasportato anche negli strati più bassi dell'atmosfera (troposfera), è presente a basse concentrazioni e rappresenta un inquinante secondario particolarmente insidioso. La quantità di ozono presente nella troposfera, è dovuta al ridotto scambio tra troposfera e stratosfera, dalla sua formazione a partire dagli inquinanti primari; la sua concentrazione varia a seconda della zona geografica considerata, dell'ora, del periodo dell'anno, delle condizioni climatiche, della direzione e della velocità del vento, del grado di inquinamento primario, etc. (Arpa Campania, 2010).

L'ozono viene prodotto nel corso di varie reazioni chimiche, in presenza della luce solare, a partire da alcuni inquinanti primari, quali il biossido di azoto. In condizioni di intensa produzione di smog fotochimico, i livelli di ozono possono raggiungere concentrazioni tali da renderlo dannoso per la salute e per l'ambiente, pertanto, viene considerato un inquinante secondario.

La concentrazione di fondo alle nostre latitudini varia fra 0,03 e 0,07 ppm, anche se nell'ultimo secolo è praticamente raddoppiata. Il picco massimo di concentrazione di ozono, rilasciato dall'intenso traffico dei veicoli, ma anche dall'importanza della luce, si rileva intorno a mezzogiorno, mentre dopo le ore 18, la concentrazione cala registrando il minimo durante la notte.

Le più alte concentrazioni di ozono si rilevano nei mesi più caldi dell'anno, per la forte insolazione; incidono fortemente le condizioni di alta pressione e di scarsa ventilazione oltre al ristagno degli inquinanti e relativo accumulo. Dato che l'inquinamento da ozono interessa in particolare solo 4-6 ore del giorno, si considera di solito solo la concentrazione massima oraria.

L'ozono ha un'azione irritante sulle mucose in particolare delle vie respiratorie, anche di notevole entità, e a livello oculare determinando forti irritazioni. Nei soggetti più sensibili, come i bambini, aumenta la frequenza degli attacchi asmatici e può ridurre la capacità del sistema immunitario di combattere le infezioni batteriche. I danni

dovuti all'ozono possono anche verificarsi senza alcun segno evidente. L'ozono è considerato una delle principali cause del declino delle foreste in quanto provoca una riduzione nella crescita delle piante che risultano sensibili al gas che penetra al loro interno attraverso gli stomi, specialmente se in presenza di ampie quantità di vapore d'acqua che ne favorisce l'apertura. Le piante risultano così sensibili da poter essere utilizzate come spia biologica. (www.arpapuglia.it). La variabilità della concentrazione di questo inquinante secondario è legata principalmente alle condizioni meteorologiche, in particolare al trasporto e alla diffusione degli inquinanti, che a loro volta, sono regolate dal gradiente termico, in cui in condizioni normali, la temperatura dell'aria diminuisce con l'altezza secondo un gradiente di circa 1°C/100 metri. Quando invece si registra il fenomeno noto come inversione termica, la temperatura aumenta con l'altezza ed in queste condizioni la dispersione degli inquinanti viene ostacolata e viene indirizzata verso il suolo (Rekacewicz, P., 2003).

Data la complessità dei meccanismi di produzione e rimozione, le concentrazioni di O₃ sono influenzate da diverse variabili meteorologiche, tra cui l'intensità della radiazione solare, la temperatura, l'umidità relativa, la pressione atmosferica, la direzione e la velocità del vento e la pioggia.(http://www.arpa.veneto.it/arpavinforma/indicato riambientali/indicatori ambientali/atmosfera/qualita-dellaria/livelli-di-concentrazione-di-ozono/view).

Metodologia

Sono state analizzate le variazioni delle concentrazioni di ozono osservate presso le stazioni di Ariano Irpino, Avellino 41, la stazione GAW-WMO di Monte Cimone (2165 m s.l.m., Appennini Settentrionali) in corrispondenza delle ondate di caldo e di freddo rilevate presso i siti di misura negli anni 2016 e 2017 e nel 2018, in particolare dal 25 Luglio al 31 Ottobre, per la stazione di Montevergine, ove è stato installato dall'ARPAC uno strumento per la rilevazione dell'ozono. L'applicazione di una metodologia di selezione specificamente calibrata

per stazioni di bassa e d'alta quota ha permesso di identificare la variazione dell'ozono in relazione alla variazione della temperatura. E'stato valutato che in media le concentrazioni di ozono aumentano del 16.1% rispetto ai valori stagionali. Particolare attenzione è stata rivolta allo studio dell'ondata di calore osservata nel mese di Agosto che ha provocato le più elevate concentrazioni di ozono osservate in queste stazioni durante questo tipo di eventi e l'ondata di freddo osservata nel mese di Dicembre, dove è evidente una brusca diminuzione della temperatura rispetto alla temperatura media giornaliera. I risultati hanno evidenziato che l'analisi dei dati di temperatura e di ozono, molto spesso, mostra una correlazione.

In generale con il termine ondate di calore si indicano episodi estivi di lunga durata caratterizzati da temperature particolarmente elevate. Le condizioni meteorologiche che tipicamente si associano ad un'ondata di calore sono: alte temperature, stagnazione delle masse d'aria, elevata irradianza solare, bassi livelli di umidità e la persistenza di condizioni anticicloniche di "blocco". Tali condizioni debbono interessare un territorio esteso (come una regione o un continente) per un periodo di tempo relativamente lungo. Generalmente, il parametro maggiormente utilizzato nell'identificazione dei periodi interessati da ondate di calore è la temperatura dell'aria. In particolare, alcune definizioni si basano sul superamento di un valore di soglia dipendente dalle caratteristiche climatiche di una regione specifica [Robinson et al. 2000; Colombo et al., 2007], mentre altre adottano dei criteri puramente statistici. come il superamento di un certo intervallo di confidenza [Della Marta et al., 2007; Meehl et al., 2004]. Nella maggior parte dei casi, vengono analizzate le anomalie della temperatura massima giornaliera rispetto alla media climatologica caratteristica della regione di interesse. Le caratteristiche meteorologiche di un'ondata di calore si possono tipicamente collegare alle anomalie della circolazione atmosferica sulla regione considerata. In particolare, sul continente europeo sembra essere importante il ruolo svolto dalla NAO (North Atlantic Oscillation), uno dei pattern atmosferici dominanti nell'emisfero settentrionale, la cui variabilità può essere descritta attraverso la valutazione dalla differenza di pressione superficiale tra la depressione d'Islanda e l'anticiclone delle Azzorre, e controlla la forza e la direzione delle correnti occidentali (westerlywinds) e dei cicloni extratropicali (stormtracks) sopra l'Oceano Atlantico settentrionale ed il continente europeo. Le ondate di calore possono causare effetti negativi sulla popolazione soprattutto su quelle fasce considerate più a rischio, come anziani, donne incinte, bambini e persone affette da patologie croniche cardiocircolatorie o respiratorie, che dipendono tuttavia dall'intensità e dalla durata dell'episodio oltre che dalle condizioni climatiche tipiche del luogo, dalle condizioni di salute della popolazione nonché da fattori culturali-locali. Oltre ad effetti sulla salute umana, ondate di calore possono avere ripercussioni sul ciclo dell'acqua e diminuire la resa dei raccolti agricoli, favorendo inoltre l'aumento di incendi spontanei [IPCC, 2007]. Nella bassa troposfera, gli episodi acuti di inquinamento da ozono che si registrano durante il periodo estivo sono generalmente favoriti da condizioni meteorologiche tipiche delle ondate di calore: elevato irraggiamento solare, condizioni di stagnazione delle masse d'aria ed elevate temperature superficiali [EEA, 2006]. Sul continente Europeo, recenti studi hanno messo in evidenza un aumento della freguenza e della durata delle ondate di calore, probabilmente a causa delle modificazioni climatiche indotte dall'aumento antropico della concentrazione di gas serra in troposfera [IPCC, 2007]. Per tali ragioni e tenuto conto del fatto che in troposfera l'ozono, oltre ad essere un potente inquinante, rappresenta anche un efficiente gas serra, risulta interessante valutare se e come le ondate di calore influenzino i livelli di fondo dell'ozono troposferico. Le ondate di freddo, invece, sono caratterizzate dal rapido abbassamento della temperatura rispetto alla temperatura media di una regione, che richiede uno stato di protezione supplementare per l'agricoltura, l'industria, il commercio e altre attività sociali. Lo studio di un'ondata di freddo è basato sulla velocità con cui la temperatura scende e sulla temperatura minima a cui arriva che a sua volta, dipende dalla regione geografica e dall'ora. Anche le forti ondate di gelo costituiscono un rischio per la salute umana in particolare per anziani e bambini e persone che soffrano di patologie croniche oltre che un

rischio diretto morte da assideramento o ipotermia per senzatetto e indigenti. Dal punto di vista ambientale, le ondate di freddo possono arrecare danni alla società superindustrializzata, in particolare a trasporti e viabilità. all'erogazione di energia elettrica, al patrimonio agricolo e all'allevamento. L'attività di ricerca è stata svolta presso l'ARPA Campania (Agenzia Regionale per la Protezione Ambientale in Campania), presso cui i dati sono stati acquisiti, validati ed analizzati estrapolando i valori relativi alla concentrazione dell'ozono, con particolare attenzione ai valori di minimo, medio e massimo giornaliero in una determinata stazione e procedendo ad un raffronto con i valori di temperatura. In guesto lavoro presentato l'andamento climatologico delle temperature misurate nelle stazioni di riferimento nel periodo 2016 - 2017 e nel 2018 per la stazione di Montevergine. Lo scopo sarà quello di giungere ad una valutazione preliminare circa l'influenza di guesti episodi sui livelli dell'ozono troposferico registrati presso i siti di misura.

Tanti studi ipotizzano con buona probabilità che al cambiamento climatico sarà associato un aumento della concentrazione di ozono troposferico, legato in buona parte all'aumento di temperatura previsto, così come è evidenziato da questo lavoro di tesi. E' molto difficile immaginare quali potrebbero essere gli effetti di un acutizzarsi della situazione di inquinamento da ozono attuale, a causa delle diverse quantità di fattori che entrerebbero in gioco. Il cambiamento climatico è dovuto all'effetto serra provocato dal notevole aumento della concentrazione atmosferica dei gas serra, che sostituiscono alla superficie terrestre una enorme quantità dell'energia persa dal pianeta sotto forma di energia invisibile nell'infrarosso. L'aumento dei gas serra è dovuto all'aumento della temperatura del pianeta da un minimo di 2°C ad un massimo di 6°C. (un rapido cambiamento che può provocare danni catastrofici qualora non venga fatto nulla per ridurre queste emissioni dei gas), alla fusione dei ghiacciai polari e alpini, all'innalzamento degli oceani e soprattutto all'estremizzazione del clima

Risultati

Attraverso i diagrammi a dispersione (scatter plot), è stato possibile analizzare il legame che sussiste tra l'ozono troposferico, la temperatura e la rilevanza di tale relazione a seconda del sito di misura considerato. La concentrazione media giornaliera di ozono misurata a Dicembre 2016 nella stazione di bassa quota di Ariano Irpino è pari a 65 µg/m³ e la temperatura media registrata è 10°C mentre la concentrazione media di ozono rilevata nella stazione di Avellino nel Dicembre 2016, varia dai 15

 $μg/m^3$ ai 65 $μg/m^3$ e la temperatura media non supera i 10°C. La concentrazione media di ozono oscilla tra i 100 $μg/m^3$ e i 140 $μg/m^3$ nel mese di Agosto 2017 (Figura 13.4.1) ed è accompagnata da un aumento notevole della temperatura media, misurata intorno ai 34°C. Durante il mese di Agosto 2017, la stazione di monitoraggio di Avellino, ha rilevato una variazione media di O_3 , tra i 65 $μg/m^3$ e i 100 $μg/m^3$ con una temperatura media pari a 30°C (Figura 13.4.2).

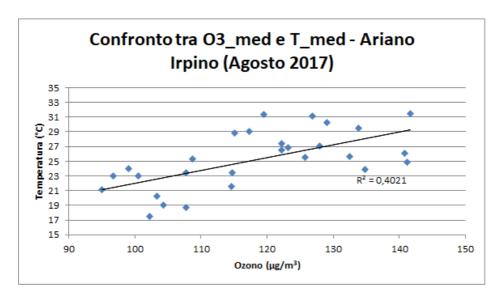


Figura 13.4.1. Correlazione tra temperatura ed ozono – Ariano Irpino (Agosto 2017).

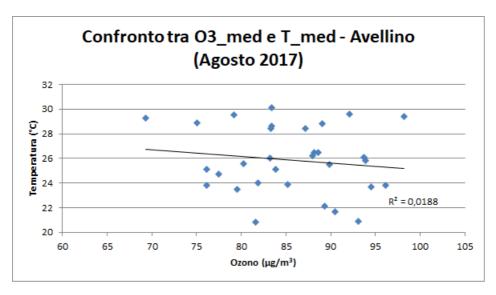


Figura 13.4.2. Correlazione tra temperatura ed ozono – Avellino (Agosto 2017).

Dall'analisi dei grafici riportati, si evidenzia correlazione nel periodo estivo.

La differenza tra le concentrazioni di ozono rilevate nelle stazioni di Avellino e Ariano Irpino, deriva dall'ubicazione delle stesse infatti mentre la stazione di Ariano Irpino è lontana da fonti di emissioni, quindi presenta variazioni di ozono priva di influenza urbana, quella di Avellino subisce influenza dell'aria urbana dove non tutti i precursori vengono effettivamente convertiti in ozono.

La stazione di alta quota di Monte Cimone, ha registrato nell'Agosto 2016, una concentrazione media di ozono che oscilla tra i 100 $\mu g/m^3$ e i 140 $\mu g/m^3$ con una temperatura pari a 16°C (Figura 13.4.3), mentre la correlazione tra i due parametri appare evidente anche nella Figura 13.4.4 dove, la concentrazione media di ozono diminuisce tra i 65 $\mu g/m^3$ e i 100 $\mu g/m^3$ e una T=8°C.

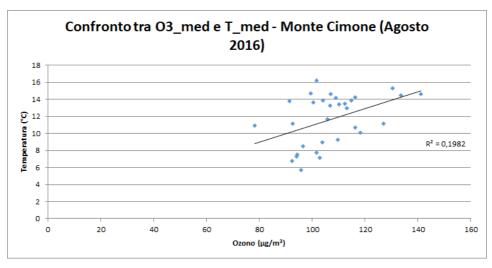


Figura 13.4.3. Correlazione tra temperatura ed ozono – Monte Cimone (Agosto 2016).

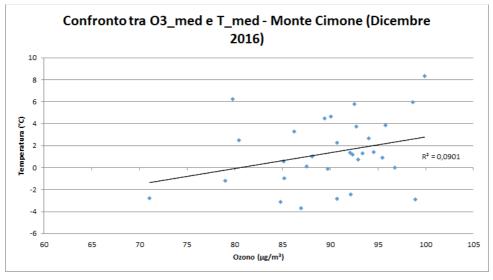


Figura 13.4.4. Correlazione tra temperatura ed ozono – Monte Cimone (Dicembre 2016).

Nell'Agosto 2017 la stazione di Monte Cimone ha registrato, invece, una concentrazione media di ozono tra i 90 μg/m³ e i 140 μg/m³ ed una temperatura media più alta intorno ai 20°C, rispetto a quella dello scorso anno (Figura 13.4.5). Anche nel mese di Dicembre è accaduto lo stesso fenomeno: la concentrazione media

di ozono è stata registrata intorno ai 60 μ g/m³ e i 95 μ g/m³, e la temperatura media ha subito una variazione tra i -7°C e i 4°C (Figura 13.4.6) rispetto al 2016.

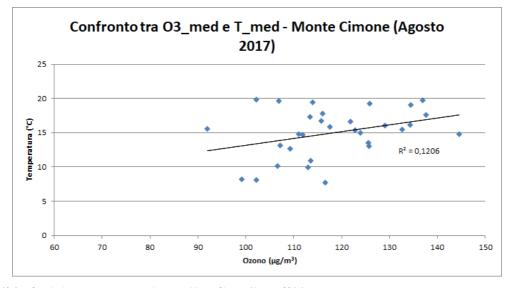


Figura 13.4.5. Correlazione tra temperatura ed ozono - Monte Cimone (Agosto 2017).

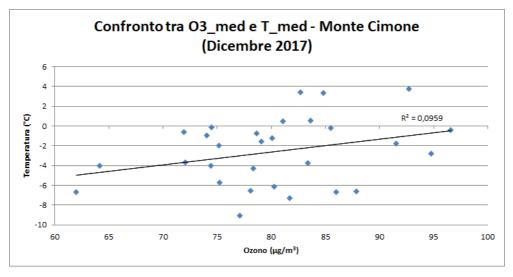


Figura 13.4.6. Correlazione tra temperatura ed ozono – Monte Cimone (Dicembre 2017).

Dai grafici riportati, è visibile una buona correlazione anche se non eccellente, che potrebbe essere dovuta al sopraggiungere di masse d'aria con concentrazioni di ozono diverse, difatti è più accentuata nel periodo invernale quando la cima del monte è interessata dalla presenza di corpi nuvolosi.

Allo stesso modo, è stata analizzata la concentrazione di ozono della stazione Montevergine del 2018, in cui è evidente che la concentrazione media dell'ozono è pari a 135 µg/m³ con una T= 22°C (Figura 13.4.7).

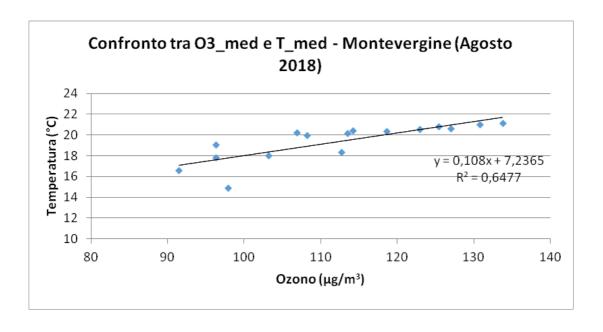


Figura 13.4.7. Correlazione tra temperatura ed ozono – Montevergine (Agosto 2018).

Nella stazione di Montevergine è stata fatta una campagna ad hoc per stimare le concentrazioni di ozono in quota. Dal grafico riportato, è possibile individuare due tipologie di eventi:

- per temperatura basse, l'ozono resta pressocché costante intorno ai 100 μg/m³, cioè la concentrazione media di ozono intorno ai 1000 m come da studi già pubblicati;
- è visibile una relazione diretta tra l'aumento di ozono e l'aumento della temperatura da cui si evince che la componente di aumento dipende dalla forzante meteoclimatica.

E'chiaro, dunque che la variazione dell'ozono dipende dalla variazione della temperatura: sono direttamente proporzionali e all'aumentare della temperatura aumenta la concentrazione dell'ozono nel periodo estivo mentre nel periodo invernale accade il fenomeno opposto.

I valori mensili delle concentrazioni di ozono studiate nei siti considerati descrivono un andamento stagionale ben definito e rappresentativo delle condizioni di fondo della troposfera: infatti l'elevata radiazione solare e le tipiche condizioni meteorologiche, favoriscono la produzione e l'accumulo di inquinanti come l'ozono, che ha caratterizzato un massimo estivo nel mese di Agosto (Figura 13.4.8), come è stato evidenziato nei grafici precedenti ed un minimo invernale, nel mese di Dicembre dove nelle stazioni ad alta quota, il contributo stratosferico al budget dell'ozono in troposfera sembra essere più importante in inverno (Figura 13.4.9).

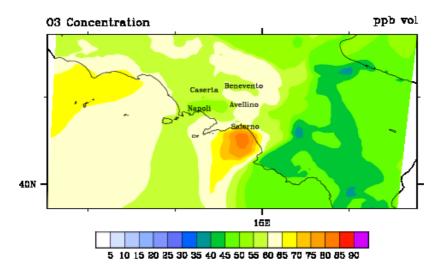


Figura 13.4.8. Esempio di concentrazione di ozono nel periodo estivo.

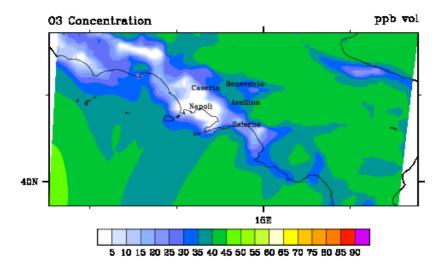


Figura 13.4.9. Esempio di concentrazione di ozono nel periodo invernale.

D'altro canto, assieme ai fenomeni di trasporto su scala sinottica di ozono e dei suoi precursori in troposfera, sono significativi processi associati alla fotochimica in situ. L'accoppiamento fra fenomeni chimici e dinamici in troposfera rappresenta quindi un'interazione fondamentale alla determinazione del massimo di ozono. La variazione stagionale della radiazione solare contribuisce a generare la periodicità annuale (massimo in estate, minimo in inverno) delle temperature massime giornaliere e, attraverso processi di produzione fotochimica, delle concentrazioni di ozono.

Si conferma che mediamente l'ozono aumenti con la temperatura e con la quota (Tabella 13.4.1).

In particolare, considerata la concentrazione di ozono rilevata nella stazione di Montevergine, equazione con

retta, si rileva che a temperatura di 22°C corrispondono concentrazioni di ozono pari a 140 μg/m³.

A riconferma della relazione tra la concentrazione di ozono e la quota delle stazioni in cui è stata effettuata la misurazione sono stati presi in considerazione i dati forniti da ISPRA per una serie di stazioni in quota di diverse regioni d'Italia (Tabella 13.4.2) per l'anno 2018; si è proceduto a correlare il numero di giorni di superamento del valore obiettivo per la protezione della salute [120 mg/m³ da non superarsi più di 25 giorni come media su 3 anni] con le quote a cui tali superamenti sono stati rilevati. E' visibile un incremento dei giorni di superamento del valore obiettivo per la protezione della salute all'aumentare della quota delle stazioni di rilievo (Figura 13.4.10).

Tabella 13.4.1 – Relazione tra l'ozono e la temperatura.

	Temperatura	Ozono
Ariano Irpino	34°C	140 μg/m ₃
Avellino	30°C	100 μg/m3
Monte Cimone	15°C	140 µg/m3
Montevergine	22°C	135 μg/m ₃

Tabella 13.4.2 – Stazioni di alta quota e numero giorni di superamento valore obiettivo per protezione della salute anno 2018 – ISPRA

STATION_CODE	REGIONE	PROVINCIA	DENOMINAZIONE	GG SUPERAMENTO VALORE OBIETTIVO PROTEZIONE SALUTE	ALTITUDINE
IT1812A	LOMBARDIA	Lecco	MOGGIO	95	1192 m
IT1791A	VENETO	Vicenza	ASIAGO - CIMA EKAR	108	1366 m
IT0992A	LAZIO	Frosinone	FONTECHIARI	51	400 m
IT2160A	ABRUZZO	L'Aquila	Arischia	33	800 m
IT1806A	MOLISE	Campobasso	GUARDIAREGIA	69	954 m
IT2276A	CAMPANIA	Avellino	Villa Comunale	76	740 m
IT1191A	PA_TRENTO	Trento	MONTE GAZA	99	1601 m

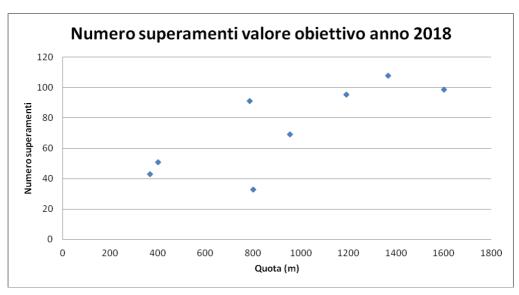


Figura 13.4.10. Correlazione tra numero di giorni di superamento valore obiettivo e quote delle stazioni di rilievo anno 2018- ISPRA.

Pertanto alla luce delle considerazioni finora espresse e dei dati analizzati possiamo asserire che la concentrazione di ozono aumenta con la quota sia a scala regionale che nazionale e che la concentrazione di ozono subisce un significativo incremento a temperature più elevate, effetto più evidente in aree rurali o montane

dove non sono visibili particolari variazioni dei precursori, mentre nelle aree urbane dove i precursori variano in modo più significativo, la correlazione con il fattore temperatura appare meno evidente.

Bibliografia

3B Meteo, 2015, Ozono troposferico: inquinante estivo.

ARPA, (2004), Linee guida per la predisposizione delle reti di monitoraggio della qualità dell'aria in Campania.

Arpa Campania, 2010, Ozono troposferico: stato delle conoscenze.

Baird C. Cann M., 2006 - Chimica Ambientale – Zanichelli.

Cordioli, M., 2015, Analisi spaziali e modellistica per l'inquinamento atmosferico.

CNR - Consiglio Nazionale delle Ricerche, 2003, Risposta dell'emissioni dei composti organici volatili biogenici ai cambiamenti climatici.

Della Marta et al, 2007 - Summer Heat Waves in Western Europe, Their Past Change and Future Projections.

EEA, Environmental statement, 2006.

Fumarola G. (1992) - L'inquinamento atmosferico - Liguori Editore.

IPCC, Climate Change, 2007.

Manuale di meteorologia, Mario Giuliacci, 2016.

Meehl et al, 2004 - Combinations of Natural and Anthropogenic Forcings in Twentieth-Century Climate.

MeteoWeb, 2014, Meteo Didattica.

Ministero dell'Ambiente e della Tutela del Territorio e del Mare, 2010, qualità dell'aria ambiente: Ozono troposferico.

OMM, 2016, Organizzazione metereologica mondiale.

PAA – Direzione generale, 2018.

Rekacewicz, P., 2003, Strategic Plan for the U.S. Climate Change Science Program.

Restelli G. Zanderighi G., 2001 - Chimica dell'atmosfera e dell'inquinamento atmosferico - Edizione Unicopli.

Stull., 1998, Weil, J., & Venkatram, A., 1998, Dispersion in the convective boundary layer.

Worldwide Air Quality, 2015, Ozone AQI: Using concentrations in milligrams or ppb?

Zannetti P. (1990). In Air Pollution Modelling. Computation Mechanics Pub.

SITOGRAFIA

https://www.ecoage.it/effetto-serra.htm.

http://www.atmosferagis.it/index.php/ambiti-di-competenza/modelli-di-dispersione-atmosferica.

http://www.meteoweb.eu/2014/06/meteo-didattica-geopotenziale-scoperta-sconosciuto-parametro-fondamentale-per-realizzazione-ottime-previsioni-meteorologiche/293542/.

http://www.arpa.veneto.it/arpavinforma/indicatori-ambientali/indicatori_ambientali/atmosfera/qualita-dellaria/livelli-diconcentrazione-di-ozono/view.www.arpapuglia.it.

13.5 SERVIZIO OPERATIVO DI PREVISIONE E VALUTAZIONE DELLA QUALITÀ DELL'ARIA LEGATO AI PRODOTTI COPERNICUS CAMS

Stortini M., Amorati R., Giovannini G.

ARPAE Emilia Romagna

RIASSUNTO

In questo articolo viene presentato un sistema di previsione e valutazione operativa della qualità dell'aria. Il servizio utilizza i prodotti di Copernicus-CAMS ed è in grado di fornire quotidianamente mappe e campi numerici di previsione e monitoraggio della qualità dell'aria in ambito italiano. Il sistema è in fase di sviluppo per conto di una collaborazione tra l'Agenzia Spaziale Italiana (ASI) e il Sistema Nazionale Protezione Ambiente (SNPA).

Una sua applicazione ad un episodio di trasporto di dust e un episodio di alti valori estivi di ozono viene descritta.

Parole chiave: inquinamento dell'aria; modelli di previsione dell'inquinamento atmosferico; Italia; CAMS; telerilevamento

ABSTRACT

In this paper an operational forecasting and daily assessment system of air quality is presented. This new system is thought of as a Copernicus-CAMS downstream national service, able to develop and implement a service for air quality forecasting and monitoring in the Italian domain, running every day on the National territory. The system is being development on behalf of a cooperation between Agenzia Spaziale Italiana" (ASI) and Sistema Nazionale Protezione Ambiente" (SNPA).

An episode of summer ozone and dust transport are shown.

Keyword: air pollution; air pollution forecast modeling; Italy; CAMS; remote sensing

Descrizione della suite modellistica

Il progetto "Piattaforma Tematica del Sentinel Collaborative GS per la Qualità dell'Aria", è il primo dei progetti scaturiti dall'accordo tra ISPRA e l'Agenzia Spaziale Italiana (ASI) con lo scopo di sviluppare una piattaforma tematica dedicata alla valutazione, previsione e gestione della qualità dell'aria sull'intero territorio nazionale e di realizzare un servizio intermedio tra i prodotti della piattaforma europea Copernicus Atmosphere Monitoring Service (CAMS) ed i servizi locali prodotti dall'SNPA. Il progetto, sotto la responsabilità di ISPRA e con il coordinamento scientifico di Arpae, prevede la partecipazione di diverse Agenzie regionali.

Il servizio operativo sperimentale, implementato da Arpae su risorse di calcolo messe a disposizione dalla Struttura Idro Meteo Clima (SIMC), permette la valutazione e previsione (fino a 72 ore) della qualità dell'aria su tutto il territorio nazionale con risoluzione temporale oraria e risoluzione spaziale di circa 7x7 km. Il servizio è basato su simulazioni numeriche ottenute dal modello fotochimico di trasporto e dispersione CHIMERE e da dati meteorologici del modello nazionale COSMO.

Il modello fotochimico agisce su diverse scale, innestate una dentro l'altra, dalla scala europea alla scala nazionale, come si vede in Figura 13.5.1.

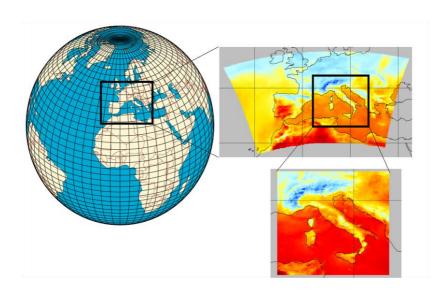


Figura 13.5.1 Domini di integrazione del modello fotochimico

La simulazione a scala europea utilizza le condizioni al contorno fornite dal modello globale CAMS e le emissioni a livello europeo, mentre la simulazione a scala italiana innestata sul dominio europeo utilizza le emissioni

nazionali fornite da ISPRA. Lo schema logico della suite modellistica è rappresentata in Figura 13.5.2

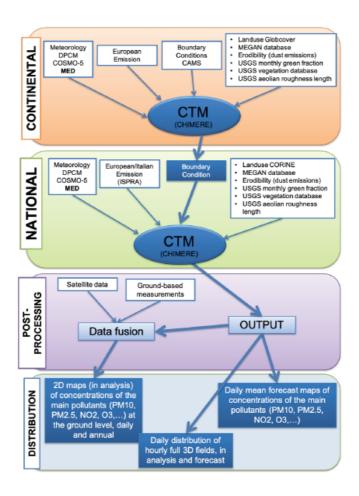


Figura 13.5.2 Schema a blocchi della suite modellistica

Inoltre è stato predisposto un sito web per la visualizzazione delle simulazioni modellistiche a scala nazionale e regionale ed i dati di qualità dell'aria in tempo quasi reale (near-real time) raccolti sul territorio dalle Agenzie regionali e delle province autonome.

Utilizzando la piattaforma open source CKAN è possibile scaricare non solo le mappe giornaliere 2D - in analisi e previsioni - delle principali concentrazioni di inquinanti (PM₁₀, PM_{2,5} NO₂ e O₃), ma anche i campi 3D orari

completi, in analisi e previsione. Attualmente le condizioni al contorno fornite dal modello nazionale sono usate da ARPAE operativamente per le simulazioni sul bacino padano nell'ambito del progetto Life-IP PrePair e per simulazioni ad alta risoluzione sulla regione Emilia-Romagna, da ARPA Piemonte, ARPA Friuli-Venezia-Giulia, ARPA Veneto, ARPA Campania, ARPA Umbria, ARPA Lazio per sperimentarne l'utilizzo nelle proprie catene modellistiche di qualità dell'aria.

La suite modellistica è poi corredata da un tool di verifica (METOPA) e da un modulo per l'elaborazione dei dati da satellite.

METOPA è un tool di verifica scritto in codice R in grado di calcolare indicatori statistici continui come BIAS e RMSE e dicotomici come FAR e POD, utili nel caso di valutare le performance dei modelli per il confronto con soglie definite dall'utente.

Il modulo di elaborazione dati da satellite elabora i dati del Sentinel-3 SYN livello 2, in particolare l'AOD a 550 nm e stima le concentrazioni al suolo di PM10 attraverso una relazione lineare di guesto tipo:

$$PM10sat = \frac{A * \left(\frac{AODsat}{HPBL}\right) + B}{f(RH)}$$

$$con f(RH) = \frac{1}{1 - \left(\frac{1}{RH}\right)}$$

dove A e B sono coefficienti lineari, HPBL è l'altezza di rimescolamento e f(RH) rappresenta il fattore di crescita dell'aerosol dovuto all'umidità relativa.

Se il dominio di interesse è più grande del granule di AOD a disposizione il tool prevede la possibilità di utilizzare più granule e nel caso in cui ci siano zone coperte da nubi viene utilizzata una procedura di riempimento utilizzando l'algoritmo DINEOF.

Alcune applicazioni

Episodio di trasporto di dust dal lago di Aral

A fine marzo 2020 si è verificato un fenomeno di trasporto di polveri a grande scala proveniente dall'est Europa orientale come evidenziato dalle immagini elaborate del satellite ESA Sentinel-3 che evidenzia per il 24 marzo la formazione di un "dust-storm" nella zona del lago di Aral (est Europa, zona del Mar Caspio), da diversi anni ormai del tutto prosciugato. Successivamente un flusso proveniente da Est ha investito l'Europa centrale e quindi il centro-nord della penisola italiana.

Tale fenomeno è stato ben riprodotto dalle simulazioni modellistiche come evidenziato in Figura 13.5.3 che mostra le concentrazioni misurate il 28 marzo e le previsioni a 72 ore prodotte il 26 marzo: è ben evidente sia il trasporto di dust con valori alti di PM₁₀ in Bosnia-Erzegovina e nell'alto Adriatico sia la divisione in due dell'Italia con concentrazioni basse al centro-sud ed alte al centro-nord.

Episodio di elevati valori di ozono di fine luglio 2020

A fine luglio si è verificato un episodio di inquinamento da ozono in particolare nella Pianura Padana. Le figure seguenti mostrano le previsioni a 72 ore, prodotte il 26 luglio ad inizio episodio ed il 1 agosto a fine episodio.

L'evoluzione dell'episodio concluso come previsto il 3 agosto è ben illustrato in Figura 13.5.5 dove sono mostrate le concentrazioni orarie di ozono (dati near real time) sulla Pianura Padana

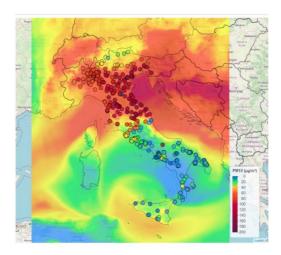


Figura 13.5.3 Concentrazioni di PM₁₀ previste il 28 marzo a 72 ore e misurate dalla rete di monitoraggio

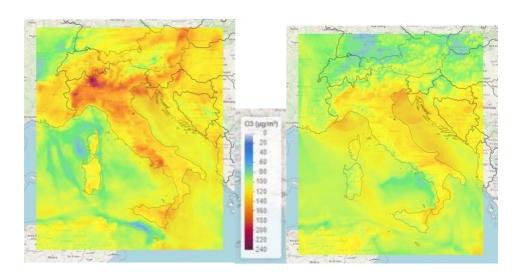


Figura 13.5.4. Livelli massimi orari delle concentrazioni di ozono in Italia, previste per il 28 luglio 2020, prodotte il 26 (a sinistra) e previste per il 3 agosto 2020, prodotte il 1 agosto.

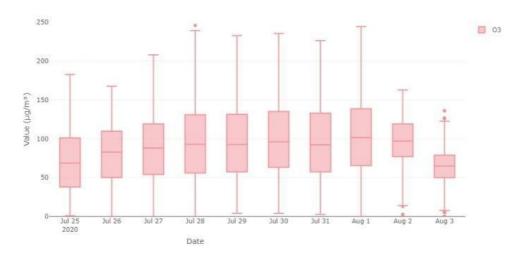


Figura 13.5.5. Box plot delle concentrazioni orarie di ozono (near real time) in Pianura Padana

Conclusioni

Il servizio sperimentale di modellistica nazionale legato ai prodotti Copernicus CAMS è attualmente operativo e fornisce tutti i giorni condizioni al contorno orarie utili ai modelli di qualità dell'aria ad alta risoluzione su scala regionale a diverse agenzie regionali. Nella suite modellistica inoltre è implementato un algoritmo per la stima della concentrazione media giornaliera di particolato utilizzando i dati di AOD da satellite Sentinel 3 ed un tool di verifica. Il servizio sarà ulteriormente

sviluppato nell'ambito del programma nazionale Copernicus Mirror Programme.

Ringraziamenti

Si ringrazia l'Agenzia Spaziale Italiana (ASI), Istituto Superiore per la Protezione e Ricerca Ambientale (ISPRA), Arpae Emilia Romagna, Arpa Piemonte, Arpa Umbria, Arpav Veneto, Arpa Friuli Venezia Giulia, Arpa Lazio, Arpac Campania.

Bibliografia

M.Stortini, B.Arvani, M.Deserti (2020). Operational Forecast and Daily Assessment of the Air Quality in Italy: A Copernicus-CAMS Downstream Service, Atmosphere 2020, 11(5), 447; https://doi.org/10.3390/atmos11050447

B.Arvani, (2016). Seasonal monitoring and estimation of regional aerosol distribution over Po valley, northern Italy, using a high-resolution MAIAC product. Atmospheric environment, 141, 106-121

G.Cattani, M. Stortini (2020). Le previsioni SNPA dell'ozono utilizzando i servizi di Copernicus (http://snpambiente.it/2020/08/10/le-previsioni-snpa-dellozono-utilizzando-i-servizi-di-copernicus)

L. Torregiani, A. Trentini, M.Stortini, V.Poluzzi, M.Ballareni, B.Arvani, T.Bacci (2020) Un episodio di dust storm dal Caspio al Nord Italia . Ecoscienza 3/2020.

14. MONITORAGGIO DEGLI INQUINANTI NON REGOLAMENTATI

14.1 OSSERVAZIONI SULLE CONCENTRAZIONI DI DIOSSINE E FURANI MISURATE DURANTE SITUAZIONI EMERGENZIALI QUALI GLI INCENDI

Cuccia E, Gianelle V, Dal Santo U, Corbella L, Colombi C, Algieri A, Grillo M, Ferrari A ARPA LOMBARDIA

RIASSUNTO

Nell'ambito delle attività condotte in emergenza, Arpa Lombardia effettua il monitoraggio della qualità dell'aria durante e successivamente ad incendi della durata di più di sei ore, con la finalità di valutare l'impatto in aree abitate interessate dalla ricaduta dei fumi dell'incendio. La scelta di campionare solo nei casi di incendi di durata superiore alle sei ore è determinata dal fatto che solo in situazione di incendio prolungato sono riscontrabili livelli di inquinanti che si discostano dal fondo.

Nelle varie situazioni sono stati monitorati diversi inquinanti tra cui le diossine (PCDD) ed i furani (PCDF). attraverso il campionamento con sistemi ad alto volume. Tali microinquinanti possono essere considerati come traccianti dei fumi dell'incendio in quanto la loro formazione è favorita nelle combustioni incontrollate di materiale solido di natura eterogenea. Il problema della valutazione dell'impatto sulla qualità dell'aria dei PCDD/DF risulta molto complesso in quanto la concentrazione di questi microinquinanti è molto variabile, dipendendo da numerosi fattori quali, ad esempio, le condizioni meteorologiche e l'orografia della zona, oltre alla tipologia e la quantità dei materiali bruciati. Altri elementi che possono influire sulla dispersione dei fumi e sulle caratteristiche chimico fisiche sono sia le modalità operative attuate dai Vigili del Fuoco per lo spegnimento dell'incendio, sia se l'incendio avviene in campo libero o all'interno di un ambiente chiuso. Inoltre, anche la distanza tra l'incendio e il punto di monitoraggio è un parametro fondamentale ai fini della rilevazione degli inquinanti.

Per effettuare una prima valutazione delle emissioni relative ad un incendio, sono state considerate le concentrazioni di PCDD/DF misurate in 45 incendi avvenuti tra il 2013 ed il 2019. È stata anche considerata

la concentrazione totale dell'insieme dei congeneri, espressa in termini di tossicità equivalente alla 2,3,7,8, TetraCloroDibenzoDiossina tenuto conto dei fattori di tossicità indicati dall'Organizzazione Mondiale della Sanità (OMS) nel 2005. Gli incendi considerati presentano concentrazioni totali equivalenti di PCDD/DF molto diverse tra loro, ovvero nell'intervallo tra 1 e 100000 fgTEQ/m³. L'OMS definisce i 300 fgTEQ/m³, di presenza continuativa, quale valore indicativo di una situazione di inquinamento in atto. Detto riferimento è fissato per prevenire l'accumulo dei PCDD/F nell'ambiente (matrice suolo) e la loro veicolazione nella catena alimentare. Nel caso di un incendio il valore riscontrato è relativo ad un evento "one shoot" di durata oraria comunque limitata.

Anche le concentrazioni dei singoli PCDD/DF sono risultate molto diverse tra un incendio e l'altro, sia in termini assoluti sia in termini relativi. Sono stati quindi costruiti i profili emissivi degli incendi considerati, ovvero le concentrazioni di PCDD e PCDF relative rispetto alla somma totale di essi, e questi sono stati suddivisi in più gruppi, simili per concentrazioni assolute rilevate, nel tentativo di associare tali classi alle caratteristiche principali di un incendio.

Cercando un approccio complementare, gli incendi sono stati divisi per categorie a partire dalle loro caratteristiche principali sia per valutare eventuali similitudini tra i profili emissivi, sia per poter effettuare uno studio delle caratteristiche che più influiscono sulla concentrazione totale equivalente.

Allo scopo di tenere in considerazione tutte le fasi di un incendio, sono state valutate le concentrazioni rilevate durante tutti i giorni interessati dall'incendio, fino al completo spegnimento. Per confronto i dati raccolti durante le emergenze sono stati confrontati con quelli

raccolti in alcune campagne effettuate in assenza di incendi rilevanti.

ABSTRACT

In the frame of the emergency activities, Arpa Lombardia monitors the air quality during and after fires that last more than six hours, with the aim of analysing the impact on inhabited areas affected by the fallout of the fumes.

The choice to sample only fires longer than six hours is determined by the fact that only in this situation it is possible to find levels of pollutants greater than the background level. Different pollutants have been monitored, including dioxins (PCDD) and furans (PCDF), through high volume samplers. These micropollutants can be considered as tracers of fire fumes because their formation is favoured in the uncontrolled combustion of heterogeneous solid material. In general, the problem of assessing the impact on the air quality of PCDD / DF is very complex as the concentrations of these micropollutants is highly variable, depending on numerous factors such as, for example, the weather conditions and the orography of the area, in addition to the type and quantity of burnt materials. Other elements that can influence the dispersion of the fumes and their quality are the operating procedures implemented by the fire fighters and whether the fire occurs in a free field or inside a closed environment. Furthermore, the distance between the fire and the monitoring point is also a fundamental parameter for dispersing pollutants.

To carry out a first assessment of the fire emissions, we considered the concentrations of PCDD/DF measured in 45 fires occurred between 2013 and 2019. The total concentration of all congeners was also considered, expressed in terms of toxicity equivalent to that of 2,3,7,8, TetraCloroDibenzoDioxin, taking the toxicity equivalency factors indicated by the World Health Organization (OMS) in 2005 into account. The fumes of the fires considered presented erratic total equivalent concentrations of PCDD/DF, i.e. in the range between 1 and 100000 fgTEQ/m³. This reference is set to prevent the accumulation of PCDD/DF in the environment (soil) and their transmission on food chain. During a fire the

values found are related to "a one shot" event of hourly duration, however limited.

The concentrations of the individual PCDD/DFs were also very different between different fires, both in absolute and in relative terms. To assess the presence or otherwise of common characteristics between the fires from the point of view of the dioxins and furans emitted, the fire profiles were constructed, i.e. the concentrations of PCDD and PCDF relative to the total sum of them. The profiles obtained were divided into several categories, similar in terms of measured absolute concentrations, in view of associating these categories with the main characteristics of a fire.

As a complementary approach, we chose to divide the fires into groups based on the fires' behaviour characteristics to evaluate any equality between the emission profiles and to analyse the characteristics that most influence the total equivalent concentration.

In order to take all the phases of a fire into account, the concentrations detected during all the days affected by the fire, until the complete extinction, were evaluated. For comparison, the data collected during emergencies were related with those collected in other campaigns in the absence of significant fires.

Parole chiave: diossine, furani, incendi, emergenze

Introduzione

Da diversi anni ARPA Lombardia effettua, in occasione di incendi di diversa natura e durata, campionamenti in aria di sostanze che possono essere considerate "traccianti" dell'incendio in esame.

Le sostanze ricercate nel corso degli anni con regolarità sono diossine, furani e IPA; tali sostanze necessitano lunghi tempi di campionamento e soprattutto di analisi, incompatibili con la gestione immediata dell'emergenza in corso, ma sono in grado di consentire valutazioni a posteriori in merito alla dinamica e alla evoluzione dell'incendio. Diossine, furani e IPA sono sostanze che si accumulano nei tessuti degli organismi viventi (fenomeno di bioaccumulo) e sono note per i loro effetti

tossici e per la loro cancerogenicità sull'uomo e gli animali. Arpa Lombardia dispone di un archivio contenente dati raccolti in situazioni di emergenza, che seppur non pienamente omogenei tra loro, costituiscono un'utile base conoscitiva per il monitoraggio dei microinquinanti durante eventi emergenziali, quali gli incendi.

Lo scopo del presente lavoro è quello di valutare in maniera organica i dati storici relativi alle misure effettuate durante gli incendi nei quali ARPA ha eseguito tali valutazioni, per pervenire alla definizione di scenari tipo o di qualche forma di correlazione "predittiva" che possa essere utilizzata per avere indicazione già durante le fasi acute dell'emergenza, senza dover necessariamente attendere l'esito delle lunghe analisi dei microinquinanti sui campioni che si andranno a raccogliere e per fornire indicazioni di massima circa la possibile evoluzione dell'evento.

Sulla base di tutte le considerazioni precedenti sono stati scelti quali inquinanti "traccianti" tipici di un incendio, così da distinguere il suo impatto da altre fonti di inquinamento, la classe delle diossine e dei furani (PCDD-DF). Ciò non esclude ovviamente, in casi specifici, l'opportunità di monitoraggio anche di altre sostanze.

Metodi

I campionamenti di diossine in aria vengono effettuati in occasione di incendi presso attività produttive e/o depositi di rifiuti per i quali è prevista una durata approssimativa dell'evento superiore alle 6 h. L'individuazione di tale durata minima di riferimento deriva principalmente dal fatto che solo incendi di lunga durata generalmente consentono il campionamento di un sufficiente quantitativo di particolato da sottoporre all'analisi, anche considerando i tempi di spostamento e di installazione del campionatore. Durate inferiori dell'incendio non consentirebbero invece alcuna rilevazione utile.

Il campionamento viene effettuato mediante campionatori ad alto volume, con flussi dell'ordine di 200

litri/minuto o maggiori, ovvero dell'ordine di 10 m³/h o più. Si tratta quindi di flussi di prelievo di un ordine di grandezza superiore a quelli impiegati dai più tradizionali sistemi di prelievo utilizzati nelle Reti di Rilevamento della Qualità dell'Aria (RRQA) per il monitoraggio del particolato aerodisperso. Inoltre. durante campionamento non viene effettuata alcuna particolare selezione del particolato aerodisperso, cioè i campionatori ad alto volume utilizzati non sono dotati di selettore per la frazione PM₁₀ o PM_{2.5}. Tali sistemi di prelievo permettono di raccogliere quantità di particolato dell'ordine della decina di milligrammi sufficiente, con le tecniche analitiche in uso, a superarne i limiti di rilevabilità (dell'ordine di 10 fg/m³ per i vari congeneri dei PCCD-DF). Il campione di polvere è raccolto su filtri a membrana (in microfibre di vetro o in fibre di guarzo) che presentano, per la loro microstruttura, adeguata capacità e basse perdite di carico rispetto ad altre matrici comuni.

In serie al filtro a membrana, i sistemi ad alto volume utilizzati sono dotati di un alloggiamento ove viene posta una spugna cilindrica di poliuretano (PUF) che assorbe i PCDD-DF che sfuggono al filtro poiché non presenti in fase solida o liquida; le analisi dei PCDD-DF sono state effettuate in questo lavoro sul campione complessivo (filtro e PUF) così da avere i PCDD-DF aerodispersi totali, cioè la somma dei PCDD/DF in fase particolata e in fase gassosa. Nella maggior parte delle situazioni trattate il primo campionamento ha una durata di circa 12 ore, con volumi campionati di circa 150 m³, mentre i campionamenti successivi sono realizzati con durata di 24 ore.

La scelta del sito di prelievo è stata effettuata laddove possibile, secondo i seguenti criteri: in area abitata, prevalentemente sottovento ai fumi, in un'area corrispondente ad un recettore sensibile (es. scuola, ospedale, casa di riposo, etc.), in una proprietà pubblica (scuola pubblica, area di proprietà comunale, caserma dei carabinieri, etc.) con disponibilità di alimentazione elettrica, in un sito sicuro sia per gli operatori che per la strumentazione. L'ordine di priorità è conseguenza degli obiettivi del monitoraggio precedentemente esposti.

Il fatto di non poter disporre a priori di siti di campionamento confrontabili non permette sempre un confronto diretto delle concentrazioni assolute rilevate nelle diverse situazioni indagate; di questo aspetto si è tenuto conto nelle elaborazioni successive. Tuttavia, i dati consentono un confronto delle concentrazioni relative osservate, allo scopo di poter "pesare" il singolo evento in relazione agli altri.

Nella Tabella 14.1.1 sono riportatati i singoli composti appartenenti alla famiglia PCDD/DF con i relativi fattori di tossicità equivalente, così come rispettivamente desunti da I-TEF NATO/CCMS "International Toxicity Equivalency Factor (I-TEF) method of risk assessment for complex mixtures of dioxin and related compounds, 186, 1988" e da "The 2005 World Health Organization

Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds".

In questo modo è possibile esprime la concentrazione totale dei PCDD-DF come sommatoria delle concentrazioni assolute dei diversi congeneri, ciascuna moltiplicata per il relativo TEF:

$$C_{TEQ} = \sum_{i} C_i \cdot TEF_i$$

dove C_{-j} è la concentrazione rilevata dell'i-esimo congenere e TEF_{-j} il relativo fattore di tossicità equivalente.

Tabella 14.1. 1 – Composti appartenenti alla famiglia PCDD/DF con i relativi fattori di tossicità equivalente.

CAS NR ⁶	PCCD/DF	IUPAC NAME	I-TEF	TEF OMS
1746-01-6	2,3,7,8 TCDD	2,3,7,8-Tetrachlorodibenzo-p-dioxin	1	1
40321-76-	1,2,3,7,8 PeCDD	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.5	1
39227-28-	1,2,3,4,7,8 HxCDD	1,2,3,4,7,8-Hexachlorodibenzodioxin	0.1	0.1
57653-85-	1,2,3,6,7,8 HxCDD	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.1	0.1
19408-74-	1,2,3,7,8,9 HxCDD	1,2,3,7,8,9- Hexachlorodibenzo-p-dioxin	0.1	0.1
35822-46-	1,2,3,4,6,7,8	1,2,3,4,6,7,8-Heptadichlorodibenzo-p-	0.01	0.01
3268-87-9	OCDD	1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	0.001	0.0003
51207-31-	2,3,7,8 TCDF	2,3,7,8-Tetradichlorodibenzofuran	0.1	0.1
57117-41-	1,2,3,7,8 PeCDF	1,2,3,7,8-Pentadichlorodibenzofuran	0.05	0.03
57117-31-	2,3,4,7,8 PeCDF	2,3,4,7,8-Pentachlorodibenzofuran	0.5	0.3
70648-26-	1,2,3,4,7,8 HxCDF	1,2,3,4,7,8-Hexachlorodibenzofuran	0.1	0.1
57117-44-	1,2,3,6,7,8 HxCDF	1,2,3,6,7,8- Hexachlorodibenzofuran	0.1	0.1
60851-34-	2,3,4,6,7,8 HxCDF	2,3,4,6,7,8- Hexachlorodibenzofuran	0.1	0.1
72918-21-	1,2,3,7,8,9 HxCDF	1,2,3,7,8,9- Hexachlorodibenzofuran	0.1	0.1
67562-39-	1,2,3,4,6,7,8	1,2,3,4,6,7,8- Hexachlorodibenzofuran	0.01	0.01
55673-89-	1,2,3,4,7,8,9	1,2,3,4,7,8,9-Heptadichlorodibenzofuran	0.01	0.01
39001-02-	OCDF	1,2,3,4,6,7,8,9-Octachlorodibenzofuran	0.001	0.0003
	·	· · · · · · · · · · · · · · · · · · ·		·

⁶ II CAS NR è il numero identificativo univoco di ogni sostanza attribuito dal Chemical Abstract Service, divisione della American Chemical Society

Discussione

Poiché per i PCDD-DF non è previsto un limite di legge, quale primo riferimento si possono considerare le concentrazioni di PCDD-DF di fondo ovvero determinate in condizioni non alterate; data la complessità e l'onerosità delle analisi di PCDD-DF, i dati storici per questa classe di inquinanti non sono molto numerosi,

ovvero non sono estesi a tutto il territorio lombardo né fanno riferimento a serie temporali lunghe. Tuttavia, dai dati presenti negli archivi si ritiene si possano comunque trarre alcune utili considerazioni; nella Tabella 14.1.2 sottostante si riportano le concentrazioni di PCDD-DF rilevate nel tempo in alcune località lombarde in occasione di specifici progetti di monitoraggio della qualità dell'aria.

Tabella 14.1.2 – Concentrazioni di PCDD-DF rilevate nel tempo in alcune località lombarde in occasione di specifici progetti di monitoraggio della qualità dell'aria.

Località	Provincia	Periodo		PCDD-DF media	
		dal	al	(pgTEQ/m³)	
Bottanuco	BG	20 dicembre 2016	28 febbraio 2017	0.075	
Filago	BG	20 dicembre 2016	28 febbraio 2017	0.030	
Madone	BG	20 dicembre 2016	28 febbraio 2017	0.046	
Bergamo	BG	20 dicembre 2016	28 febbraio 2017	0.029	
Brescia Via Cantore	BS	2 dicembre 2013	24 marzo 2014	0.021	
Brescia Via Cantore	BS	28 dicembre 2015	24 febbraio 2016	0.117	
Brescia Circoscrizione	BS	2 dicembre 2013	24 marzo 2014	0.035	
Brescia Villaggio Sereno	BS	2 dicembre 2013	24 marzo 2014	0.028	
Milano Via Pascal	MI	27 luglio 2013	16 agosto 2013	0.010	
Milano Via Pascal	MI	10 febbraio 2014	10 marzo 2014	0.034	
Dorno	PV	22 dicembre 2016	7 febbraio 2017	0.035	
Galliavola	PV	2 dicembre 2017	7 febbraio 2017	0.012	
Parona	PV	22 luglio 2013	16 agosto 2013	0.056	
Parona	PV	10 febbraio 2014	10 marzo 2014	< 0.060	
Pieve Albignola	PV	22 dicembre 2016	31 dicembre 2016	0.027	
Pieve Albignola	PV	5 febbraio 2017	25 febbraio 2017	0.014	

Dalla Tabella 14.1.2 risulta che, in condizioni di qualità dell'aria non alterata da eventi emissivi straordinari, la concentrazione di PCDD-DF è generalmente inferiore 0,10 pgTEQ/m³, valore che possiamo quindi considerare come concentrazione di riferimento tipica in ambito urbano.

L'OMS nel suo documento "Air Quality Guide Lines for Europe" non suggerisce alcun valore limite per l'aria ambiente, dal momento che l'esposizione della popolazione a PCDD-DF per inalazione diretta

costituisce solo una piccola percentuale - generalmente inferiore al 5% - di quanto l'uomo assume normalmente ogni giorno attraverso il cibo. L'OMS individua solo un valore di 0,30 pgTEQ/m³ (300 fgTEQ/m³) come indicativo della presenza di una sorgente locale che necessita di essere individuata e controllata; tale valore non è quindi rilevante ai fini degli effetti sanitari diretti da inalazione, ma al fine di evitare la dispersione prolungata di questi inquinanti nell'ambiente e da qui, nel tempo, attraverso il meccanismo del bio-accumulo che va ad alterare la catena alimentare, l'esposizione dell'uomo. Nel caso

degli incendi la sorgente è nota e, generalmente, superata la fase acuta, nell'arco delle 24/48 ore successive, i valori dei contaminanti atmosferici rientrano nei livelli normalmente registrati nelle zone monitorate nel medesimo periodo dell'anno.

Pertanto, una concentrazione di PCDD-DF inferiore a 0,30 pgTEQ/m³ (300 fgTEQ/m³) è stata considerata quale riferimento per il rientro ad una condizione indicativa di un impatto non significativo sulla qualità dell'aria di un incendio, fatto salvo ovviamente eventuali altri specifici indicatori.

In questo lavoro sono stati analizzati 45 incendi verificatisi tra il 2013 ed il 2019 in Lombardia. Sono state dunque prese in considerazione le concentrazioni delle diverse diossine (PCDD) e furani (PCDF) rilevati, espressi come concentrazione totale tra la fase gassosa e le fasi solida e liquida. Per ogni incendio è stata anche calcolata la concentrazione totale dell'insieme dei

congeneri, espressa in termini di tossicità equivalente alla 2,3,7,8, TetraCloroDibenzoDiossina (2,3,7,8 TCDDdetta anche "diossina di Seveso") tenuto conto dei fattori di tossicità indicati dall'Organizzazione Mondiale della Sanità nel 2005 (TEF OMS 2005). Per il calcolo della tossicità equivalente, in presenza di valori inferiori al limite di rilevabilità, è stata utilizzata la metà di tale valore. Gli incendi presentano concentrazioni totali espresse in termini di tossicità equivalente di PCDD/DF molto diverse tra loro (tra 1 e 100000 fgTEQ/m³) (Figura 14.1.1). Sono emersi 19 incendi con un valore di concentrazione di diossine e furani totali maggiore del valore di riferimento di 0,30 pgTEQ/m³ (300 fgTEQ/m³) individuato dall'OMS quale indicativo di una situazione di inquinamento in atto e guindi meritorio approfondimento.

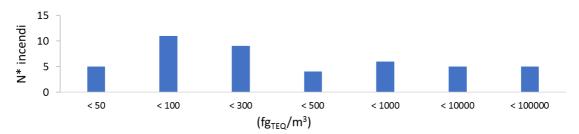


Figura 14.1.1. Distribuzione del numero degli incendi considerati in 7 classi di concentrazione.

Anche le concentrazioni dei singoli composti di diossine e furani sono molto diverse tra gli incendi, sia in termini di concentrazioni assolute, sia in termini di concentrazioni relative. Per valutare la presenza o meno di caratteristiche comuni tra gli incendi dal punto di vista delle diossine e furani emessi, sono stati costruiti i profili degli incendi considerati, ovvero le concentrazioni relative di PCDD e PCDF rispetto alla somma totale di essi. Nella costruzione dei profili sono stati considerati solo le diossine ed i furani presenti con concentrazione maggiori del limite di rilevabilità.

Sono stati esaminati inizialmente solo i dati raccolti durante il primo giorno dell'incendio e, come prima analisi, gli incendi sono stati divisi per categorie a partire dalla tipologia di materiale combusto.

Sono state individuate 5 classi di materiale combusto denominate Carta e Imballaggi, Plastica, Materiale vario, Attività e Materiali Ferrosi (Figura 14.1.2). Purtroppo, non è sempre stato possibile essere precisi nell'individuazione esatta del materiale bruciato durante gli incendi, soprattutto perché nella maggior parte dei casi non brucia una sola tipologia di materiale. Nella

categoria "Attività" rientrano gli incendi che non coinvolgono rifiuti o altra specifica tipologia di materiale.

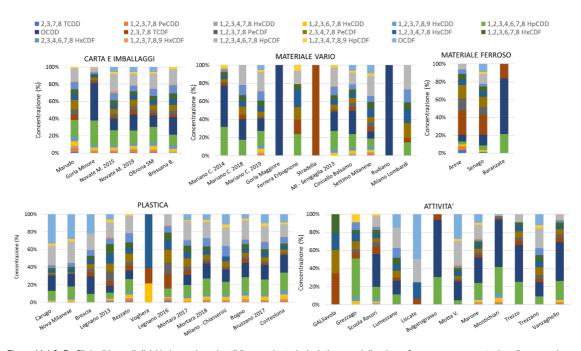


Figura 14.1.2. Profili degli incendi divisi in base al combustibile prevalente (calcolati per ogni diossina e furano come percentuale sulla somma).

Non sembra essere presente uno specifico profilo comune all'interno delle categorie di materiale combusto, tuttavia si osservano alcune caratteristiche simili. La categoria che racchiude gli incendi che coinvolgono materiale plastico mostra principalmente profili che contengono tutte le diossine ed i furani ed in particolare sembra presente costantemente l'OCDF.

Nelle combustioni della carta sembrano invece dominanti le diossine 1,2,3,4,6,7,8 HpCDD e OCDD. Si nota inoltre che quando si ha materiale ferroso o metallico, la presenza di oli lubrificanti insieme all'effetto catalizzatore dei metalli produce specifiche diossine, in particolare la 2,3,7,8, TCDF.

La presenza del furano 2,3,7,8 TCDF è riscontrabile anche nei profili di alcuni incendi inseriti in altre categorie. Questo suggerisce la presenza di materiale ferroso anche in incendi dove il materiale combusto prevalente era di altra natura.

Sulla base di queste considerazioni gli incendi considerati sono stati riclassificati in categorie simili a partire dai loro profili piuttosto che dalle informazioni raccolte a priori. In questo modo sono state identificate 6 categorie di profili simili tra loro (Figura 14.1.3).

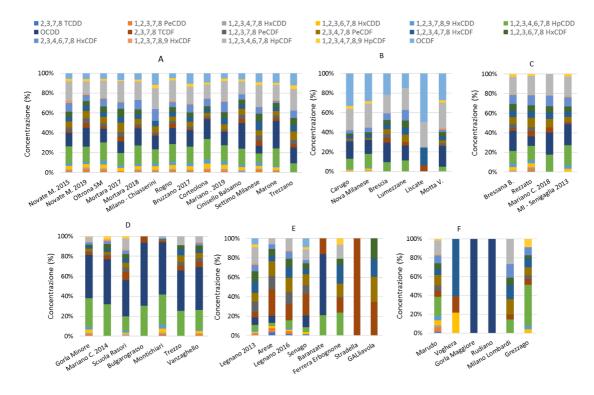


Figura 14.1.3. Profili degli incendi divisi in base alle similitudini dei rapporti tra le singole diossine e furani (calcolati per ogni diossina e furano come percentuale sulla somma).

La classe denominata A raccoglie gli incendi durante i quali si ha emissione della maggior parte delle diossine e furani, in particolare 1,2,3,4,6,7,8 HpCDD e OCDD come diossine e 1,2,3,4,6,7,8 HpCDF come furano. La categoria B sembra caratterizzata dal furano OCDF, insieme a OCDD e 1,2,3,4,6,7,8 HpCDF. La terza classe C è caratterizzata dall'emissione di 1,2,3,4,6,7,8 HpCDD e OCDD come diossine e 1,2,3,4,6,7,8 HpCDF, mentre la classe D è caratterizzata dall'emissione di quasi solo diossine (in particolare 1,2,3,4,6,7,8 HpCDD e OCDD). La categoria E è caratterizzata dalla presenza del furano 2,3,7,8, TCDF, mentre la categoria F raccoglie gli incendi che non rientrano nelle categorie precedenti. Quello che emerge è che nel profilo della categoria A sono presenti

tutte le diossine ed i furani, mentre nei profili delle categorie successive queste spariscono ad una ad una fino alla classe F che contiene in prevalenza incendi con profili caratterizzati da una o poche diossine o furani. Nei profili delle classi A, B e C sono presenti sia le diossine che i furani, mentre nei profili delle successive classi sono presenti quasi esclusivamente diossine.

I profili dei 45 incendi sono stati sottoposti ad analisi a cluster gerarchica (indice di similarità R² e rappresentante del cluster centroide) ed il dendrogramma ottenuto è mostrato in Figura 14.1.4. Si noti come la suddivisione degli incendi in gruppi caratterizzati da profili simili effettuata in precedenza sia confermata dall'analisi a cluster.

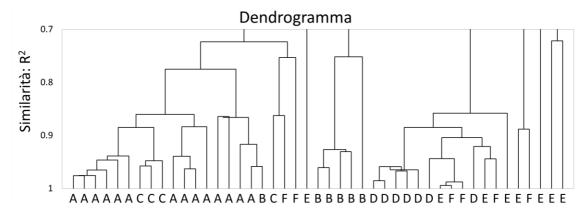


Figura 14.1.4. Dendrogramma ottenuto attraverso analisi a cluster di tipo gerarchico.

Allo scopo di valutare non solo i profili degli incendi ma anche la concentrazione totale equivalente di PCDD/DF, in Figura 14.1.5 è mostrata la distribuzione in numero degli incendi in 7 diverse classi di concentrazione totale equivalente di PCDD/DF per le diverse categorie di materiale combusto individuate. Si nota come gli incendi in cui sono coinvolti materiali in plastica ed in carta sono distribuiti nelle classi di concentrazione superiori a 300 fgTEQ/m³, mentre gli incendi appartenenti alla categoria "Attività" presentino in prevalenza concentrazioni totali inferiori a 300 fgTEQ/m³, fatto salvo per due incendi molto rilevanti quali Marudo (filati) e Montichiari (falegnameria) nei quali sono andate a fuoco diverse decine di m³ di materiale. In particolare, si nota come

questi due incendi abbiamo valori di TEQ elevati e confrontabili con gli incendi in cui è bruciata prevalentemente plastica, ma i loro profili sono rispettivamente nelle categorie D ed F e quindi confrontabili con quelli di incendi aventi la stessa tipologia di materiale bruciato.

Anche gli incendi categorizzati come materiale vario presentano in prevalenza concentrazioni totali inferiori a 300 fgTEQ/m³, fatto salvo alcuni casi dove è possibile che fosse presente materiale plastico.

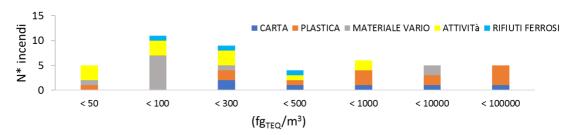


Figura 14.1.5. Distribuzione del numero degli incendi considerati in 7 classi di concentrazione, divisi per materiale combusto.

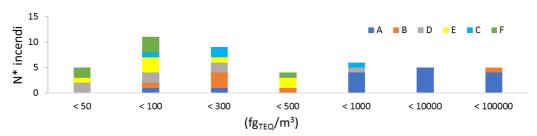


Figura 14.1.6. Distribuzione del numero degli incendi considerati in 7 classi di concentrazione divisi per categorie di profili.

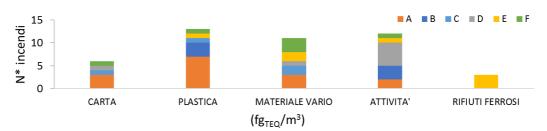


Figura 14.1.7. Confronto tra le classi di profili simili e le tipologie di materiale combustibile.

Nuovamente è stata costruita la distribuzione in numero delle concentrazioni totali equivalenti separata per categorie di profili simili (Figura 14.1.6); si nota come gli incendi della categoria A, ovvero la categoria che presenta tutte le diossine e furani, sia quella che presenta le maggiori concentrazioni totali equivalenti. In Figura 14.1.7 sono mostrate le classi di profili simili che riscontriamo nelle diverse categorie di combustibile allo scopo di evidenziare una possibile associazione tra categorie di profili simili ai gruppi di incendi accomunati dal materiale combusto. Non sembra esserci evidenza di un'associazione diretta tra le due categorie; la tipologia di materiale combusto non è quindi l'unico parametro da cui dipende la concentrazione delle diossine e dei furani emessi.

Non sono purtroppo note esattamente le caratteristiche dei luoghi in cui si sono sviluppati gli incendi (campo aperto, campo chiuso), ma sulla base degli elementi raccolti è emerso che non sembra esserci un legame tra le categorie di profili e la configurazione del luogo dell'incendio.

In Figura 14.1.8 è mostrata la distribuzione del numero degli incendi considerati in 7 classi di concentrazione, espressa in fgTEQ/m₃, suddivisi per numero di campioni raccolti in successione quale indicatore della durata dell'incendio. Si osserva che le concentrazioni maggiori corrispondono tendenzialmente a incendi nei quali si sono raccolti più campioni, ovvero a eventi di maggior durata.

Questo porta a pensare ad una possibile correlazione tra la massa di materiale bruciato e la concentrazione totale equivalente prodotta, come già avevano portato ad ipotizzare gli incendi Marudo e Montichiari. La correlazione tuttavia viene alterata dalle condizioni meteorologiche e in particolare dalla presenza di precipitazioni o di un differente regime anemologico durante l'incendio. Essendo il numero degli eventi fortunatamente limitato, con la base di dati a disposizione la disgregazione ulteriore degli eventi sulla base delle condizioni meteorologiche non consentirebbe ulteriori considerazioni solide.

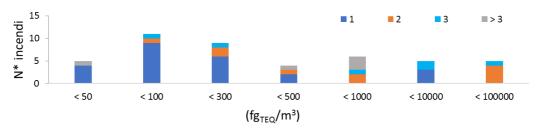


Figura 14.1.8. Distribuzione del numero degli incendi considerati in 7 classi di concentrazione divisi per numero di campioni raccolti.

In seguito, in Tabella 14.1. 3 si mostra l'intervallo di concentrazioni riscontrate in base al materiale combusto. In tale Tabella 14.1. sono riportate le concentrazioni relative a tutti i giorni di misura.

Tabella 14.1. 3 – Range di concentrazioni riscontrate in base al materiale combusto. Concentrazioni relative a tutti i giorni di misura. Tra parentesi è riportato il numero di incendi sui quali è calcolato l'intervallo di concentrazioni.

Materiale combusto	Numero di giorni di	Concentrazione TEQ	Concentrazione TEQ	Concentrazione	Concentrazione TEQ
	campionamento	misurata durante il	misurata durante il	TEQ misurata	misurata durante il
	campionamento	fg _{TEQ} /m ³			
Carta	1 gg	268 – 1710 (3)			
	> 1 gg	169 – 23901 (3)	72 – 3663 (3)	21 (1)	
Plastica	1 gg	20 – 1166 (5)			
	> 1 gg	506 – 23562 (5)	10 – 307 (5)	9 - 176 (4)	33 - 146 (2)
Rifiuti	1 gg	9 – 7281 (7)			
	> 1 gg	38 – 74344 (7)	17 -89669 (7)	37 – 1480 (4)	169 - 1596 (2)
Attività	1 gg	24 – 133 (7)			
	> 1 gg	11 – 981 (5)	17 – 445 (5)	53 - 57 (2)	7 (1)
Ferro	1 gg	5 – 117 (2)			
	> 1 gg	321 (1)	169 (1)	46 (1)	17 (1)

Dai dati precedenti risulta che la concentrazione maggiore di PCDD-DF si riscontra negli incendi di maggior durata; questo indica che le emissioni di diossine e furani sono maggiori in misura proporzionale al quantitativo di materiale disponibile alla combustione. Tra gli incendi che emergono per concentrazione di PCDD-DF vi sono quelli dove è presente materiale in plastica.

Dalla lettura della Tabella 14.1.3 risulta che anche per incendi di breve durata (1 giorno), se vi è coinvolto materiale plastico (anche in forma non prevalente come ad esempio la carta imballata), le concentrazioni di PCDD-DF superano il valore di riferimento OMS di 0.30 pgTEQ/m³ (300 fgTEQ/m³), indicativo di una situazione di inquinamento di diossine in atto.

Nei grafici seguenti (Figura 14.1.9-10) sono mostrati i profili relativi a due incendi durante i quali sono stati effettuati campionamenti per più giorni consecutivi. È possibile osservare l'evoluzione temporale

dell'incendio. dell'emissione sia in termini concentrazione totale equivalente che in termini di diossine e furani emessi rispetto alla somma totale di essi (profili). Si nota come durante i primi giorni successivi all'incendio i profili rimangano pressoché costanti, mentre durante ultimi qli giorni di campionamento non siano più presenti tutte le diossine ed i furani ma rimangano solo presenti alcuni di essi. In alcune situazioni le concentrazioni di diossine possono risultare maggiori il secondo giorno dell'evento in relazione all'abbassamento della temperatura di combustione legato alle attività di spegnimento. Come noto, l'abbassamento della temperatura rende la combustione meno efficiente e quindi vi è associata una maggiore emissione di molecole complesse come le diossine

Figura 14.1.9. Profili relativi diversi giorni di campionamento successivi all'incendio avvenuto ad Arese (calcolati per ogni diossina e furano come percentuale sulla somma).

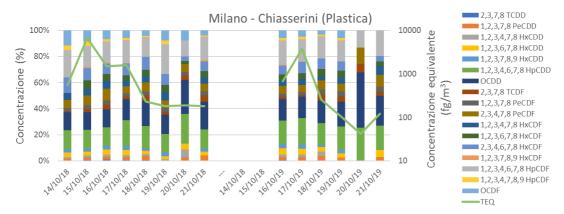


Figura 14.1.10. Profili relativi diversi giorni di campionamento successivi all'incendio avvenuto a Milano Via Chiasserini (calcolati per ogni diossina e furano come percentuale sulla somma).

Conclusioni

Partendo dall'analisi dei dati di campionamento di diossine nell'aria effettuati in occasione di incendi in Lombardia, si è cercato da una parte di raggruppare gli eventi in macrocategorie merceologiche e dall'altra di stabilire dei possibili raggruppamenti partendo dall'analisi dell'impronta delle diossine. È stata inoltre identificata una matrice in cui indicare, per ogni macrocategoria di incendio, il range storico dei quantitativi di diossine trovati.

Sulla base dei dati raccolti finora e delle analisi effettuate è possibile concludere che sono attese concentrazioni di PCDD/DF superiori al valore di riferimento dell'OMS di 0,30 pgTEQ/m³ (300 fgTEQ/m³), indicativo di una situazione di inquinamento di diossine in atto, quando si

ha combustione di materiale plastico o cartaceo in presenza di metalli; le concentrazioni attese sono superiori al valore di riferimento anche nel caso in cui la quantità di materiale coinvolto è tale da prolungare l'evento per oltre un giorno, indipendentemente dal materiale combusto prevalente.

14.2 VALUTAZIONE DEGLI IMPATTI SULL'ATMOSFERA DI UNA FONDERIA MEDIANTE UTILIZZO DI METODICHE INTEGRATE DI CAMPIONAMENTO, ANALISI IN CAMPO E DEFINIZIONE DI VALORI SOGLIA MEDIANTE TECNICHE STATISTICHE

C. Otta, V. Ameglio, L. Erbetta, C. Littera, G. Mensi, E. Scagliotti, D. Bianchi, S. Buratto ARPA PIEMONTE

RIASSUNTO

Le fonderie costituiscono di per sé un fattore di pressione ambientale importante sul territorio, che può determinare impatti significativi soprattutto se inserite in contesti urbanizzati. Lo studio in esame ha voluto approfondire l'impatto locale sulla qualità dell'aria riconducibile alle emissioni di una fonderia di ghisa ubicata in un piccolo comune collinare della provincia di Asti. Il piano di monitoraggio ha previsto una prima fase di modellizzazione meteo-dispersiva delle emissioni inquinanti dell'azienda e loro ricadute sul centro abitato circostante in modo tale da individuare le aree bersaglio e quelle di bianco di confronto. Conseguentemente è stato pianificato un monitoraggio pluriennale di inquinanti gassosi non normati e di polveri PM₁₀ con determinazione di IPA e metalli pesanti. La quantificazione dell'impatto da polveri diffuse di natura grossolana, provenienti dagli stoccaggi esterni delle terre di fonderia, è stata invece effettuata attraverso un monitoraggio specifico per la determinazione dei tassi di deposizione delle specie metalliche caratteristiche del processo industriale. La valutazione degli impatti locali è stata effettuata mediante la definizione di soglie di riferimento statistiche ad hoc. Un'ulteriore indagine è stata condotta utilizzando uno spettrometro a raggi X portatile, per la misura dell'abbondanza di metalli, direttamente sul materiale pulverulento stoccato sul piazzale della ditta e su campioni di polveri grossolane prelevati presso abitazioni adiacenti. Il confronto tra la distribuzione percentuale dei metalli determinati nei vari campioni ha permesso di riconoscere, attraverso la tecnica delle "finger prints", le impronte delle emissioni diffuse e la loro provenienza. Lo studio condotto ha costituito la base di partenza per la predisposizione, da parte dell'azienda, di un piano di miglioramento per il contenimento delle emissioni pulverulente.

Parole chiave: Fonderie, deposizioni atmosferiche, metalli, soglie statistiche

ABSTRACT

Foundries are an important environmental pressure factor, as they have significant impacts especially if inserted in urbanized contexts. The study aimed to investigate the local impact on air quality due to the emissions of a cast iron foundry located in a small hill town in the Asti province. First of all, the monitoring plan provided a weather-dispersive modelling of the factory's polluting emissions and their fallout on the surroundings in order to identify the target areas and the white areas for comparison. Consequently, a multi-year monitoring of gaseous not regulated pollutants and PM₁₀ powders has been set up with determination of PAH and heavy metals. Moreover, the quantification of the impact from diffuse coarse powders, coming from the external storage of the foundry lands, was carried out through specific monitoring for the determination of the deposition rates of the metallic species characteristic of the industrial process. The impact assessment was estimated by defining statistical reference thresholds suitable for indicating the presence of local impacts on specific environmental targets. A further investigation was conducted using a portable XRF analyzer to measure the abundance of metals directly on the powdered material stored on the company's yard and on samples of coarse dust fallen on various surfaces (courtyards, balcony, etc.) of nearby buildings. The comparison made between the percentage distribution of the metals in the various samples using the "finger-prints" technique allowed to identify the origin of the diffused emissions. This study was the starting point of an improvement plan in order to reduce diffuse dust.

Keywords: Foundries, atmospheric depositions, metals. statistical thresholds.

Introduzione

Le fonderie costituiscono di per sé un fattore di pressione ambientale importante sul territorio, che può determinare impatti significativi soprattutto se inserite in contesti urbanizzati. Lo studio in esame ha voluto approfondire l'impatto locale sulla qualità dell'aria riconducibile alle emissioni di una fonderia di ghisa ubicata in un piccolo comune collinare della provincia di Asti. L'azienda opera nella produzione di componenti in ghisa per veicoli industriali. Il ciclo produttivo comprende numerose fasi che possono essere ricondotte a due principali aree: quella fusoria, nella quale vengono effettuate le attività di preparazione della lega metallica fusa e quella di formatura, nella quale vengono svolte le attività di realizzazione dei getti, fra cui la fase di colata del metallo nella forma. Gli impatti, legati alle emissioni in atmosfera. riquardano essenzialmente composti organici e inorganici volatili, odorigeni e non, microinguinanti e polveri che derivano dalle varie fasi di processo. Le emissioni possono essere distinte in due classi: quelle convogliate, emesse a valle di un impianto di filtrazione, e quelle diffuse/fuggitive che non vengono captate né trattate da filtri e, nel caso specifico delle polveri, comprendono classi granulometriche anche grossolane.

Risultati

Simulazione modellistica e monitoraggio inquinanti atmosferici

Il piano di monitoraggio ha previsto una prima fase di modellizzazione meteo-dispersiva delle emissioni inquinanti dell'azienda e loro ricadute sul centro abitato circostante, in modo tale da individuare le aree bersaglio e quelle di bianco di confronto. Il software di calcolo utilizzato per lo studio è un modello gaussiano, con trattazione delle calme di vento, idoneo per la valutazione dell'impatto a lungo termine delle emissioni industriali. Le ipotesi su cui è basato il modello sono generalmente conservative e consentono una stima dell'inquinamento sull'anno in domini di dimensione variabile da 1 a 30 Km. Sulle basi delle risultanze ottenute con modello di ricaduta (Figura 14.2.1) sono stati individuati tre punti di monitoraggio (Figura 14.2.2), ove sono stati posizionati campionatori trasportabili di polveri PM₁₀ (punti B e C) e il laboratorio mobile per la qualità dell'aria per la misura di inquinanti gassosi e polveri PM₁₀ (punto A).

 $\label{eq:figura 14.2.1.} Figura 14.2.1. \ PM_{10}: concentrazioni \ medie \ annue \ dell'impianto \ industriale \ (\mu g/m^3) \ -Risultati \ delle \ simulazioni \ modellistiche.$

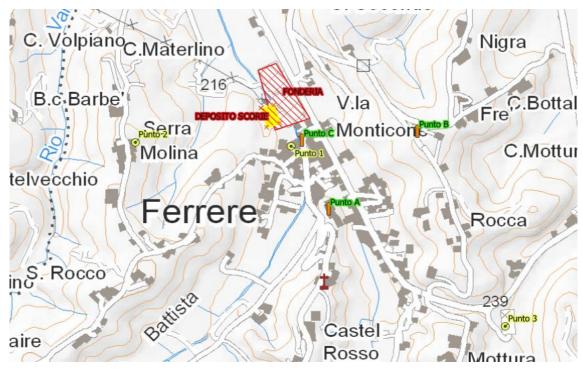


Figura 14.2.2. Punti di monitoraggio deposizioni (pallini gialli), laboratorio mobile e campionatori trasportabili di polveri (frecce arancioni)

I monitoraggi, della durata di 30 giorni circa, sono stati eseguiti a dicembre 2016 e a luglio 2017 e sui filtri di polveri PM₁₀ sono stati determinati IPA e metalli pesanti. Contestualmente, sono stati posizionati campionatori passivi per composti organici volatili presso vari punti del centro abitato su cui sono stati determinati idrocarburi aromatici e aldeidi riconducibili al ciclo produttivo. I risultati hanno evidenziato un innalzamento dei livelli di

fondo per benzene (Figura 14.2.3) e formaldeide (Figura 14.2.4) rispetto ai valori massimi e minimi registrati dalla rete regionale della qualità dell'aria del Piemonte, mentre non si sono riscontrate concentrazioni anomale di PM₁₀, né livelli di metalli e IPA su PM₁₀ superiori ai siti di confronto.

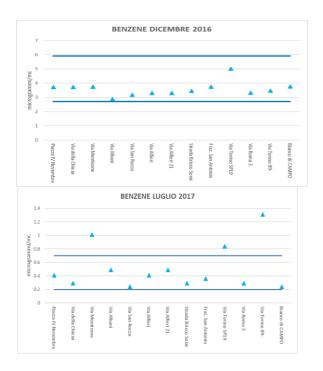
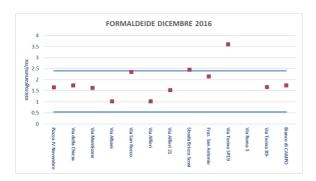



Figura 14.2.3. Risultati misure di BENZENE con campionatori passivi campagne di monitoraggio estiva e invernale rispetto a valori MIN/MAX registrati dalla rete regionale piemontese.

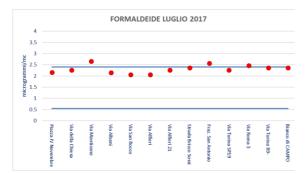


Figura 14.2.4. Risultati misure di FORMALDEIDE con campionatori passivi (campagne di monitoraggio estiva e invernale) rispetto a valori MIN/MAX registrati a livello piemontese.

Determinazione delle emissioni diffuse tramite misura delle deposizioni atmosferiche totali di metalli

Per poter quantificare l'impatto da polveri diffuse provenienti dalla fonderia sul centro urbano circostante, costituito prevalentemente da particelle di natura grossolana, che tendono a sedimentare in prossimità della sorgente di emissione, è stata eseguita la misura dei tassi di deposizione. Le deposizioni atmosferiche rappresentano una delle principali fonti di microelementi per il suolo, le acque e la vegetazione e sono una importante via di rimozione dei vari inquinanti, sia di origine naturale che antropica, presenti nell'atmosfera. Si distinguono due processi di deposizione:

- la deposizione umida (wet deposition): l'insieme di tutti i processi di trasporto degli inquinanti atmosferici al suolo in una delle varie forme di precipitazione (pioggia, neve, nebbia):
- la deposizione secca (dry deposition): l'insieme di tutti i processi di trasporto e rimozione di gas e aerosol dall'atmosfera alla superficie terrestre in assenza di precipitazione. Essa comprende lo scambio dinamico di gas in tracce e aerosol e la sedimentazione per effetto della gravità delle particelle di dimensioni maggiori. La somma dei due contributi costituisce la deposizione atmosferica totale.

I punti scelti per il campionamento sono stati individuati presso due abitazioni private, una posta in vicinanza del perimetro sud dello stabilimento a distanza di 100m (PUNTO 1) e l'altra, più distante, in zona collinare, 600m a ovest rispetto all'azienda e posta in quota più elevata (PUNTO 2) nella quale è stata installata anche una stazione meteo (Figura 14.2.2). Un terzo punto, cosiddetto di bianco, a 1300m circa dalla sorgente, è stato individuato come rappresentativo dei livelli di fondo ambientale della zona cui fare riferimento come confronto tra zone esposte e non esposte (PUNTO 3). I campioni sono stati raccolti con frequenza mensile secondo la norma UNI EN 15841:2010. Il protocollo analitico è stato arricchito dei seguenti parametri: Cobalto, Cromo, Rame, Zinco e Ferro, alcuni dei quali caratteristici del processo industriale considerato. Sono stati utilizzati deposimetri DEPOBULK® in polietilene, costituiti da un sistema combinato da imbuto più bottiglia aperto, esposto all'atmosfera per tutta la durata del campionamento. Il monitoraggio è iniziato nel mese di aprile 2017 e si è concluso nel mese di aprile 2018, per un totale di 12 campioni mensili per sito. I risultati hanno evidenziato una notevole abbondanza di ferro in tutti i punti e di alcuni altri metalli presso il punto 1 (Figura 14.2.5).

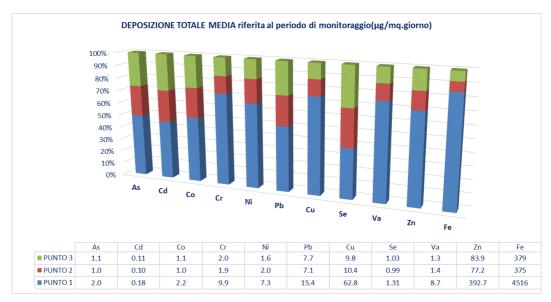


Figura 14.2.5. Risultati del campionamento delle deposizioni su 1 anno.

La norma non prevede limiti o valori obiettivo per le deposizioni, pertanto i risultati del campionamento sono stati confrontati in prima battuta con i valori soglia adottati in alcuni paesi europei (Tabella 14.2.1) in base alle quali si evidenziava presso il punto 1 una deposizione di Zinco

confrontabile con il valore soglia di 400microgrammi/mq.day.

Tabella 14.2.1 - Valori soglia adottati in alcuni paesi (G.Settimo, G. Viviano - Annuali ISS 2015. Vol. 51 N° 4:298-304).

Current limit values (annual average) in some European countries for dust deposition (PM = mg m⁻² d⁻¹), PCDD/F + DL-PCB (pg WHO-TE m⁻² d⁻¹) and metals (µg m⁻² d⁻¹) in atmospheric depositions

Country (reference)	PM	PCDD/F+ DL-PCB	As	Cd	Hg	Ni	Pb	11	Zn
Austria [32]	210	-	-	2	-	-	100	-	=
Belgium [13, 33]	350 650*	8.2 21*	-	2	-	-	250	-	=
Croatia [34]	350	-	4	2	1	15	100	2	-
Germany [14, 17, 18]	350	4	4	2	1	15	100	2	-
United Kindom [35]	200	-	_	-	-	_	-	-	_
Switzerland [36]	200	2	_	2	-	-	100	2	400
Slovenia [37]	200	=	-	2	-	-	100	-	400

Oltre a ciò, allo scopo di quantificare gli impatti dei differenti metalli nelle deposizioni rispetto al fondo locale, sono state definite per ciascun metallo soglie di riferimento statistiche partendo dai dati ottenuti per i punti di misura di fondo. Il metodo statistico prescelto è stato quello di impostare i livelli di guardia pari al 95°e 99° percentile della popolazione statistica di riferimento, calcolando rispettivamente i valori UTL-95 UTL-99 (Upper Tolerance Level - Estremo superiore di tolleranza con i rispettivi fattori di copertura). Nel caso specifico i valori delle soglie sono stati calcolati utilizzando i dati dei monitoraggi relativi ai punti 2 e 3 che risultavano compatibili in media/mediana (test di Wilcoxon-Mann-

Whitney, ipotesi nulla H0: equal mean/median, valori di p-value compresi tra 0,26 e 0,99) e sono stati quindi trattati come provenienti da un'unica popolazione di dati di fondo area non esposti alle deposizioni provenienti dalla fonderia. I risultati delle elaborazioni sono riassunti, suddivisi per metallo, nella Tabella 14.2.2 ove viene altresì indicata la distribuzione statistica di riferimento che si osserva dai dati sperimentali.

Tabella 14.2.2 – Soglie UTL 95% e distribuzione statistica di riferimento calcolati utilizzando i dati relativi ai punti non esposti alle deposizioni provenienti dalla fonderia.

METALLO	SOGLIA UTL 95% (µg/mq*giorno)	Distribuzione statistica di riferimento
ZINCO	254	gamma
FERRO	908	normale
CROMO	4.7	normale
NICHEL	4.8	gamma
RAME	29.9	Nessuna distribuzione
PIOMBO	22.7	gamma

Le concentrazioni di deposizione totale di metalli relative al punto 1 sono state quindi comparate con le corrispondenti soglie statistiche. Il numero di superamenti percentuale delle rispettive soglie viene riassunto nella Tabella 14.2.3.

Tabella 14.2.3 – Superamenti percentuali delle soglie UTL 95% relative al punto esposto alle ricadute della fonderia.

TABELLA RIASSUNTIVA SUPERAMENTI

TABLELA RIAGGONTIVA GOT ERAMENTI					
METALLO	% DATI SOPRA LA SOGLIA				
	UTL 95% (MAX AMMESSO 5%)				
FERRO	82				
RAME	73				
CROMO	63				
ZINCO	36				
NICHEL	36				
PIOMBO	18				

Considerando che si assume una probabilità massima di superamento delle suddette soglie statistiche pari al 5%, ne consegue che i valori riscontrati nel punto 1 sono da considerarsi non compatibili con le misure di fondo area (punti di misura 2 e 3) per tutti i metalli considerati e dunque siamo in presenza di un impatto sull'area circostante la fonderia

Caratterizzazione della sorgente

La movimentazione all'aperto del materiale di scarto delle lavorazioni presentava oggettive criticità essendo le

aree di stoccaggio direttamente confinanti con il centro abitato, per cui la movimentazione dei materiali procurava la dispersione di considerevoli quantità di polveri metalliche verso le aree abitate. Allo scopo di individuare da quale sorgente specifica provenissero le polveri diffuse, sono state eseguite analisi in campo per stimare l'abbondanza percentuale dei metalli su campioni prelevati in abitazioni presso le aree limitrofe all'azienda e direttamente sui cumuli di materiali polverulenti (terre e le scorie di fonderia) stoccati sui piazzali esterni della ditta (Figura 14.2.6).

Figura 14.2.6. Trincee di stoccaggio e campionamento presso i cumuli di scorie.

Le indagini sperimentali sono state effettuate mediante lo strumento portatile Olympus DELTA XRF che si basa sulla spettrometria a raggi X. Il materiale colpito dal fascio primario di raggi x emette un segnale secondario la cui lunghezza d'onda, inversamente proporzionale all' energia del fotone emesso, dipende dai livelli energetici

del materiale specifico. I campioni prelevati sono stati opportunamente preparati in laboratorio mediante macinatura e incapsulamento in appositi contenitori di dimensioni standard per la lettura (Figura 14.2. 7).

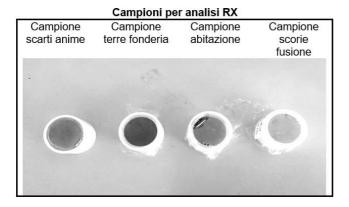


Figura 14.2.7. Campioni di terre preparati per analisi con strumento RX portatile.

Si è potuto così ricostruire uno spettrogramma dei metalli presenti nei vari campioni e stimame l'abbondanza. I campioni hanno evidenziato tutti una composizione percentuale di metalli simile, con abbondanza nettamente preponderante di Ferro-Fe (40-50%) seguito

da Calcio-Ca (attorno 30%), Zolfo-S (circa 10%), Potassio-K (6-15%) e in misura minore Bario, Stronzio, Manganese, Cromo, Titanio. Il confronto tra la distribuzione percentuale dei metalli determinati nei vari campioni ha permesso di riconoscere, attraverso la

tecnica delle "finger prints", la provenienza delle emissioni diffuse evidenziando la compatibilità tra la composizione dei materiali stoccati presso i piazzali della

ditta e le polveri prelevate presso le abitazioni (Figura 14.2.8).

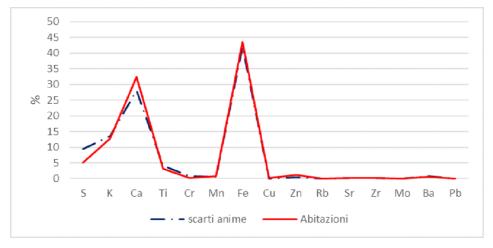
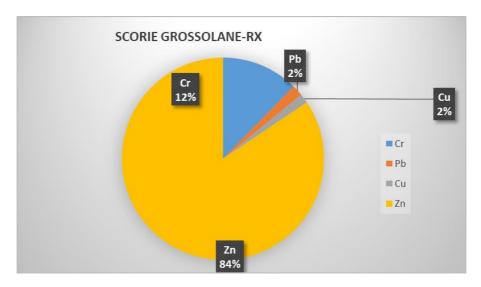



Figura 14.2.8. Risultati a confronto tra l'abbondanza percentuale di metalli nelle terre di fonderia e le polveri campionate presso abitazioni ("finger prints").

Il calcolo delle correlazioni ha confermato l'esistenza della stretta relazione tra il profilo delle deposizioni relative ai materiali stoccati presso il piazzale aziendale e le deposizioni campionate presso le abitazioni (R²>0,95). I risultati ottenuti dalle analisi sul campo sono stati confrontati con quelli acquisiti mediante metodiche ufficiali (Figura 14.2.9-10).

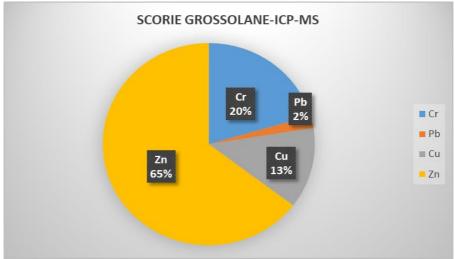


Figura 14.2.9-10. Confronto risultati metodica sperimentale (strumento RX portatile) e metodica ufficiale (mineralizzazione + ICP-MS).

Azioni di contenimento delle emissioni di polveri e metalli

Alla luce dei risultati ottenuti la ditta ha predisposto un piano di miglioramento per il contenimento delle emissioni diffuse, proponendo una serie di interventi

strutturali relativi allo stoccaggio ed alla movimentazione dei materiali depositati presso il piazzale esterno. Questo prevede, in particolare, la realizzazione di sili stagni, la movimentazione automatica delle sabbie, il miglioramento del sistema di umidificazione automatica

tramite coclea prima del caricamento dei mezzi e l'isolamento del punto di carico.

Conclusioni

L'uso di tecniche integrate di indagine descritto in questo studio ha permesso di quantificare l'impatto sulla componente atmosfera di una fonderia di ghisa insediata in un piccolo comune collinare. Il monitoraggio secondo le modalità previste dal D.Lgs. 155/2010 non ha evidenziato alterazioni nei livelli di polveri fini PM₁₀ né nella loro composizione chimica. La ricerca di composti volatili con campionatori di tipo passivo ha evidenziato un innalzamento dei livelli di fondo per benzene e formaldeide rispetto ai dati regionali. Considerate le caratteristiche dell'attività, si sono ricercate anche le polveri metalliche grossolane mediante la misura dei tassi di deposizione, i cui contributi sono risultati significativi in alcune aree abitate adiacenti al polo industriale. In assenza di valori limite per le deposizioni fissati dalla normativa italiana, i livelli misurati sono stati

confrontati con specifiche soglie di riferimento calcolate con metodi statistici a partire dai livelli misurati di fondo area. L'utilizzo inoltre di uno spettrometro portatile a raggi X ha permesso di stimare l'abbondanza percentuale dei metalli su campioni prelevati sia in abitazioni sia sui cumuli di materiali polverulenti stoccati sui piazzali esterni dell'azienda. Il confronto tra la distribuzione percentuale dei metalli determinati nei vari campioni ha permesso di riconoscere, attraverso la tecnica delle "finger prints", la provenienza delle emissioni diffuse evidenziando la compatibilità tra la composizione dei materiali stoccati e le polveri prelevate presso le abitazioni.

Avendo dimostrato impatti significativi dell'impianto produttivo sulle deposizioni e sulla qualità dell'aria locale, è stato chiesto all'azienda di predisporre un piano di miglioramento per il contenimento delle emissioni diffuse nell'ambito della autorizzazione integrata ambientale.

ARIA Impact - vers 1.7 http://www.aria-net.it/

Erbetta L., Scagliotti E., Pitasi F., Otta C., Ameglio V., Mensi G., "Monitoraggio di metalli in aria ambiente e loro deposizione al suolo presso un'area soggetta a bonifica", VI Convegno Nazionale Agenti Fisici, Alessandria 6-7-8 giugno 2016

Galletti M., Pileri A., Petrini A., Sebastiani F., Austeri C., Pompei M., "Valutazione dell'impatto sulla qualità dell'aria provocato da uno stabilimento di produzione dell'acciaio nella città di Terni", PM2018-Matera, 23-25 maggio 2018

Malloci E., Tava M., "Monitoraggio delle deposizioni atmosferiche per la valutazione dell'impatto di una acciaieria", PM2018-Matera, 23-25 maggio 2018

Panont D., Tarricone C., "Impact of channeled and diffuse emissions from a steel mill in the alpine context", Italian Journal of Occupational and Environmental Hygiene, 2013,4(3) 113-121

O. Gilbert Richard, "Statistical Methods for Environmental Pollution Monitoring", Van Nostrand Reinhold, New York, 1987

Otta C., Ameglio V., Erbetta L., Littera C., Mensi G., Scagliotti E., Bianchi D., Buratto S., "Valutazione degli impatti sull'atmosfera di una fonderia mediante utilizzo di metodiche integrate di campionamento, analisi in campo e definizione di valori soglia mediante tecniche statistiche", VII Convegno Nazionale Agenti Fisici, Stresa 5-6-7 giugno 2019

Singh A., Singh A.K., Flatman G., "Estimation of Background Levels of Contaminants", Math Geology, 1994, Vol.26, N°3. 361-388

UNI EN 15841:2010 "Qualità dell'aria ambiente-Metodo normalizzato per la determinazione di Arsenico, Cadmio, Piombo e Nichel nelle deposizioni atmosferiche".

U.S. environmental Protection Agency (EPA), ProUCL Version 5.00.04 Technical Guide (Draft), Publication EPA/600/R-07/041, September 2013

14.3 MONITORAGGIO IN CONTINUO DI ACIDO CLORIDRICO E FLUORIDRICO IN ARIA AMBIENTE PER LA VALUTAZIONE DELL'IMPATTO DI UN POLO CHIMICO E LA GESTIONE DI EVENTI INCIDENTALI

Littera C., Otta C., Ameglio V., Erbetta L., Mensi G., Scagliotti E., Bianchi D.

ARPA PIEMONTE

RIASSUNTO

L'area di Spinetta Marengo (frazione di Alessandria) vede la presenza di un importante polo chimico a ridosso di un centro abitato da circa 7000 persone. L'attività industriale, classificata a rischio di incidente rilevante ai sensi del D.Lgs.105/2015 ("direttiva SEVESO III"), si caratterizza per emissioni in aria ambiente di inquinanti gassosi peculiari non normati, per lo più composti organici e inorganici a base di cloro e di fluoro ad elevato grado di tossicità per l'ambiente e la salute. Come azione di tutela, l'autorizzazione integrata ambientale provinciale ha previsto la misura in continuo dei composti maggiormente significativi immessi in aria ambiente e riconducibili ai processi industriali. Presso l'area di maggior ricaduta degli inquinanti individuata da uno studio modellistico meteo-dispersivo, è stata collocata la stazione di monitoraggio della qualità dell'aria gestita da Arpa Piemonte dotata, prima in Italia, di un analizzatore in continuo di acido cloridrico e fluoridrico di tipo innovativo. Il principio di misura dell'analizzatore di HCI/HF si basa sulla spettrometria di assorbimento laser ad alta risoluzione per la misura in tempo reale di gas atmosferici. L'assenza di specifici limiti di legge per i composti di interesse, di norma non presenti in aria ambiente, si associa ad una potenziale pericolosità e tossicità degli stessi. È stato dunque necessario definire opportuni valori soglia abbinati ad un protocollo operativo permettessero di intervento che tempestivamente l'ente di controllo circa possibili fughe di sostanze dallo stabilimento. L'uso infine di strumenti statistici abbinati all'anemologia, quali i Polar-Plot, ha permesso di individuare, gestire e risolvere eventi anomali e i piccoli episodi incidentali che diversamente non sarebbero stati gestiti dall'ente di controllo nell'ambito del piano di emergenza esterno dell'azienda. Nel corso del 2020 la stazione sarà implementata con strumentazione tecnologicamente avanzata in grado di monitorare tutti i composti organici a base di cloro e di fluoro.

Parole chiave: Polo chimico, Acido cloridrico, Acido fluoridrico, valori soglia, inquinanti non normati

ABSTRACT

The Spinetta Marengo area (Alessandria suburb) hosts a large chemical plant near a built-up area where around 7000 persons live. The industrial plant, classified as high risk industry pursuant to Legislative Decree 105/2015, has specific emissions of non-regulated gaseous pollutants, mostly chlorinated and fluorinated organic and inorganic compounds with an elevated degree of toxicity for environment and health. It was therefore necessary to install real-time measurement systems in order to continuosly monitoring dangerous pollutants coming from the industrial site. Based on the results of model simulations of pollutants fallout, a monitoring station was installed, first time in Italy, with an innovative continuous analyzer of hydrochloric and hydrofluoric acid. The measurement technique is based on high resolution laser absorption spectrometry for real-time measurement of atmospheric gases. The absence of specific limits for these compounds, normally not present in ambient air, is associated with a high potential hazard and toxicity. It was therefore necessary to use statistical methodologies to calculate appropriate thresholds values in order to quickly alert Arpa control system in case of leaks of pollutants from the plant. The use of statistical tools combined with anemology, such as Polar-Plots, has made it possible to identify, manage and resolve anomalous cases and small incidents that otherwise would not have been revealed. In 2020 the station will be implemented with technologically advanced

instrumentation for monitoring all chlorine and fluorine organic compounds.

Introduzione

L'area oggetto di studio vede la presenza di inquinanti atmosferici peculiari emessi da un importante polo chimico situato a ridosso di un centro abitato, con emissioni in aria ambiente di inquinanti gassosi non normati, alcuni dei quali ad elevato grado di tossicità per l'ambiente e la salute. Si è reso quindi necessario

installare in loco una stazione di monitoraggio della qualità dell'aria gestita da ARPA Piemonte dotata di un innovativo strumento per la misura di acido fluoridrico e acido cloridrico. La sua collocazione, circa 500m in direzione nord-est rispetto al polo chimico, è stata individuata nell'area di massima ricaduta degli inquinanti sulla base delle risultanze di uno studio modellistico meteo-dispersivo delle emissioni dello stabilimento (Figura 14.3.1).

Figura 14.3.1. Ubicazione stazione di misura della qualità dell'aria.

Funzionamento e messa a punto dell'analizzatore

La tecnica di misura dell'analizzatore di acidi si basa sulla spettrofotometria di assorbimento laser (OA-ICOS).

Cuore dello strumento è una cavità dotata di specchi in cui la sorgente laser a infrarossi emette un segnale di assorbimento specifico per le specie di inquinanti gassosi di interesse (Figura 14.3.2).

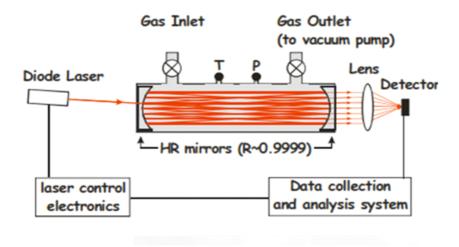


Figura 14.3.2. Schema a blocchi dell'analizzatore.

La variazione di intensità del raggio laser è correlabile e proporzionale alla concentrazione di HCl e HF presenti nella cavità di misura (legge di Beer-Lambert). Il cammino ottico percorso dalla radiazione raggiunge i 25 Km grazie alla presenza nella cella di misura di due specchi ad elevatissima riflettività (>0,9999): grazie a

questo lo strumento è in grado di raggiungere elevata sensibilità e precisione. L'analisi degli spettri di assorbimento, inoltre, permette di controllare la presenza di interferenti (Figura 14.3.3).

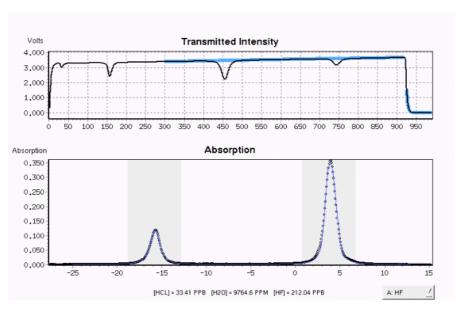


Figura 14.3.3. Spettro di assorbimento dell'HF.

Collaudo, Calcolo del limite di quantificazione, verifiche annuali di accuratezza e valutazione dell'incertezza di misura.

I parametri tecnici considerati nelle prove di collaudo strumentale hanno riguardato la verifica della lettura di zero, la verifica della linearità della risposta strumentale su tre punti e la verifica dell'esattezza-recupero. La verifica della linearità della retta di taratura e dell'esattezza/recupero sono state eseguite tramite l'utilizzo di tubi a permeazione certificati. I tubi a permeazione sono piccoli cilindri che contengono l'inquinante da misurare allo stato solido, liquido o gas liquefabile, dotati di un'apertura chiusa da una membrana in teflon permeabile ai gas. Il gas permea lentamente attraverso la membrana con una portata dell'ordine di nanogrammi al minuto. Il tubo a permeazione viene perciò immerso in una corrente di gas di trascinamento che si arricchisce della sostanza

permeata. La velocità di permeazione (quantità di sostanza permeata nell'unità di tempo) dell'inquinante attraverso le pareti del tubo, dipende dalla natura dell'inquinante, dalla natura del materiale costituente il tubo, dalla superficie della parete permeabile, dalla temperatura e dalla differenza della pressione parziale della sostanza permeata all'interno e all'esterno del tubo. I tubi a permeazione vengono inseriti in una camera a temperatura controllata di 44,9-45°C in cui la regolazione del flusso d'aria, attraverso un mass-flow controller, modifica la portata del gas di diluizione che lambisce il tubo a permeazione variando la concentrazione standard di riferimento per l'inquinante. Tramite la valutazione dei risultati ottenuti nelle prove di esattezza/recupero è stato possibile definire, come criterio di accettabilità per i recuperi, uno scostamento massimo del ±25% per HCL e del ±30% per il parametro HF. Le prove di esattezza/recupero vengono eseguite annualmente (Tabella 14.3.1).

Tabella 14.3.1 - Risultati prove esattezza/recupero

Concentrazione teorica HCI (μg/m³)	HCI LGR ARPA (µg/m³)	LGR ARPA Recupero %
14.09	12.27	87
14.09	12.40	88
14.09	12.22	87
14.09	12.31	87
7.83	6.63	85
7.83	6.41	82
7.83	6.55	84
7.83	6.42	82
5.88	4.45	76
5.88	4.35	75
5.88	4.34	75
5.88	4.45	76
Concentrazione teorica HF (μg/m³)	HF LGR ARPA (µg/m³)	LGR ARPA Recupero %
13.66	13.67	100
13.66	13.69	100
13.66	13.65	100
13.66	13.58	99
7.59	8.14	107
7.59	8.12	107
7.59	8.10	107
7.59	8.10	107
5.69	6.27	110
5.69	6.29	110
5.69	6.28	110
		110

Per il calcolo del limite di quantificazione (D.L.) inteso come la concentrazione minima rilevabile attraverso uno specifico processo di misura è stata applicata, in analogia con quanto previsto dalle norme tecniche per gli analizzatori in continuo di inquinanti gassosi, la formula di calcolo:

D.L.=3,3 *(Sz/B)

dove

Sz= deviazione standard della risposta alla concentrazione di zero

B=pendenza della retta delle prove di linearità ed esattezza-recupero

I valori di D.L. ottenuti sono risultati confrontabili con quelli certificati dalla casa madre; si è quindi deciso di adottare questi ultimi (Tabella 14.3.2).

T - 1 - 11 - 1	4400	0.11.	July 19 to 19 to	JP	.ec
Labella	14.3.2 –	Calcolo	del limite	di dua	ntificazione

	HCL	HF
Sz deviazione stand allo zero	0.0899	0.1967
Pendenza retta	0.9796	1.0458
D.L. calcolato in ppb	0.30	0.62
D.L. calcolato in µg/m ³	0.4	0.5
D.L. certificato LGR in µg/m ³	0.4	0.7

Una prima stima dell'incertezza associata alle misure di HCl e HF è stata effettuata utilizzando le misure in condizioni controllate con i tubi a permeazione ed è risultata pari a U(HCl) = 30%, U(HF) = 42%. Tale incertezza è riferita al range di concentrazioni indagato con le prove con tubi a permeazione (5 - 15 µg/m³).

La validazione dei dati acquisiti

I parametri HCI (ppm / μg/m³) e HF (ppm / μg/m³), acquisiti ogni minuto dallo strumento, vengono aggregati ogni 10 e 60 minuti, registrati dal pc di stazione, trasmessi al centro operativo regionale e archiviati. I dati acquisiti dallo strumento sono validati giornalmente dai tecnici abilitati ARPA. La validazione è eseguita sulle concentrazioni misurate nel giorno precedente a quello di validazione, i criteri di validazione utilizzati sono analoghi a quelli degli altri inquinanti normati determinati nelle stazioni della rete regionale di qualità dell'aria gestita da Arpa Piemonte.

Definizione del valore soglia di intervento e procedura di intervento

L'assenza di specifici limiti di legge per composti peculiari, di norma non presenti in aria ambiente, si associa ad una potenziale pericolosità e tossicità degli stessi. È stato dunque necessario definire opportuni valori soglia abbinati ad un protocollo operativo di intervento che permettessero di allertare tempestivamente l'ente di controllo circa possibili fughe di sostanze dallo stabilimento e intraprendere azioni di verifica controllo in sito. Il valore soglia di intervento fissato è pari a 5 µg/m³ per HCl e HF è stato determinato

sulla scorta dello storico dei dati acquisiti oltre che per confronto rispetto ai valori di riferimento indicati da US-EPA (EPA-IRIS) per l'esposizione cronica della popolazione pari a 20 μ g/m³ per HCI e a 14 μ g/m³ per HF. Attraverso un sistema di invio 24h/24 di messaggi di allerta, la stazione è in grado di avvisare i tecnici Arpa ogni volta che le concentrazioni di inquinanti superano i valori soglia. Secondo quanto definito nel protocollo operativo adottato da Arpa, a seguito di registrazione di dati superiori a 5 μ g/m³ in successivi tre intervalli temporali di 10 minuti si attiva l'intervento in campo dei tecnici che prevede di effettuare ulteriori campioni di aria ambiente in postazioni esposte rispetto alla direzione del vento.

Eventi anomali e loro gestione

L'allertamento tempestivo dei tecnici di qualità dell'aria per indagini e campionamenti in sito, ha inoltre permesso negli anni di individuare e monitorare eventi incidentali di piccola entità che possono accadere presso l'impianto chimico e che diversamente non sarebbero stati gestiti dall'ente di controllo nell'ambito. Dal 2016, anno di inizio del protocollo operativo, sono state registrate 23 anomalie per HF e 374 per HCl intese come superamenti della soglia di intervento fissata a cui hanno fatto seguito approfondimenti e prelievi puntuali di aeriformi volti a ricercare una più ampia gamma di composti provenienti dal polo chimico: acidi inorganici, composti volatili clorurati e fluorurati. Contestualmente agli interventi è stato chiesto alla ditta di fornire un report di descrizione di quanto accaduto internamente. Per ogni episodio incidentale è stata successivamente eseguita una una post-elaborazione statistica delle concentrazioni degli

inquinanti in relazione alle condizioni anemologiche in modo da ricondurre in maniera precisa l'origine dei picchi di inquinamento alle specifiche sorgenti di provenienza. A tale scopo è stata utilizzata la funzione Polar-Plot fornita nel pacchetto Openair del software R Project, specifico per la trattazione dei dati di qualità dell'aria. Si tratta di un grafico in coordinate polari in cui ogni punto del piano è identificato da un angolo, che individua la direzione di provenienza del vento, da una distanza dal

centro, che indica la velocità del vento, e da un colore che rappresenta una funzione di probabilità (conditional probability function) che si verifichino valori di picco, superiori ad un dato percentile della concentrazione dell'inquinante in corrispondenza di determinati valori di direzione e velocità del vento (Figura 14.3.4).

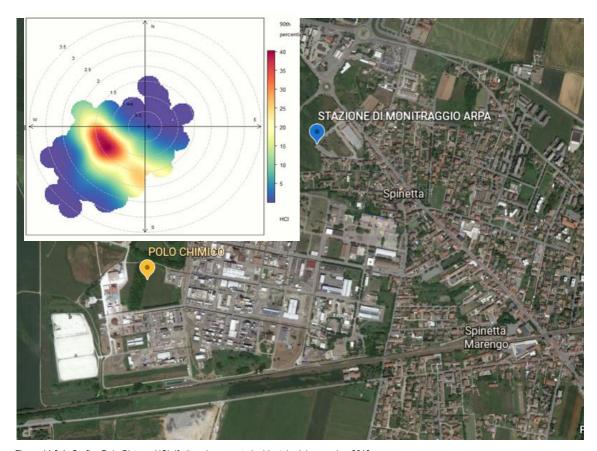


Figura 14.3.4. Grafico PolarPlot per HCl riferito ad un evento incidentale del novembre 2018.

Questa ulteriore post-elaborazione ha permesso di confermare e contestualizzare 16 episodi incidentali, non sempre confermati dalla azienda, occorsi tra il 2016 e il 2019. Le concentrazioni rilevate sono state confrontate con i valori di riferimento US-EPA AEGL per esposizione acuta di breve durata della popolazione e comunicate alle autorità competenti. In questo modo si è potuto attribuire un certo numero di eventi con certezza alle emissioni del polo chimico e contestualmente ascrivere questi eventi anche nel computo degli eventi incidentali non gravi, ma con rilascio di sostanze all'esterno dello stabilimento come previsto dal piano di emergenza esterna.

Risultati e conclusioni

La misura in continuo ad elevata frequenza di HCl e HF ha permesso negli anni di ricostruirne nel dettaglio gli andamenti nel tempo e di valutare i livelli di esposizione a lungo termine per la popolazione. Considerando le concentrazioni di acidi misurate negli anni (Tabella 14.3.3), si può osservare come il 95° percentile della popolazione di dati risulti compreso tra 0,2 e 1,4 microgrammi/m³, 4-5 volte inferiore al valore soglia di 5 microgrammi/m³ adottato e 10 volte inferiore ai valori soglia indicati da US-EPA per l'esposizione cronica della popolazione.

Tabella 14.3.3 –Sintesi Risultati per HF e HCl.

	2016		2017		2018	
PARAMETRO	HCI µg/mc	HF µg/mc	HCI µg/mc	HF µg/mc	HCI µg/mc	HF µg/mc
DL	0,4	0,7	0,4	0,7	0,4	0,7
MIN	0,2	0,4	0,2	0,4	0,2	0,4
MEDIA	0,3	0,6	0,3	0,9	0,8	0,4
MEDIA STIMATA MODELLO	0,7	1,9	0,7	1,9	0,7	1,9
MEDIANA	0,2	0.4	0,2	0,9	0,2	0,4
75° PERC	0,2	0,7	0,2	1,1	0,7	0,4
95° PERC	0,2	1,2	1,4	1,3	1,1	0,4
MAX	9,3	15,2	2,7	1,6	70,5	1,5
%DATI VALIDATI	78	78	31,7	31,8	74,1	74,1

Questi dati sono stati utilizzati per effettuare una valutazione di impatto sanitario del polo chimico e per indagini epidemiologiche condotte da Arpa sulla popolazione di Spinetta Marengo. La posizione strategica della stazione e le performance della strumentazione di misura installata per acidi alogenidrici rappresentano un punto di forza nella gestione da parte di Arpa di eventi incidentali anche di lieve entità.

L'adozione di un protocollo operativo di intervento e di tecniche statistiche di post-elaborazione hanno inoltre permesso di individuare, come previsto dal piano di emergenza esterna, gestire e risolvere 16 episodi incidentali non gravi ma con rilascio di sostanze all'esterno dello stabilimento che diversamente non sarebbero stati individuati. L'analisi statistica dei dati di HCI/HF registrati nei primi quattro anni di monitoraggio

conferma l'appropriatezza delle soglie d'intervento adottate e la loro efficacia nella gestione tempestiva degli eventi incidentali da parte di Arpa con importanti ricadute sulla tutela dell'ambiente e dei cittadini e sulla gestione del rischio legato alla convivenza tra impianti chimici e territorio a supporto delle amministrazioni locali. Sul sito di Arpa Piemonte è attualmente consultabile una pagina

web dedicata al sito di monitoraggio di Spinetta Marengo con tutti i dati raccolti. La stazione è attualmente in corso di ampliamento con l'installazione di un analizzatore dedicato alla rilevazione in continuo di tutti gli inquinanti organici a base di cloro e di fluoro specifici del polo chimico.

Bibliografia

UNI EN14626/2012 Qualità dell'aria ambiente - Metodo normalizzato per la misurazione della concentrazione di monossido di carbonio mediante spettroscopia a raggi infrarossi non dispersiva

UNI EN14211/2012 Qualità dell'aria ambiente - Metodo normalizzato per la misurazione della concentrazione di diossido di azoto e monossido di azoto mediante chemiluminescenza

UNI EN14625/2012 Qualità dell'aria ambiente - Metodo normalizzato per la misurazione della concentrazione di ozono mediante fotometria ultravioletta

UNI EN14212/2012 Qualità dell'aria ambiente - Metodo normalizzato per la misurazione della concentrazione di diossido di zolfo mediante fluorescenza ultravioletta

EPA-IRIS banca dati https://www.epa.gov/iris/basic-information-about-integrated-risk-information-system

 $R\ project-pacchetto\ OPENAIR\ https://cran.r-project.org/web/packages/openair/index.html$

Soglie EPA-AEGL1 https://www.epa.gov/aegl.

14.4 LA COMPOSIZIONE DEL PM2.5 NELLA QUALITÀ DELL'ARIA DELL'EMILIA-ROMAGNA

Bacco D., Scotto F., Trentini A., Lasagni S., Maccone C., Ferrari S., Poluzzi V. ARPAE

RIASSUNTO

Il progetto Supersito, gestito e finanziato da Arpae e Regione Emilia-Romagna (DGR 4258/10 e DGR 1971/13), è durato dal 2010 al 2016. Il progetto ha ottenuto diversi risultati, fra i quali vi è anche la realizzazione di una rete di monitoraggio, attualmente attiva, che comprende quattro siti: tre background urbani (Bologna, Parma e Rimini) e un background rurale (San Pietro Capofiume). In queste località vengono misurati dei parametri non abitualmente determinati dalla rete regionale di qualità dell'aria di Arpae Emilia-Romagna. In particolare, da più di 8 anni, vengono quantificati giornalmente (nel sito di Bologna) o bisettimanalmente (negli altri siti) i principali componenti del PM2,5. Le analisi riguardano i principali macro-componenti della massa del particolato: gli ioni (i più rilevanti in termini di massa sono nitrato, solfato, ammonio) e la frazione carboniosa formata da Carbonio Organico e Carbonio Elementare (OC ed EC). Oltre a questi, sono analizzati anche gli elementi in traccia, come metalli o levoglucosano: tali sostanze possono essere utili per identificare e, a volte, quantificare le sorgenti che hanno contribuito alla formazione dell'aerosol. Il levoglucosano, ad esempio, è ampiamente riconosciuto per essere un marker specifico della combustione della biomassa e quindi può fornire una informazione circa l'andamento di guesta sorgente.

L'analisi delle serie storiche non evidenzia un trend significativo per la maggior parte delle specie principali rispetto all'intera massa del PM_{2,5}, ma variazioni casuali. Ciò porta ad ipotizzare che nelle aree di studio le condizioni meteorologiche giochino un ruolo determinante nei cambiamenti, sia sulla quantità di particolato che sulla sua composizione. Le condizioni meteorologiche d'altronde possono essere estremamente influenti sia nel processo di diluizione degli inquinanti primari, sia nei meccanismi di formazione

del particolato secondario che si genera direttamente in atmosfera partendo da sostanze pre-esistenti. Ad esempio. un'atmosfera stagnante ostacola dispersione degli inquinanti e temperatura, umidità e irraggiamento sono la forza trainante delle reazioni che trasformano le specie emesse. La percentuale media annua di SIA (Secondary Inorganic Aerosol), che è l'insieme dei principali ioni inorganici di origine secondaria presenti sul particolato, negli anni monitorati non è mai scesa sotto al 38% della massa del PM_{2.5}, con picchi del 48% nei tre siti urbani. Per conoscere la percentuale dell'aerosol di origine secondaria (SA, Secondary Aerosol), alla percentuale di SIA bisogna aggiungere quella di origine organica (SOA, Secondary Organic Aerosol), di cui però è complicato fornire una quantificazione sicura.

Informazioni utili sull'andamento dell'aerosol organico di origine primaria (POA, Primary Organic Aerosol) e secondaria (SOA) si ottengono dal calcolo del rapporto tra OC ed EC, in quanto quest'ultimo ha sicuramente origine primaria, mentre l'OC ha una componente sia secondaria sia primaria. Questo rapporto mostra una discreta variabilità nel tempo (con valori medi da 3.2 a 5.6), ma non un trend statisticamente significativo con un andamento costante: a seconda del periodo può avere una pendenza positiva o negativa. Ciò rafforza l'ipotesi che i meccanismi meteorologici siano i principali fattori della variabilità dell'aerosol.

I dati discussi sono riportati in report semestrali pubblicati sul sito di Arpae (www.arpae.it).

Parole chiave: PM_{2,5}, composizione chimica, Emilia-Romagna, trend pluriannuali.

ABSTRACT

The Supersito project, managed and financed by Arpae and the Emilia-Romagna Region (DGR 4258/10 and DGR 1971/13), took place from 2010 to 2016. The project has achieved several results, among which there is also the creation of a monitoring network, currently active, consisting of four sites: three urban background sites (Bologna, Parma and Rimini) and a rural background site (San Pietro Capofiume). In these locations, the parameters not usually determined by the regional air quality network of Arpae Emilia-Romagna are measured. In particular, the main components of PM_{2,5} have been quantified daily (on the Bologna site) or biweekly (on the other sites), for more than 8 years. The analyses concern the main macro-components of the particulate mass: the ions (the most relevant in terms of mass are nitrate, sulphate, ammonium) and the carbonaceous fraction OC and EC (Organic Carbon and Elemental Carbon). In addition to these, trace elements such as metals or levoglucosane are also analyzed: these substances can be useful for identifying and, sometimes, quantifying the sources that contributed to the formation of the aerosol. Levoglucosane, for example, is widely recognized to be a specific marker of biomass combustion and therefore it can provide information about the seasonal trend of this source.

The analysis of the time series does not show a significant trend for most of the main species compared to the entire mass of PM_{2.5}, but a random variation: this leads to the hypothesis that in the regions of the study the weather conditions play a decisive role in the changes, both on the quantity of particulate and on its composition. The weather conditions on the other hand can be extremely influential in the mechanisms of formation of the secondary particulate which is generated directly in the atmosphere starting from pre-existing substances. For example, a stagnant atmosphere disadvantages the dispersion of pollutants and temperature, humidity and radiation are the driving forces of the reactions that transform the species emitted. The average annual percentage of SIA (Secondary Inorganic Aerosol), which is the set of the main ions of secondary origin present on the particulate matter, in the monitored years has never fallen below 38% of the mass of PM_{2,5},

with peaks of 48% in the three urban sites. In order to know the percentage of the secondary aerosol (SA), we must add to the SIA percentage the one of the organic origin (SOA, Secondary Organic Aerosol), of which, however, it is difficult to provide a safe quantification.

Useful information on the trend of primary (POA, Primary Organic Aerosol) and secondary (SOA) organic aerosol can be obtained from the calculation of the ratio between OC and EC, as the latter has certainly a primary origin, while the OC has both the primary and secondary component. This report shows a fair variability over time (with values from 3.2 to 5.6), but not a statistically significant constant trend: depending on the period, it can have a positive or negative slope. This reinforces the hypothesis that meteorological mechanisms are the main factors of aerosol variability.

The data discussed are reported in six-monthly reports published on the Arpae website (www.arpae.it).

Keywords: PM_{2,5}, chemical composition, Emilia-Romagna region, multiyear trend.

Introduzione

La Pianura Padana è una delle aree europee in cui i livelli di inquinamento arrivano ad assumere valori più alti e con episodi frequenti (Air Quality in Europe - 2019 Report; EEA Report, 10/2019; SOER 2020: State Of Environment Report 2020). Per ridurre l'impatto delle attività antropiche sulla qualità dell'aria sono stati presi molti provvedimenti mediante leaai nazionali (attualmente in vigore: D.Lqs 155/2010) e piani regionali (come ad esempio il PAIR2020 dell'Emilia-Romagna -DAL 115/2017, il PRIA della Lombardia - DGR 593/2013, o il PRTRA del Veneto – DCR 90/2016) che hanno permesso di registrare dagli anni '90 una riduzione significativa di PM₁₀ e PM_{2,5} (Bigi e Ghermandi, 2014; Bigi e Ghermandi, 2016). E' pertanto interessante verificare se tale tendenza si sia mantenuta anche in anni recenti. Le caratteristiche orografiche della Pianura Padana giocano un ruolo molto importante nei meccanismi di dispersione e rimescolamento delle specie inquinanti, e questo rende più facile la formazione

e l'accumulo della componente secondaria del particolato, quella cioè che si forma direttamente in atmosfera (Rinaldi et al., 2015; Sandrini et al., 2016; Gilardoni et al., 2016; Ricciardelli et al., 2017). Ne consegue che la concentrazione del PM sia fortemente legata alle condizioni meteorologiche che potrebbero avere un ruolo predominante rispetto agli interventi che possono essere intrapresi per una riduzione degli inquinanti alle sorgenti.

Diventa quindi particolarmente importante, date queste premesse, capire quali sorgenti impattino maggiormente sulla concentrazione dell'aerosol in atmosfera, in modo da poter ottimizzare gli interventi e poterli concentrare su fonti specifiche. L'analisi della composizione chimica del particolato e del trend delle principali specie che le compongono potrebbe permettere di ottenere informazioni in questo senso (Pietrogrande et al., 2016; Scotto et al., 2015), monitorando cioè i cambiamenti nel tempo delle caratteristiche chimiche dell'aerosol, che possono riflettere comportamenti non evidenti dalla sola osservazione nel tempo dell'andamento della massa.

Metodi

Siti di monitoraggio

Il progetto Supersito prevedeva il campionamento in diversi Emilia-Romagna, punti della regione rappresentativi delle diverse aree in cui può essere suddiviso il territorio studiato. I tre siti urbani sono posti uno nell'area metropolitana di Bologna, al centro della regione, uno a Parma nell'area più interna della pianura padana, e uno a Rimini, nell'area costiera. A questi si aggiunge un fondo rurale, San Pietro Capofiume (BO), facente parte della rete di qualità dell'aria di Arpae (https://www.arpae.it/mappa_ga.asp?idlivello=1682&te ma=stazioni, Long. 44,65, Lat. 11,62 WGS84) e già sede della base meteorologica "Giorgio Fea", sito scelto per la misura della qualità dell'aria in pianura padana da numerosi studi internazionali (Gilardoni et al., 2014; Gilardoni et al., 2016; Pietrogrande et al., 2014a; Pietrogrande et al., 2014b; Pietrogrande et al., 2015; Paglione et al., 2020).

I siti di Parma e Rimini, anch'essi facenti parte della rete regionale di qualità dell'aria, sono posti all'interno di parchi cittadini (PR: Parco Cittadella, Long. 44.79, Lat. 10.33 WGS84; RN: Parco XXV Aprile, Long. 44.06, Lat. 12.55 WGS84), mentre il sito di Bologna, collocato nell'area della ricerca del CNR (Long. 44.52, Lat. 11.34 WGS84), è stato appositamente selezionato come riferimento per un maggior approfondimento.

A partire dal 2011 in tutti i siti è stato campionato il PM_{2,5}, la cui composizione chimica è stata caratterizzata con frequenza giomaliera a Bologna, e bisettimanale negli altri siti. In particolare sono state quantificate le concentrazioni dei principali ioni inorganici (Na⁺, K⁺, Mg²⁺, Ca²⁺, NH₄⁺, NO₃⁻, SO₄²⁻, Cl⁻), della frazione carboniosa (Carbonio Organico, Carbonio Elementare e Carbonio Totale), dei metalli (Al, Sb, As, Ba, Cd, Cr, Fe, La, Pb, Mg, Mn, Ni, Sn, V, Zn) e del levoglucosano. La presenza di più strumenti in ogni sito da inizio 2013 ha permesso la misura contemporanea di queste specie.

Analisi chimiche

I dettagli su campionamenti ed analisi sono stati descritti altrove (Ricciardelli et al., 2017, Ottone et al., 2020). Brevemente, il particolato è stato raccolto su filtri in fibra di guarzo di 47 mm di diametro (Whatman filters, GE Healtcare Life Sciences, USA) tramite analizzatori a basso volume (Swam, FAI Instruments, Roma, Italia) da 2,3 m³/h (EN 12341) che hanno anche permesso di ottenere i dati di massa del PM25 tramite misure di beta attenuazione. I campioni raccolti ai fini delle analisi del carbonio organico ed elementare sono stati raccolti su filtri in guarzo da 47 mm (PALL Tissu Quartz) portati ad alta temperatura (800° C) per 5h prima dell'uso in modo da diminuire il valore dei bianchi, cioè la quantità di sostanza organica già presente sul supporto filtrante. Inoltre i campionatori (Skypost PM, TCR Tecora Instruments, Milano, Italia) hanno funzionato a 2,3 m³/h durante il periodo estivo (aprile - settembre) e a 1 m3/h durante il periodo freddo (ottobre - marzo) per evitare effetti di sovraccarico dei filtri che impedirebbero la corretta distinzione tra carbonio organico ed elementare (Costa et al., 2016).

I filtri raccolti sono stati analizzati, dopo estrazione in 10 ml di acqua MilliQ, con cromatografia ionica con un rivelatore di conducibilità (DIONEX, California, USA) per la determinazione dei principali ioni inorganici (UNI EN 16913 2017). In particolare nitrato, solfato e cloruro con ICS 1000 con colonna anionica (IonPacTM AS9-HC). ammonio, sodio, potassio, magnesio e calcio con ICS 1100 con colonna cationica (IonPacTM CS12A). I metalli in tracce sono stati dosati tramite analisi ICP-MS (7700 ICP-MS Agilent Technologies Inc. USA), estendendo il metodo UNI EN ISO 14902:2005 creato per la misura di Cd, As, Ni e Pb nel particolato atmosferico. La quantificazione di OC, EC e TC è stata ottenuta tramite analisi termo-ottiche di trasmittanza (Sunset Laboratoty Inc. Oregon, Oregon, USA) eseguite secondo il protocollo EUSAAR2 (Cavalli et al., 2010, Costa et al., 2016).

L'analisi del levoglucosano viene fatta estraendo i filtri in 10 ml di acqua MilliQ ed iniettando la soluzione, dopo essere stata sonicata per 15 minuti e filtrata (filtri in acetato di cellulosa con pori di 0,45 μ m), in un cromatografo liquido (Agilent 1200 series HPLC) equipaggiato con una colonna amminica ZORBAX (lunghezza 250 mm, diametro interno 4,6 mm, impaccata con particelle di 5 μ m di diametro) e usando come eluente una miscela 92,5% acetonitrile / 7,2% H2O / 0,3% acido acetico (flusso 0,8 ml/min). Come sistema di rilevazione è stato utilizzato uno Spettrometro di Massa (6410 Agilent Triple Quadrupole con ionizzazione elettrospray, ESI) che individua l'addotto tra l'anidrozucchero e l'acetato ([M+CH3COO]).

Analisi statistiche

Tutte le analisi statistiche sono state eseguite con il software RStudio su dataset che vanno dal 14/11/2011 al 29/02/2020. Avendo a disposizione dati giornalieri per quanto riguarda il sito di Bologna e bisettimanali per quanto riguarda gli altri tre siti, si è deciso di calcolare la media mensile delle concentrazioni per tutti i siti in modo

da rendere possibile un'analisi che li mettesse a confronto. Per il sito di Bologna si è considerato un limite del 75% delle osservazioni giornaliere nel mese come valore minimo sotto al quale non viene calcolata la media mensile, per gli altri tre siti non è stato invece impostato alcun valore di soglia.

Per ogni componente e rapporto tra i componenti preso in esame è stata valutata la presenza di un trend tramite un test Mann-Kendall stagionale. Si tratta di un test non parametrico derivato dal test di Mann-Kendall molto utilizzato su dati ambientali per la rilevazione di trend monotoni. Avendo a che fare con concentrazioni di inquinanti fortemente influenzate dal variare della meteorologia stagionale si è deciso di usare la variante stagionale del test (Hirsch et al., 1982) che valuta il test Mann-Kendall singolarmente per ognuno dei gruppi di stagioni (in questo caso come "stagione" è stato considerato il mese) aggregando poi i risultati di questi test.

A fini illustrativi è stata anche aggiunta la decomposizione grafica della serie storica di ciascuna concentrazione presa in esame. Con il metodo STL – Seasonal and Trend decomposition using Loess – (Cleveland et al., 1990) la serie storica viene decomposta in componente stagionale, trend di lungo periodo e residuo. La decomposizione STL è basata sul metodo di regressione polinomiale locale LOESS (Locally Estimated Scatterplot Smoothing).

Nel caso il test Mann-Kendall stagionale abbia dato un valore significativo, portando a rifiutare l'ipotesi di assenza di un trend monotono, si è anche proceduto alla stima del coefficiente angolare Theil-Sen (Theil, 1950, Sen, 1968). Lo stimatore non parametrico Theil-Sen fornisce una stima lineare del trend basandosi sulla mediana dei coefficienti angolari delle rette passanti per ogni coppia di punti della serie storica. I dati sono stati prima destagionalizzati tramite metodologia STL. Il p-value e gli intervalli di confidenza associati al coefficiente Theil-Sen sono stati stimati con metodo bootstrap.

Per ogni concentrazione e rapporto di concentrazioni preso in esame la serie storica effettiva è stata divisa in

tre sotto-periodi di lunghezza equivalente nel tentativo di evidenziare la presenza di trend di durata più breve. La serie storica delle diverse concentrazioni ha una durata che non coincide necessariamente con quella delle altre concentrazioni, quindi anche i tre sotto-periodi possono variare da concentrazione a concentrazione. Per ogni sotto-periodo è stato calcolato il test Mann-Kendall stagionale ed eventualmente è stato stimato il coefficiente Theil-Sen. Va tuttavia sottolineato che questi test e queste stime sono stati eseguiti su periodi più brevi, quindi con meno dati. La componente stagionale avrà una stima diversa rispetto a quella della serie storica iniziale, poiché verrà stimata su periodi più brevi, rendendo quindi le valutazioni meno accurate e rendendo più difficile un confronto tra le rette di Theil-Sen stimate nei vari periodi.

Risultati

Il particolato atmosferico (PM_{2,5}) analizzato dal 2011 nei quattro siti della regione Emilia-Romagna ha mostrato, nell'insieme delle specie organiche (OC) e nei principali ioni inorganici (nitrato, solfato e ammonio), le principali componenti della massa, seguite dal carbonio elementare (EC), da alcuni altri importanti ioni inorganici (potassio, calcio, cloruro e sodio) e da alcuni metalli in tracce. La composizione chimica dell'aerosol ha andamenti con una chiara stagionalità, in quanto sono presenti specie prevalentemente invernali o estive ed altre specie con concentrazione quasi costante durante l'anno, il che porta ad andamenti ciclici per la massa totale sia del particolato che delle singole specie, in senso assoluto o percentuale (Figura 14.4.1).

La percentuale di PM_{2,5} formato dall'aerosol secondario inorganico (Secondary Inorganic Aerosol – SIA) resta predominante rispetto alle altre specie durante tutto l'anno grazie all'importanza che assumono nelle diverse stagioni due suoi componenti: in inverno il nitrato e in estate il solfato (Tabella 14.4.1).

La frazione carboniosa mantiene un apporto percentuale sostanzialmente costante durante l'anno (Tabella 1). In inverno la presenza di sorgenti stagionali, come il riscaldamento domestico con combustione di biomassa (Gilardoni et al., 2016; Paglione et al., 2020; Pietrogrande et al., 2015), porta un incremento sia della componente organica (OC) che di quella elementare (EC). Durante l'estate la mancanza di guesta sorgente porta ad una riduzione in senso assoluto di queste componenti accompagnata però anche da una riduzione della massa totale del particolato. Inoltre il calo della frazione organica primaria in estate è compensato da un delle organiche incremento specie secondarie (Secondary Organic Aerosol - SOA) permesso dal maggiore irraggiamento estivo (Pietrogrande et al., 2014; Pietrogrande et al., 2016; Rinaldi et al., 2015). Queste osservazioni portano ad ipotizzare che il rapporto tra aerosol organico primario (Primary Organic Aerosol -POA) e secondario (SOA) vari durante l'anno: più a favore del POA in inverno e del SOA in estate. Dall'osservazione dei soli dati di concentrazione assoluta o relativa di OC ed EC non è, però, verificabile o quantificabile il rapporto POA:SOA. Servirebbero specifiche analisi di Source Apportionment (SA) che sono oggetto di altri studi (Scotto et al., 2015).

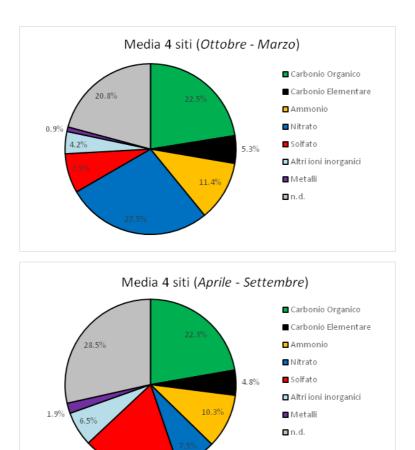


Figura 14.4.1. Composizione media del PM_{2.5} nei quattro siti considerati. Sopra: periodo freddo (Ottobre – Marzo). Sotto: periodo caldo (Aprile – Settembre).

Tabella 14.4.1 – Valori medi di PM_{2.5} nei quattro siti e percentuale di massa attribuibile alle diverse specie chimiche nella media dei periodi freddi (Ottobre – Marzo) e dei periodi caldi (Aprile – Settembre). La percentuale non determinata (n.d.) dipende da tutto ciò che non è direttamente quantificato dalle analisi chimiche (come l'acqua o la materia organica).

	BOLO	OGNA	PARMA		RIMINI		S. PIETRO C.	
Periodo di riferimento	Ott-Mar	Apr-Set	Ott-Mar	Apr-Set	Ott-Mar	Apr-Set	Ott-Mar	Apr-Set
PM _{2,5}	29 μg/m ³	13 μg/m ³	35 μg/m ³	15 μg/m ³	28 μg/m ³	11 μg/m ³	24 μg/m ³	12 μg/m ³
Carbonio Organico	21.5%	23.0%	17.1%	19.1%	25.6%	24.9%	25.6%	22.1%
Carbonio Elementare	5.9%	6.0%	4.3%	3.7%	5.8%	5.8%	5.0%	3.5%
Ammonio	10,8%	9,7%	11,1%	9,6%	10,6%	10,5%	13,2%	11,3%
Nitrato	25,3%	6,2%	28,1%	9,0%	24,4%	5,9%	32,2%	8,9%
Solfato	7,2%	17,3%	6,4%	15,4%	8,0%	20,9%	8,4%	19,2%
Altri ioni inorganici	3,0%	4,4%	3,1%	6,8%	5,6%	7,7%	5,1%	7,3%
Metalli	0,9%	1,8%	0,7%	1,6%	0,9%	2,2%	1,0%	2,1%
n.d.	25,2%	31,5%	29,2%	34,8%	19,3%	22,1%	9,5%	25,7%

L'analisi della serie storica del PM_{2,5} (Tabella 14.4.2) ha mostrato un trend decrescente significativo in due dei tre siti urbani (non a Parma), ma non nel sito rurale. Questo è in buon accordo con quanto trovato da Bigi et al. (2016) che individuarono un trend negativo in diversi siti della regione Emilia-Romagna nella decade 2005-2015. Una sostanziale differenza con il lavoro citato è che gli autori trovarono un trend significativo per Parma ma non per Rimini, esattamente all'opposto con quanto qui riportato, ma questo può essere legato alla diversa serie storica considerata.

Ci si è chiesti se la diminuzione ha riguardato l'intero periodo o è imputabile ad un limitato lasso temporale. Si è pertanto deciso di suddividere il periodo iniziale in 3 sottoperiodi e di verificare la significatività dei trend in questi sottoinsiemi. Questo ha comportato l'analisi di serie storiche di lunghezza molto ridotta e ciò comporta un aumento importante delle incertezze legate alla stima dei trend. Di questo bisogna tener conto nelle analisi di risultati, che forniscono delle indicazioni che dovranno essere approfondite e verificate negli anni futuri.

Altre informazioni sul comportamento del PM_{2,5} possono essere ottenute analizzando i componenti del particolato.

I principali ioni inorganici secondari (nitrato, solfato e ammonio) non mostrano trend significativi (Tabella 14.4.2).

La frazione organica (Tabella 14.4.2) mostra un comportamento del tutto simile a quello del Secondary Inorganic Aerosol (SIA): nessun calo significativo della concentrazione in nessun sito.

Il Carbonio Elementare, al contrario, ha mostrato un trend negativo in tutti i siti urbani, ma non nel sito rurale (Tabella 14.4.2). In altri termini a S. Pietro Capofiume, il sito meno interessato in modo diretto dalle principali sorgenti di particolato primario, né la massa del PM_{2,5} né le sue principali componenti inorganiche o carboniose mostrano una diminuzione significativa. Invece nei siti di fondo urbano il Carbonio Elementare, che è direttamente collegato alle sorgenti da combustione, mostra un calo delle concentrazioni significativamente diverso da zero. Questo si rileva anche a Parma seppure in questo sito altrettanto non fosse emerso dall'analisi dei valori della massa di PM_{2.5}. Analizzando l'andamento di guesta variabile suddividendo l'intervallo temporale in tre parti, risulta interessante osservare che in tutti i siti, compreso il sito rurale, il primo periodo mostra un trend negativo

significativo, analogamente a quanto visto per il particolato, che mostra significatività solo nel primo periodo (ca. 2012-2014). A Bologna e Parma questo si verifica anche per il terzo intervallo temporale (ca. 2017-2019).

L'assenza di un trend significativo per il Carbonio Organico e la presenza di una tendenza alla diminuzione della concentrazione del Carbonio Elementare si riflette nell'andamento del rapporto OC/EC nei siti analizzati. Il trend risulta significativo e positivo in tutti i siti urbani. Dividendo la serie temporale in tre intervalli, il comportamento di questo rapporto varia molto sia in termini di significatività che di pendenza delle variazioni. Probabilmente gli intervalli risultano troppo brevi per questo rapporto che dipende da molti fattori come l'importanza relativa di sorgenti antropiche che producono quantità molto diverse di OC ed EC (come il traffico o la combustione della biomassa) oppure il peso della componente secondaria che incide solo sulla concentrazione della frazione organica (SOA).

Tabella 14.4.2 – Significatività del trend di PM_{2.5}, OC, EC, NH4+, NO₃-, SO₄² e del rapporto OC/EC sull'intero periodo considerato, e su tre sottoinsiemi di tale intervallo temporale, calcolate con test Mann-Kendall stagionale (MKS p-value, in nero quando significativo: < 0.05). La variazione lineare annua (b) è calcolata tramite stima del coefficiente Theil-Sen.

SPECIE	PERIODO	BOLOGNA	PARMA	RIMINI	S. PIETRO C.
PM _{2,5}	Intero periodo: 11/11 – 02/20	MKS p-value = 0.03 b = -0.35 (µg/m³)/y	MKS p-value = 0.2 b = -0.36 $(\mu g/m^3)/y$	MKS p-value < 0.01 b = -0.70 (µg/m³)/y	MKS p-value = 0.9 b = 0.05 $(\mu g/m^3)/y$
	11/11 – 08/14	MKS p-value < 0.01 b = -3.13 (μg/m³)/y	MKS p-value = 0.3 b = -2.22 $(\mu g/m^3)/y$	MKS p-value < 0.01 b = -3.29 (µg/m³)/y	MKS p-value < 0.01 b = -2.87 (μg/m³)/y
	09/14 - 05/17	MKS p-value = 0.7	MKS p-value > 0.99	MKS p-value = 0.4	MKS p-value = 0.6

SPECIE	PERIODO	BOLOGNA	PARMA	RIMINI	S. PIETRO C.
		$b = 0.18$ $(\mu g/m^3)/y$	$b = 0.27$ $(\mu g/m^3)/y$	$b = -0.76$ $(\mu g/m^3)/y$	b = -0.24 (µg/m ³)/y
	06/17 - 02/20	MKS p-value = 0.1 b = -1.77 $(\mu g/m^3)/y$	MKS p-value = 0.1 b = -1.84 $(\mu g/m^3)/y$	MKS p-value = 0.6 b = -0.72 $(\mu g/m^3)/y$	MKS p-value = 0.6 b = 0.44 $(\mu g/m^3)/y$
	Intero periodo: 03/12 – 09/19 03/12 – 10/19 SPC	MKS p-value = 0.1 b = -0.04 $(\mu g/m^3)/y$	MKS p-value = 0.1 b = -0.05 $(\mu g/m^3)/y$	MKS p-value = 0.8 b = -0.01 (μ g/m ³)/y	MKS p-value = 0.5 b = -0.02 $(\mu g/m^3)/y$
OC	03/12 - 09/14	MKS p-value = 0.1 b = -0.31 $(\mu g/m^3)/y$	MKS p-value = 0.9 b = -0.20 $(\mu g/m^3)/y$	MKS p-value = 0.4 b = -0.26 (μ g/m ³)/y	MKS p-value = 0.2 b = -0.26 $(\mu g/m^3)/y$
	10/14 – 03/17	MKS p-value = 0.3 b = -0.10 $(\mu g/m^3)/y$	MKS p-value = 0.2 b = -0.24 $(\mu g/m^3)/y$	MKS p-value = 0.2 b = -0.20 $(\mu g/m^3)/y$	MKS p-value = 0.01 b = -0.50 (μg/m³)/y
	04/17 – 09/19 04/17 – 10/19 SPC	MKS p-value = 0.6 b = -0.16 (μg/m³)/y	MKS p-value = 0.9 b = -0.02 (µg/m³)/y	MKS p-value = 0.6 b = 0.28 (μ g/m³)/y	$MKS p-value \\ > 0.99 \\ b = 0.01 \\ (\mu g/m^3)/y$
EC	Intero periodo: 03/12 – 09/19 03/12 – 10/19 SPC	MKS p-value < 0.01 b = -0.06 (μg/m³)/y	MKS p-value < 0.01 b = -0.04 (µg/m³)/y	MKS p-value < 0.01 b = -0.05 (µg/m³)/y	MKS p-value = 0.08 b = -0.01 (μ g/m ³)/y
	03/12 - 09/14	MKS p-value < 0.01 b = -0.21 (μg/m³)/y	MKS p-value < 0.01 b = -0.15 (μg/m³)/y	MKS p-value < 0.01 b = -0.25 (μg/m³)/y]	MKS p-value < 0.01 b = -0.08 (μg/m³)/y
	10/14 – 03/17	MKS p-value > 0.99 b = 0.10 $(\mu g/m^3)/y$	MKS p-value > 0.99 b = -0.03 $(\mu g/m^3)/y$	MKS p-value = 0.9 b = 0.03 $(\mu g/m^3)/y$	MKS p-value > 0.99 b = -0.04 (μ g/m ³)/y

SPECIE	PERIODO	BOLOGNA	PARMA	RIMINI	S. PIETRO C.
	04/17 – 09/19 04/17 – 10/19 SPC	MKS p-value = 0.09 b = -0.13 $(\mu g/m^3)/y$	MKS p-value = 0.04 b = -0.07 (µg/m³)/y	MKS p-value = 0.3 b = -0.03 $(\mu g/m^3)/y$	MKS p-value = 0.3 b = -0.04 $(\mu g/m^3)/y$
	Intero periodo: 03/12 – 09/19 03/12 – 10/19 SPC	MKS p-value < 0.01 b = 0.14 /y	MKS p-value < 0.01 b = 0.20 /y	MKS p-value < 0.01 b = 0.20 /y	MKS p-value = 0.7 b = 0.00 /y
OCEC	03/12 - 09/14	MKS p-value = 0.047 b = 0.44 /y	MKS p-value < 0.01 b = 0.88 /y	MKS p-value = 0.047 b = 0.58 /y	MKS p-value = 0.2 b = 0.36 /y
OC/EC	10/14 - 03/17	MKS p-value = 0.02 b = 0.44 /y	MKS p-value = 0.047 b = -0.34 /y	MKS p-value = 0.4 b = -0.06 /y	MKS p-value = 0.02 b = -0.65 /y
	04/17 – 09/19 04/17 – 10/19 SPC	MKS p-value = 0.1 b = -0.44 /y	MKS p-value < 0.01 b = 0.78 /y	MKS p-value = 0.02 b = 0.59 /y	MKS p-value < 0.01 b = 0.51 /y
	Intero periodo: 11/11 – 09/19 12/11 – 09/19 Bologna	MKS p-value = 0.4 b = -0.02 $(\mu g/m^3)/y$	MKS p-value > 0.99 b = 0.00 (μg/m³)/y	MKS p-value > 0.99 b = 0.02 (μ g/m³)/y	MKS p-value = 0.3 b = 0.01 $(\mu g/m^3)/y$
NHI +	11/11 – 06/14 12/11 – 07/14 Bologna	MKS p-value = 0.06 b = -0.18 $(\mu g/m^3)/y$	MKS p-value = 0.9 b = -0.02 $(\mu g/m^3)/y$	MKS p-value = 0.2 b = -0.24 $(\mu g/m^3)/y$	MKS p-value = 0.9 b = -0.33 $(\mu g/m^3)/y$
NH ₄ ⁺	07/14 – 01/17 08/14 – 02/17 Bologna	MKS p-value = 0.6 b = 0.13 $(\mu g/m^3)/y$	MKS p-value = 0.4 b = -0.24 (μ g/m ³)/y	MKS p-value = 0.6 b = -0.20 $(\mu g/m^3)/y$	MKS p-value = 0.6 b = 0.08 $(\mu g/m^3)/y$
	02/17 – 09/19 03/17 – 09/19 Bologna	MKS p-value = 0.2 b = -0.11 $(\mu g/m^3)/y$	MKS p-value = 0.1 b = -0.32 $(\mu g/m^3)/y$	MKS p-value = 0.4 b = -0.12 $(\mu g/m^3)/y$	MKS p-value = 0.4 b = -0.17 $(\mu g/m^3)/y$
NO ₃ -	Intero periodo: 11/11 – 09/19 12/11 – 09/19 Bologna	MKS p-value = 0.2 b = 0.00 $(\mu g/m^3)/y$	MKS p-value = 0.2 b = -0.01 (μ g/m ³)/y	MKS p-value = 0.5 b = 0.01 (μ g/m ³)/y	MKS p-value = 0.4 b = 0.02 $(\mu g/m^3)/y$

SPECIE	PERIODO	BOLOGNA	PARMA	RIMINI	S. PIETRO C.
	11/11 – 06/14 12/11 – 07/14 Bologna	MKS p-value < 0.01 b = -0.30 (μg/m³)/y	MKS p-value = 0.6 b = -0.14 (µg/m³)/y	MKS p-value = 0.6 b = -0.10 $(\mu g/m^3)/y$	MKS p-value = 0.2 b = -0.86 $(\mu g/m^3)/y$
	07/14 – 01/17 08/14 – 02/17 Bologna	$MKS p-value = 0.2$ $b = 0.22$ $(\mu g/m^3)/y$	MKS p-value > 0.99 b = -0.16 (µg/m³)/y	MKS p-value = 0.9 b = -0.11 $(\mu g/m^3)/y$	MKS p-value = 0.9 b = 0.16 $(\mu g/m^3)/y$
	02/17 – 09/19 03/17 – 09/19 Bologna	MKS p-value = 0.4 b = -0.16 $(\mu g/m^3)/y$	MKS p-value < 0.01 b = -0.88 (µg/m³)/y	MKS p-value = 0.1 $b = -0.13$ $(\mu g/m^3)/y$	MKS p-value = 0.6 b = 0.01 $(\mu g/m^3)/y$
	Intero periodo: 11/11 – 09/19 12/11 – 09/19 Bologna	MKS p-value = 0.1 b = -0.05 $(\mu g/m^3)/y$	MKS p-value = 0.1 $b = -0.04$ $(\mu g/m^3)/y$	MKS p-value = 0.2 b = -0.03 $(\mu g/m^3)/y$	MKS p-value = 0.3 b = -0.04 $(\mu g/m^3)/y$
go 2	11/11 – 06/14 12/11 – 07/14 Bologna	MKS p-value = 0.1 b = -0.37 $(\mu g/m^3)/y$	MKS p-value = 0.4 b = -0.21 $(\mu g/m^3)/y$	MKS p-value = 0.02 b = -0.27 (µg/m³)/y	MKS p-value = 0.2 b = -0.20 $(\mu g/m^3)/y$
SO4 ²⁻	07/14 – 01/17 08/14 – 02/17 Bologna	MKS p-value = 0.9 b = 0.03 (μ g/m³)/y	MKS p-value = 0.6 b = -0.14 (µg/m³)/y	MKS p-value > 0.99 b = 0.05 (μ g/m³)/y	MKS p-value = 0.6 b = -0.02 $(\mu g/m^3)/y$
	02/17 – 09/19 03/17 – 09/19 Bologna	MKS p-value = 0.4 b = -0.15 (μ g/m ³)/y	MKS p-value = 0.1 b = -0.36 (µg/m³)/y	MKS p-value = 0.4 b = -0.10 (μ g/m ³)/y	MKS p-value = 0.6 b = -0.03 (μg/m³)/y

Per i metalli l'analisi è stata fatta per Sb, As, Cd, Pb, Fe, Sn, V e Zn. I primi quattro (Sb, As, Cd, Pb) hanno un trend negativo significativo in tutti i siti, mentre Fe e Sn non hanno mai avuto un andamento costante. Per V e Zn, al contrario che per tutti gli altri metalli, non è stato individuato un comportamento omogeneo in tutti i siti: hanno avuto un calo significativo in tutti i siti tranne che

a RN, il V, e a SPC, lo Zn, per cui non c'è una tendenza significativa (Tabella 14.4.3).

Infine tra i componenti in tracce è stato osservato il levoglucosano, uno zucchero deidratato derivante dalla cellulosa e marker dei processi di combustione della biomassa. Il levoglucosano è stato misurato a partire dal

2015 e in questo periodo, seppur limitato, ha mostrato un trend di concentrazione negativo significativamente diverso da zero in tutti i siti (Tabella 14.4.3).

Tabella 14.4.3 – Significatività del trend delle specie presenti in tracce nel PM_{2.5}, sull'intero periodo considerato, calcolata con test Mann-Kendall stagionale (MKS p-value, in nero quando significativo: < 0.05). La variazione lineare annua (b) è calcolata tramite stima del coefficiente Theil-Sen.

	BOLOGNA	PARMA	RIMINI	S. PIETRO C.
Ferro	MKS p-value = 0.5	MKS p-value = 0.2	MKS p-value = 0.1	MKS p-value = 0.8
	b = 1e-03 (μ g/m ³)/y	b = 3e-03 (μ g/m ³)/y	b = -3e-3 (μ g/m ³)/y	b = -1e-4 (μ g/m ³)/y
Antimonio	MKS p-value < 0.01	MKS p-value < 0.01	MKS p-value < 0.01	MKS p-value < 0.01
	b = -7e-05 (μ g/m ³)/y	b = -4e-05 (μ g/m ³)/y	b = -3e-5 (μ g/m ³)/y	b = -4e-05 (μ g/m ³)/y
Stagno	MKS p-value = 0.6	MKS p-value = 0.3	MKS p-value = 0.08	MKS p-value = 0.2
	b = -1e-05 (μ g/m ³)/y	b = -2e-05 (μ g/m ³)/y	b = -2e-5 (μ g/m ³)/y	b = -2e-05 (μ g/m ³)/y
Vanadio	MKS p-value < 0.01	MKS p-value = 0.02	MKS p-value = 0.2	MKS p-value < 0.01
	b = -5e-05 (μ g/m ³)/y	b = -3e-05 (μ g/m ³)/y	b = -3e-5 (μ g/m ³)/y	b = -5e-05 (μ g/m ³)/y
Arsenico	MKS p-value < 0.01	MKS p-value < 0.01	MKS p-value < 0.01	MKS p-value < 0.01
	b = -3e-05 (μ g/m ³)/y	b = -5e-05 (μ g/m ³)/y	b = -3e-5 (μ g/m ³)/y	b = -4e-05 (μ g/m ³)/y
Cadmio	MKS p-value < 0.01	MKS p-value < 0.01	MKS p-value < 0.01	MKS p-value < 0.01
	b = -1e-05 (μ g/m ³)/y	b = -1e-05 (μ g/m ³)/y	b = -1e-5 (μ g/m ³)/y	b = -1e-05 (μ g/m ³)/y
Piombo	MKS p-value < 0.01	MKS p-value < 0.01	MKS p-value < 0.01	MKS p-value < 0.01
	b = -3e-4 (μ g/m ³)/y	b = -2e-04 (μ g/m ³)/y	b = -2e-4 (μ g/m ³)/y	b = -2e-04 (μ g/m ³)/y
Zinco	MKS p-value < 0.01	MKS p-value = 0.03	MKS p-value = 0.04	MKS p-value = 0.2
	b = -5e-4 (μ g/m ³)/y	b = -5e-4 (μ g/m ³)/y	b = -5e-4 (μ g/m ³)/y	b = -4e-04 (μ g/m ³)/y
Levoglucosano	MKS p-value < 0.01	MKS p-value = 0.02	MKS p-value < 0.01	MKS p-value < 0.01
	b = -5e-3 (μ g/m ³)/y	b = -9e-3 (μg/m³)/y	b = -8e-3 (μg/m³)/y	b = -3e-3 (μ g/m ³)/y

Discussione

L'andamento delle componenti del PM_{2.5} potrebbe suggerire che ci sia stata una diminuzione del contributo primario al particolato, ma non di quello secondario.

L'andamento del trend del Carbonio Elementare. componente primario dell'aerosol e originato dalle combustioni, suggerisce una diminuzione dell'impatto di questa tipologia di sorgenti, che potrebbe essere legata sia alla riduzione delle attività che producono emissioni (es. riduzione dei flussi di traffico, etc.) miglioramento delle tecnologie utilizzate (es. rinnovamento del parco veicolare con veicoli a tecnologia meno inquinante, etc.). Il trend individuato potrebbe essere legato alle modifiche della sorgente di traffico veicolare, che secondo le serie storiche (1990-2018) deali inventari delle emissioni Ispra (http://www.sinanet.isprambiente.it/it/sia-ispra/seriestoriche-emissioni), è in costante calo; un parallelo aumento delle sorgenti da combustione di biomassa legate al riscaldamento potrebbe aver contribuito a controbilanciare questo effetto. Il fatto che il levoglucosano dal 2015 mostri un calo significativo in tutti i siti e, analogamente, il Carbonio Elementare in due dei siti urbani lo mostri dal 2017, potrebbe indicare un inizio di diminuzione anche per le sorgenti legate alla combustione di biomassa attribuibile ai miglioramenti tecnologici, o ad una maggiore consapevolezza nella cittadinanza, oppure all'introduzione di provvedimenti anche sull'uso non efficiente di biomassa per il riscaldamento (come ad esempio, per la regione Emiliaall'interno del PAIR2020. https://www.arpae.it/dettaglio_generale.asp?id=3890&id livello=2054).

Il comportamento dei metalli offre lo spunto per un futuro lavoro di approfondimento sulla loro attribuzione, per esempio se si trovano in forma solubile o meno, oppure se sono di origine naturale o antropica. Ciò permetterebbe di capire se i trend che si riscontrano in metalli, come Cd, As e Pb ma non in Fe e Sn, possano essere indice di una trasformazione, ad esempio, della sorgente traffico verso forme più efficienti nei consumi (basse emissioni o elettriche) che però non modificherebbero il numero di veicoli in circolazione e quindi, con ogni probabilità, la componente non-exhaust.

La sostanziale mancanza di trend per la componente secondaria inorganica - e organica, che a sua volta è fortemente dipendente dalla frazione secondaria - sottolinea l'importanza del particolato che si genera direttamente in atmosfera rispetto alla massa totale di frazione Questa secondaria probabilmente, in modo meno efficiente e con una maggiore inerzia temporale dei cambiamenti delle sorgenti di aerosol primario. Sicuramente ci si aspetta che una riduzione dei precursori emessi (COV, SO₂, NH₃, NO_X, ...) abbia un'influenza sulle concentrazioni del particolato secondario, oltre ad essere di per sé auspicabile, essendo alcuni di essi specie normate dalla legge in vigore (D.Lgs. 155/2010). Potrebbero però essere necessarie riduzioni all'emissione piuttosto consistenti e durature per ottenere effetti percepibili sul PM_{2.5} in un ambiente stagnante come la Pianura Padana, visto che la formazione del secondario e la sua permanenza in atmosfera non sono direttamente proporzionali alla quantità di gas precursori emessi, ma gran parte dalle caratteristiche dipendono in meteorologiche dell'atmosfera (come temperatura, umidità, capacità dispersiva; Seinfeld e Pandis, 2006). Non a caso le concentrazioni medie annue di PM_{2.5}. come anche il numero di superamenti giornalieri di PM₁₀, sono fortemente legate ai cosiddetti "giorni favorevoli all'accumulo" (report La qualità dell'aria in Emilia-Romagna, 2018: https://www.arpae.it/dettaglio_documento.asp?id=7361

Conclusioni

L'analisi del trend del PM_{2,5} ha mostrato come negli ultimi anni sia stato molto difficile ottenere un calo significativo di questo inquinante, nonostante la diminuzione delle componenti che derivano più strettamente dalle sorgenti primarie di aerosol come il carbonio elementare e il levoglucosano. La componente secondaria, che ha un peso rilevante sulla concentrazione del PM_{2,5}, non mostra però variazioni significative nel tempo: questa frazione risente in modo meno diretto delle variazioni delle sorgenti, a meno che queste siano sostanziali e durature, mentre risente molto delle condizioni geografiche e meteorologiche, che possono incidere in modo sostanziale sulla massa dell'aerosol. Questo porta

&idlivello=134) che si rilevano in un anno.

a non osservare una diminuzione significativa del particolato totale ($PM_{2,5}$) rilevato in atmosfera.

In regioni caratterizzate da condizioni meteo-climatiche sfavorevoli come quelle della Pianura Padana sono pertanto necessari interventi sulle emissioni consistenti e duraturi nel tempo, tali da incidere non solo sulla componente primaria dell'aerosol, ma da arrivare a contrastare anche la formazione e la stagnazione del particolato secondario.

Ringraziamenti

Gli autori desiderano ringraziare tutti i colleghi di Arpae, delle APA e del Laboratorio Multisito, che hanno collaborato a raccogliere ed analizzare questi dati.

Bibliografia

Bigi A., Ghermandi G. Long-term trend and variability of atmospheric PM₁₀ concentration in the Po Valley. Atmospheric Chemistry and Physics 14 (2014) 4895-4907;

Bigi A., Ghermandi G. Trends and variability of atmospheric PM_{2,5} and PM₁₀-2.5 concentration in the Po Valley, Italy. Atmospheric Chemistry and Physics 16 (2016) 15777-15788;

Cavalli F., Viana M., Yttri K.E., Genberg J., Putaud J.P. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmospheric Measurement Techniques 3 (2010) 79-89;

Cleveland R.B., Cleveland W.S, McRae J.E., Terpenning I. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. Journal of official Statistics 6 (1990) 3-73;

Costa V., Bacco D., Castellazzi S., Ricciardelli I., Vecchietti R., Zigola C., Pietrogrande M.C. Characteristics of carbonaceous aerosol in Emilia-Romagna (Northern Italy) based on two fall/winter field campaigns. Atmospheric Research 167 (2016) 100-107;

Gilardoni S., Massoli P., Giulianelli L., Rinaldi M., Paglione M., Pollini F., Lanconelli C., Poluzzi V., Carbone C., Hillamo R., Russell L.M., Facchini M.C., Fuzzi S. Fog scaveging of organic and inorganic aerosol in the Po Valley. Atmospheric Chemistry and Physics 14 (2014) 6967-6981;

Gilardoni S., Massoli P., Paglione M., Giulianelli L., Carbone C., Rinaldi M., Decesari S., Sandrini S., Costabile F., Gobbi G.P., Pietrogrande M.C., Visentin M., Scotto F., Fuzzi S., Facchini M.C. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions. Proceedings of the National Academy of Sciences of the United States of America 113 (2016) 10013-10018;

Hirsh R.M., Slack J.R., Smith R.A. Techniques of trend analysis for monthly water quality data. Water Resources Research 18 (1982) 107-121;

Ottone M., Broccoli S., Parmagnani F., Giannini S., Scotto F., Bonvicini L., Luberto F., Bacco D., Trentini A., Poluzzi V., Angelini P., Colacci A., Rossi P.G., Ranzi A. Source-related components of fine particulate matter and risk of adverse birth outcomes in Northern Italy. Environmental Research 186 (2020) 109564;

Paglione M., Gilrdoni S., Rinaldi M., Decesari S., Zanca N., Sandrini S., Giulianelli L., Bacco D., Ferrari S., Poluzzi V., Scotto F., Trentini A., Poulain L., Herrmann H., Wiedensohler A., Canonaco F., Prevot A.S.H., Massoli P., Carbone C., Facchini M.C., Fuzzi S. The impact of biomass burning and aqueous-phase processing on air quality: a multi-year source apportionment study in the Po Valley, Italy. Atmospheric Chemistry and Phisycs 20 (2020) 1233-1254;

Pietrogrande M.C., Bacco D., Visentin M., Ferrari S., Poluzzi V. Polar organic marker compounds in atmospheric aerosol in the Po Valley during the Supersito campaings – Part 1: Low molecular weight carboxylic acids in cold seasons. Atmospheric Environment 86 (2014) 164-175;

Pietrogrande M.C., Bacco D., Visentin M., Ferrari S., Casali P. Polar organic marker compounds in atmospheric aerosol in the Po Valley during the Supersito campaings – Part 2: Seasonal variations of sugars. Atmospheric Environment 97 (2014) 215-225;

Pietrogrande M.C., Bacco D., Ferrari S., Kaipainen J., Ricciardelli I., Riekkola M.L., Trentini A., Visentin M. Charcterization of atmospheric aerosol in the Po Valley during the Supersito campaings – Part 3: Contribution of wood

combustion to wintertime atmospheric aerosols in Emilia-Romagna region (Northern Italy). Atmospheric Environment 122 (2015) 291-305;

Pietrogrande M.C., Bacco D., Ferrari S., Ricciardelli I., Scotto F., Trentini A., Visentin M. Charcterization and major sources of carbonaceous aerosols in PM_{2,5} in Emilia-Romagna region (Northern Italy) from four-year observations. Science of the Total Environment 553 (2016) 172-183;

Ricciardelli I., Bacco D., Rinaldi M., Bonafè G., Scotto F., Trentini A., Bertacci G., Ugolini P., Zigola C., Rovere F., Maccone C., Pironi C., Poluzzi V. A three-year investigation of daily PM_{2.5} main chemical components in four sites: the routine measurement program of the Supersito Project (Po Valley, Italy). Atmospheric Environment 152 (2017) 418-430:

Rinaldi M., Gilardoni S., Paglione M., Sandrini S., Fuzzi S., Massoli P., Bonasoni P., Cristofanelli P., Marinoni A., Poluzzi V., Decesari S. Organic aerosol evolution and transport observed at Mt. Cimone (2165 m a.s.l.), Italy, during the PEGASOS campaing. Atmospheric Chemistry and Phisycs 15 (2015) 11327-11340;

Sandrini S., van Pinxteren D., Giulianelli L., Herrmann H., Poulain L., Facchini M.C., Gilardoni S., Rinaldi M., Paglione M., Turpin B.J., Pollini F., Bucci S., Zanca N., Decesari S. Size-resolved aerosol composition at an urban and a rural site in the Po Valley in summertime: implications for secondary aerosol formation. Atmospheric Chemistry and Phisycs 16 (2016) 10879-10897;

Scotto F., Ricciardelli I., Bacco D., Vagheggini A., Trentini A., Ferrari S., Poluzzi V., Maccone C., Vecchi R. PM_{2,5} source apportionment in the Po Valley: a 4 city study in Emilia-Romagna region. Comunicazione orale, European Aerosol Conference, Milano (2015),

https://www.arpae.it/cms3/documenti/_cerca_doc/supersito/presentazioni/2015/10-presentazEAC2015_scotto.pdf;

Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd Edition, John Wiley & Sons, New York (2006);

Sen P.K. Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association 63 (1968) 1379-1389;

Theil H. A rank-invariant method of linear and polynomial regression analysis. I, II, III. Nederl. Akad. Wetensch. 53 (1950) 386-392, 521-525, 1397-1412.

14.5 QUANTIFICAZIONE DELLA PRESENZA DI GRANULI DI TONER COLORATO DI STAMPANTE E VALUTAZIONE DELLA PRESENZA DI MICROPLASTICHE IN ARIA AMBIENTE IN 5 CITTÀ ITALIANE

Verardo P.1, Tassan-Mazzocco F.1, Flori C.2, Della Bella V.2, Moretti O.2

¹ARPA FVG

² ARPA UMBRIA

RIASSUNTO

Questa indagine è stata condotta in 4 città del Friuli Venezia Giulia ed una in Umbria. Il metodo per l'analisi dei pollini in aria prevede il campionamento giornaliero in continuo ad un'altezza minima di 15 metri dal suolo. Oltre ai pollini si possono riconoscere, ed eventualmente contare, granuli di particolato atmosferico in base a caratteristiche ottiche quali colore, trasparenza e morfologia. Alcune forme caratteristiche possono essere identificate per confronto con campioni di laboratorio o di letteratura.

Le particelle di toner colorato di stampante si sono dimostrate presenti in aria ambiente nei campioni per la conta pollinica. Il toner nero, sicuramente presente, non è distinguibile dal particolato atmosferico nero derivante da processi di combustione.

In letteratura si trovano studi riguardanti l'impatto sulla salute della polvere di toner, condotti esclusivamente all'interno di aree confinate. La maggior parte di questi lavori tende ad escludere che il toner sia causa di gravi danni alla salute, pur avendo dimensioni compatibili con le PM₁₀. Le scarse informazioni sulla fabbricazione e sulla composizione di queste polveri lasciano ancora aperto il problema degli effetti sulla salute umana.

Altre particelle di interesse attuale sono le microplastiche, frammenti di materiale plastico dispersi nell'ambiente esterno. Oltre che nel suolo e nei fondali marini sono state rintracciate anche in aria. Alcune forme sono state fotografate nei vetrini per il monitoraggio pollinico. Gli impatti sulla salute umana sono descritti per ingestione o contatto con l'epitelio respiratorio. Le microplastiche nell' aria ambiente rappresentano una parte del ciclo della plastica che inevitabilmente si conclude o nel suolo o in mare.

Parole chiave: toner, monitoraggio aerobiologico, microplastiche, microscopia ottica

ABSTRACT

This survey was conducted in 4 cities in Friuli Venezia Giulia and one in Umbria. The method for analyzing airborne pollen involves continuous daily sampling at a minimum height of 15 meters above the ground. In addition to pollen, atmospheric particulate granules can be recognized and possibly counted on the basis of optical characteristics such as color, transparency and morphology. Some characteristic shapes can be identified by comparison with laboratory or literature samples.

Colored printer toner particles have been shown to be present in ambient air in pollen count samples. The black toner, certainly present, is indistinguishable from the black atmospheric particulate resulting from combustion processes.

There are literature studies concerning the impact of toner powder on health, conducted exclusively indoor. Most of these works tend to exclude that toner is causing serious harm to health, despite having dimensions compatible with PM₁₀. The limited information on the manufacture and composition of these powders still leaves the problem of the effects on human health open.

Other particles of current interest are microplastics, alias fragments of plastic material dispersed in the external environment. In addition to the soil and the seabed, they have also been recognized in ambient air. Some forms were photographed in the pollen monitoring slides. The impacts on human health have been described following ingestion or contact with the respiratory epithelium. Microplastics in ambient air represent a part of the cycle

of plastic that inevitably ends either in the soil or in the sea.

Keywords: toner, aerobiological monitoring, microplastics, optical microscopy.

Autore di riferimento

Pierluigi Verardo (ARPA FVG) tel. 0432 191 8224; mail pierluigi.verardo@arpa.fvg.it

Introduzione

Il presente lavoro si propone di evidenziale la presenza di granuli liberi di toner colorato di stampante in aria ambiente e quantificarne la presenza attraverso i preparati per la conta dei pollini.

Lo studio si focalizza, inoltre, su un'indagine esplorativa della presenza di particelle di microplastiche nell'aria ambiente, in considerazione del rilevamento sempre più documentato nei campioni di acqua marina e della recente formulazione dell'ipotesi di un vero e proprio "ciclo delle microplastiche", che suppone il passaggio di questo materiale alla matrice acqua dall'aria e dal suolo.

I vetrini per il monitoraggio aerobiologico sono il risultato di un campionamento attivo di particolato atmosferico che utilizza campionatori volumetrici posti sul tetto di un edificio, a circa 15-20 metri di altezza dal suolo (ISPRA 2017).

Durante la conta al microscopio delle particelle di pollini e spore si possono identificare e quantificare vari tipi di particolato, distinguibili per caratteristiche ottiche quali forma, colore e dimensioni.

I granuli di toner colorato hanno caratteristiche fisiche peculiari e tre colori (giallo, ciano e magenta), che li rendono evidenti, distinguibili, e poco confondibili nei preparati. Campioni allestiti in laboratorio con toner di stampante confermano la lettura. Sono ancora poco noti i loro effetti sulla salute (Koller 2015).

Un altro tipo di particolato rinvenuto al microscopio ottico sono i frammenti di microplastiche, materiali che negli ultimi anni sono diventati oggetto di numerosi studi come contaminanti delle acque marine, mentre nella matrice aria sono tuttora scarsamente indagati, sebbene comincino a suscitare un crescente interesse nella comunità scientifica e preoccupazione nei cittadini.

Una ricerca mirata, effettuata sui preparati aerobiologici giornalieri di Pordenone, Tolmezzo (UD), Lignano Sabbiadoro (UD), Trieste e Terni negli anni 2017 e 2018 quantifica i granuli di toner colorato in granuli/m³ di aria al giorno. Si suppone che la loro abbondanza dipenda dalla presenza in loco di sorgenti quali uffici, università, copisterie, tipografie e abitazioni private.

Sui medesimi preparati è stata pure effettuata una ricerca qualitativa di particelle di microplastiche.

Metodi

Vetrini giornalieri di monitoraggio aerobiologico: il campionamento del particolato atmosferico per la conta dei pollini è disciplinato dalla linea guida "POLLnet - Linee guida per il monitoraggio aerobiologico", (ISPRA 2017). da ISPRA, Manuali e linee guida 151/2017 ISBN: 978-88-448-0820-4.

Sono stati presi in considerazione i vetrini di conta aerobiologica giornaliera:

Pordenone dal 01/08/2017 al 31/12/2018;

Tolmezzo dal 01/08/2017 al 31/12/2018;

Trieste dal 28/08/2017 al 31/12/2018:

Lignano Sabbiadoro dal 21/08/2017 al 31/12/2018;

Terni dal 01/08/2017 al 31/12/2018:

Vetrini di confronto: sono stati preparati in laboratorio vetrini contenenti polvere di toner da stampante laser, per avere un confronto con quelli ritrovati in aria (Figura 14.5.1).

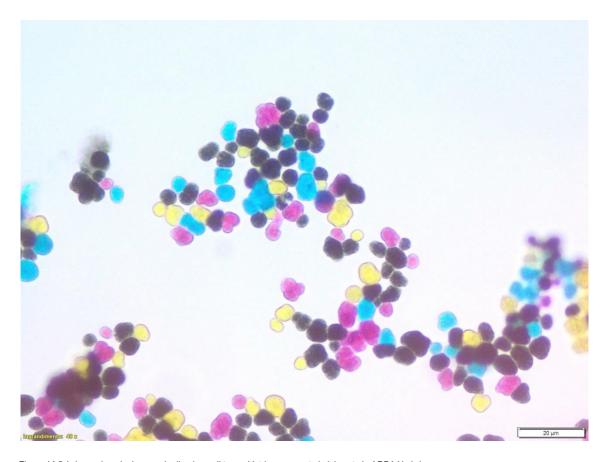


Figura 14.5.1: immagine al microscopio di polvere di toner. Vetrino preparato in laboratorio ARPA Umbria

Sono state inoltre eseguite letture di bianco campione con preparati non esposti al campionamento.

Le particelle di microplastiche (Figura 14.5.2) sono comparate per forma e dimensioni a quelle rinvenute in campioni di acqua di mare nelle indagini in ottemperanza

alla cosiddetta Marine Strategy, la Direttiva quadro 2008/56/CE sulla strategia per l'ambiente marino, successivamente recepita in Italia con il D.Lgs. n. 190 del 13 ottobre 2010.

Figura 14.5.2. Immagine al microscopio ottico stereo di frammenti di microplastiche rinvenuti in campioni di acqua marina, per gentile concessione del dott. Francesco Cumani – ARPA FVG

Microscopio ottico: sono stati usati microscopi ottici normalmente utilizzati per la lettura dei preparati aerobiologici, secondo le Linee Guida POLLnet.

Località di campionamento

I vetrini provengono dalle seguenti città italiane: Trieste, Lignano Sabbiadoro, Tolmezzo, Pordenone, Terni (Tabella 14.5.1).

Le località prescelte, facenti parte della rete di monitoraggio pollinico POLLnet, hanno le seguenti caratteristiche:

- Trieste – Castello di San Giusto: in posizione più elevata rispetto al centro cittadino, lontano dall'Università, uffici pubblici e scolastici. La città è affacciata sull'omonimo golfo nella parte più

settentrionale dell'Alto Adriatico; il territorio è occupato prevalentemente da un pendio collinare che cresce di altitudine fino al Carso. La popolazione conta 202 564 abitanti.

- Lignano Sabbiadoro Municipio: il campionatore è posto sul tetto della sede municipale. Al piano sottostante ha sede il centro telematico comunale, e sulla rampa di scale di accesso al tetto, durante il periodo di campionamento, erano stoccate stampanti e computer in disuso. Anche la città di Lignano Sabbiadoro si affaccia sull'Alto Adriatico: si tratta infatti di un comune di 6 837 abitanti in provincia di Udine in Friuli-Venezia Giulia, noto per la sua vocazione turistica, con un flusso di visitatori che raggiunge 5000000 presenze annuali.
- Tolmezzo Casa di Riposo "Scrosoppi": si trova in centro città, vicino ad uffici pubblici e istituti scolastici.

Tolmezzo è un comune di 10 090 abitanti del Friuli-Venezia Giulia, rappresenta il centro più importante della Carnia di cui è considerato il capoluogo virtuale. Si trova a 323 m s.l.m., tra il Tagliamento e il torrente But, alla confluenza delle sette valli carniche, circondata dalle Alpi Tolmezzine Orientali

- Pordenone – sede ARPA FVG: l'edificio è situato nelle adiacenze del polo universitario. In zona sono presenti copisterie e tipografie. Principale città del Friuli occidentale, posta lungo le sponde del fiume Noncello, conta 51 714 abitanti. Il territorio di Pordenone si trova nella bassa pianura friulana della Pianura padanoveneta, a Sud delle Prealpi Carniche.

- Terni – sede ARPA UMBRIA: l'edificio sorge in una zona periurbana densamente popolata dove si alternano palazzi e ampie aree coltivate. Vi insistono diverse attività commerciali, ma gli uffici pubblici, università, copisterie e tipografie sono dislocate in aree cittadine distanti dal campionatore. E' un comune di 110 025 abitanti, capoluogo dell'omonima provincia in Umbria. Il territorio comunale è ampio (211,90 km²), e si estende intorno alla città di Terni, (conca Temana) fino alla Valnerina Ternana ad est e alle Terre Arnolfe a nord/nord-ovest. La densità abitativa è abbastanza elevata, per la notevole presenza di aree verdi sparse nel territorio comunale.

Tabella 14.5.1: località di campionamento

	longitudine	latitudine	altezza s.l.m. (m)	altezza dal suolo (m)
Trieste – castello di San Giusto	E 13.462390	N 45.384790	55	17
Lignano Sabbiadoro - Municipio	E 13.129536	N 45.689165	2	15
Tolmezzo – Casa di Riposo "Scrosoppi"	E 13.010574	N 46.405329	323	17
Pordenone – sede ARPA FVG	E 12.681275	N 45.953595	24	18
Terni – sede ARPA Umbria	E 12.374146	N 42.343517	130	21

Procedimento

Come descritto nelle Linee Guida POLLnet, l'aria viene convogliata da un catturatore volumetrico posto su un terrazzo aperto ad un'altezza compresa tra 15 e 20 metri

dal suolo. L'aria impattata a questa altitudine, pertanto, non corrisponde a quella normalmente respirata dalla popolazione, ma è tuttavia rappresentativa di una vasta area di territorio omogenea per le particelle leggere e diffuse, come pollini e spore. Il flusso aspirato è di 10 litri/minuto, pari a 14,4 m³ di aria giornalieri; il particolato solido presente nell'aria campionata rimane adeso su un nastro siliconato trasparente, con una superficie di 672 mm²

In laboratorio il nastro viene ripartito nelle rispettive porzioni giornaliere, ciascuna delle quali montata su un vetrino allestito per la conta aerobiologica, che viene letto al microscopio ottico in campo chiaro. Non viene analizzata la superficie totale del nastro giornaliero, ma una percentuale prefissata, che deve essere superiore al

15% del totale. Mediante un opportuno coefficiente di conversione il numero di granuli letti sulla frazione giornaliera di nastro viene commutato in numero di particelle per m³ di aria campionata (ISPRA 2017).

Le particelle di toner colorato hanno caratteristiche peculiari ben evidenti alla lettura microscopica, conformemente a quanto riportato in letteratura (Koller 2015): diametro da 2 a 10 µm, forma spigolosa subsferica, colore marcatamente rosso carminio, giallo, blu azzurro (Figura 14.5.3) .

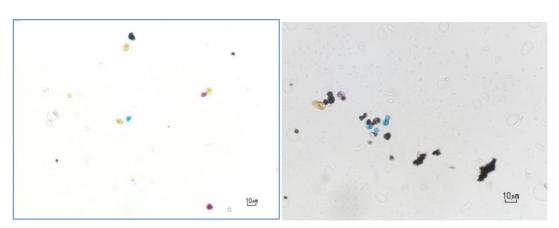


Figure 14.5.3. Granuli di toner in vetrino di campionamento aerobiologico

La possibilità di confusione dei granuli di toner in atmosfera con sali atmosferici, materiale artificiale o con coloranti per microscopia viene ridotta con il confronto con vetrini di toner preparati in laboratorio.

Il toner nero non è tuttavia distinguibile dal particolato atmosferico nero derivante da processi di combustione, molto frequente soprattutto nei mesi invernali, per questo non viene trattato in questo lavoro.

Durante la lettura pollinica vengono annotate le particelle di toner colorato rilevate, che sono poi espresse in granuli di toner/m³ come dato giornaliero.

Per quanto attiene le microplastiche, il presente studio si propone di verificarne la presenza in aria ambiente, non di quantificarle.

Risultati

Quantificazione del toner colorato

Le analisi giornaliere dei vetrini per campionamento aerobiologico hanno rilevato una presenza scarsa di particelle di toner colorato di stampante in tutti i 5 siti esaminati, con abbondanze e freguenze differenti.

Spesso nei vetrini di monitoraggio aerobiologico si rinvengono fibre, filamenti o strutture amorfe colorate, di dimensioni varie, che confrontate con il materiale microplastico rinvenuto nei sedimenti marini, o con immagini varie di monitoraggio di microplastiche, possono essere assimilati ad esse. I frammenti di dimensioni al di sotto dei $10-15~\mu m$ sono spesso di difficile interpretazione, ma oggetti come le fibre sintetiche si possono riconoscere per forma e colore.

Rilevazione di microplastiche

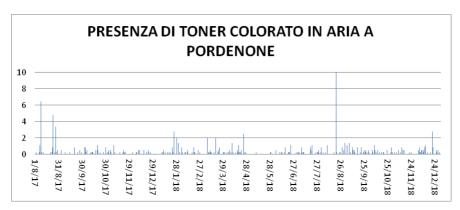


Figure 14.5.4. Pordenone: quantificazione giornaliera di polvere di toner colorato (granuli/m³)

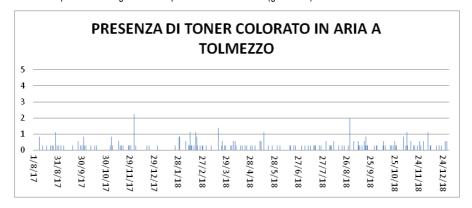


Figure 14.5.5. Tolmezzo: quantificazione giornaliera di polvere di toner colorato (granuli/m³)

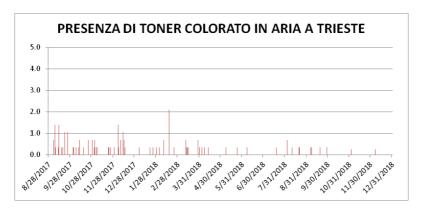


Figure 14.5.6. Trieste: quantificazione giornaliera di polvere di toner colorato (granuli/m³)

Figure 14.5.7. Lignano Sabbie d'Oro: quantificazione giornaliera di polvere di toner colorato (granuli/m³)

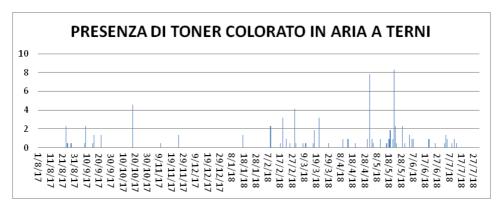


Figura 14.5.8. Terni: quantificazione giornaliera di polvere di toner colorato (granuli/m³)

Tabella 14.5.2. Riassunto dei valori di toner colorato misurati nelle 5 località

	Trieste	Pordenone	Tolmezzo	Lignano S.	Terni
media giornaliera (granuli di toner/m³)	0.07	0,27	0,12	0.09	0,21
valore massimo giornaliero (granuli di toner/m³)	2.09	16,52	2,24	4.53	8,28
giorni di presenza	62	211	142	80	53
Giorni di studio	491	518	518	498	518

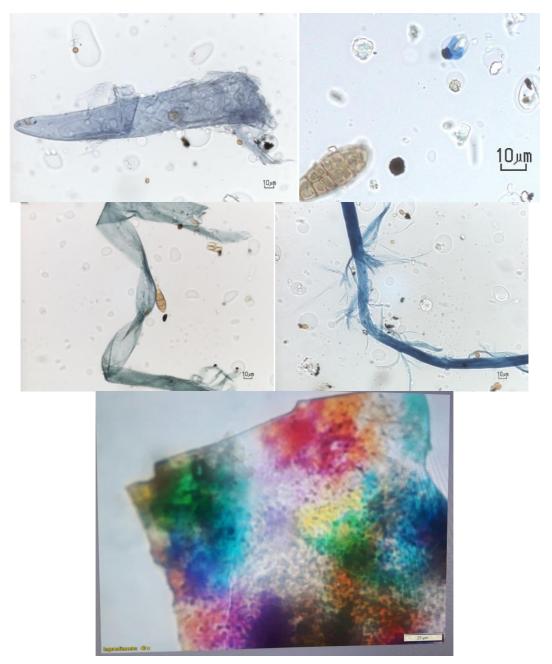


Figura 14.5.9. Frammenti di microplastiche rinvenuti in preparati di campionamento aerobiologico

Discussione

E' stata accertata la presenza di granuli di toner colorato in aria ambiente ad altezze superiori a 15 metri dal suolo. L'indagine condotta in 4 città del Friuli Venezia Giulia e una dell'Umbria mostrano che le quantità presenti sono dell'ordine di meno di un granulo al metro cubo al giomo (Figure 14.5.4,5.6,7.8 e Tabella 14.5.2).

E' quindi dimostrato che la polvere di toner è presente in aria ambiente. La frazione quantificabile è solo quella colorata; la componente nera è stata notata in alcuni casi come probabile, ma non è possibile valutarla con precisione, per la somiglianza con altre componenti di particolato da combustione.

Questi dati fanno supporre che a livello del suolo la concentrazione sia maggiore, almeno in prossimità di sorgenti quali uffici, copisterie, negozi, eliotecniche, e soprattutto che esistano aree confinate all'interno di edifici dove la concentrazione di polvere di toner sia molto significativa per la presenza di stampanti non adeguatamente isolate e/o di toner esauriti non correttamente stoccati prima dello smaltimento.

In letteratura si trovano molti studi riguardanti l'impatto della polvere di toner sulla salute, condotti esclusivamente all'interno di aree confinate; non si trovano studi sulla presenza di questa polvere all'aria aperta. La maggior parte di questi lavori tende ad escludere che il toner sia causa di gravi danni alla salute,

pur avendo le particelle di inchiostro dimensioni compatibili con le PM_{10} . La tecnica di microscopia ottica impiegata, applicando una magnificenza di 200, 250 o 400 ingrandimenti (a seconda del microscopio e dell'obiettivo utilizzato) consente di riconoscere particelle che ricadono nel campo della frazione denominata "coarse" (1-10 μ m), essendo il limite inferiore di rilevabilità strumentale pari a circa 1 μ m. Le scarse informazioni sulla fabbricazione e sulla composizione di queste polveri lasciano ancora aperto il problema degli effetti sulla salute μ mana.

Per quanto riguarda la presenza di microplastiche nell'aria ambiente, anche questo materiale è stato riscontrato nei vetrini analizzati (Figura 14.5.9). Le dimensioni, del tutto comparabili con quelle dei frammenti rinvenuti in campioni di acqua marina da parte dei colleghi che svolgono analisi di routine nell'ambito dei piani di monitoraggio stabiliti dalla Marine Strategy. denotano che le microplastiche riconosciute sospese nell'aria ambiente generalmente rientrano in classi dimensionali nettamente superiori a quelle tipiche del PM₁₀ e, in generale, alle particelle sia biologiche che non biologiche rinvenute nei preparati per la microscopia. La comparabilità di tali frammenti con quelli rinvenuti in campioni di acqua marina è in linea con gli attuali modelli concettuali che suggeriscono una interrelazione tra le microplastiche presenti nelle varie matrici ambientali, aria, acqua, suolo (Figura 14.5.10).

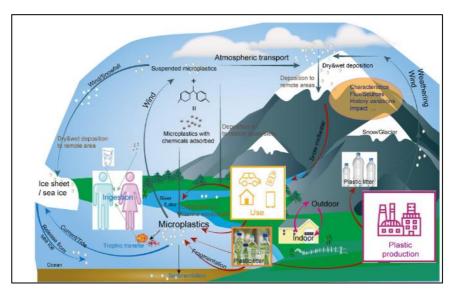


Figura 14.5.10. Modello concettuale del ciclo delle microplastiche atmosferiche nell'ambiente (Zhang Y et al., 2020)

Le microfibre sono inalabili, cioè si depositano lungo il tratto superiore delle vie respiratorie (naso e gola), ma sono anche respirabili e cioè penetrano nelle zone più profonde delle vie aeree.

Le fibre inalate vengono eliminate attraverso il movimento muco-ciliare e finiscono per essere deglutite. Nei soggetti dove la clearence muco-ciliare è scarsa, esse tendono a depositarsi anche nelle vie aeree superiori.

Tale rischio è più rilevante per le maestranze addette alla fabbricazione di tessili contenenti percentuali di materiali plastici. Inoltre le plastiche, comprese le microfibre volatili, sono costituite da significative percentuali di additivi tra quali metalli, ritardanti di fiamma e coloranti, che possono essere assorbite dalle cellule dell'epitelio.

Conclusioni

Il metodo consolidato di rilevamento e conta di particelle biologiche quali pollini e spore fungine si è dimostrato idoneo per rilevare e quantificare anche altre particelle non biologiche disperse in aria, che possono essere riconosciute al microscopio ottico in base alle caratteristiche dimensionali ed ottiche. In questo modo è stato possibile rilevare la presenza e la concentrazione in aria ambiente di granuli di toner colorato in tutte e 5 le città italiane considerate nel presente studio.

Analogamente, è stato possibile rinvenire nei medesimi campioni la presenza di microplastiche, in linea con gli studi che attestano una recente ma crescente attenzione rivolta verso questo tipo di inquinante di varie matrici ambientali.

480 =

Bibliografia

M.Koller et al., (2015). Stampanti laser, fotocopiatrici e toner: pericoli per la salute, SUVA.

POLLnet - Linee guida per il monitoraggio aerobiologico, (2017). Manuali e linee guida 151/2017, ISPRA. ISBN: 978-88-448-0820-4

Zhang Y., Kang S., Allen S., Gao T., Sillanpääe M., 2020c. Atmospheric microplastics: A review on current status and perspectives. Earth-Science Reviews, Volume 203, April 2020, 103118.

Gasperi J., Wright S.L., Dris R., Collard F., Mandin C., Guerrouache M., Langlois V., Kelly F.J., Tassin B. Microplastics in air: Are we breathing it in? Current Opinion in Environmental Science & Health 1, 2018 02, 1-5

Plastic dust is blowing into U.S. national parks—more than 1000 tons each year - By Erik StokstadJun. 11, 2020, 5:30 PM

Janice Brahney, Margaret Hallerud, Eric Heim, Maura Hahnenberger, Suja Sukumaran, Plastic rain in protected areas of the United States - *Science* 12 Jun 2020: Vol. 368, Issue 6496, pp. 1257-1260 DOI: 10.1126/science.aaz5819

15 LA QUALITÀ DELL'ARIA IN ITALIA DURANTE IL LOCKDOWN

INTRODUZIONE

Come noto il 31 dicembre 2019, l'OMS China Country Office è stato informato della presenza di casi di polmonite di eziologia sconosciuta, per un totale di 44 pazienti, rilevati nella città di Wuhan, nella provincia cinese di Hubei

Con il diffondersi dell'epidemia in Italia, a partire dal 31 gennaio il Governo e diverse Regioni hanno emanato provvedimenti via via più severi per limitare la diffusione del contagio tra la popolazione.

Questa situazione di riduzione delle principali attività produttive e commerciali, unita alla riduzione dei flussi di traffico di veicoli privati, del trasporto pubblico e del trasporto delle merci su strada, via mare e del trasporto aereo è stato un evento del tutto inusuale per il nostro Paese.

In un contesto così drammatico, scandito dal rapido succedersi degli esiti sanitari, e dalla febbrile ricerca di soluzioni atte almeno a contenere e gestire l'afflusso dei pazienti nelle strutture di cura, il tema dell'inquinamento atmosferico si è rivelato strategico, sia pure a latere dell'elemento principale che è stato la diffusione del virus Covid-19, per due sostanziali motivi. Il primo, riguarda le ipotesi di possibili relazioni tra esposizione all'inquinamento atmosferico e suscettibilità all'infezione, oggi oggetto di diversi studi e approfondimento da parte della comunità scientifica internazionale.

Il secondo legato al fatto che, oggettivamente, la situazione che si è venuta a creare, ha stimolato l'interesse di addetti ai lavori e non, riguardo agli effetti che una riduzione estesa a diverse sorgenti antropiche e generalizzata sul territorio nazionale, potesse avere sulla qualità dell'aria. Tale interesse non rappresenta una

mera curiosità. In realtà l'Italia, come gli altri stati membri dell'Unione Europea, è impegnata nell'intraprendere azioni efficaci atte a ridurre le emissioni dei principali inquinanti ed in particolare quelle del materiale particolato e dei suoi precursori (ammoniaca, composti organici volatili, ossidi di azoto).

La relazione tra riduzione delle emissioni ("la quantità" di un dato inquinante rilasciato in atmosfera in un dato periodo di tempo e in una data area) e la corrispondente riduzione delle concentrazioni (la quantità di un certo inquinante rilevabile in un dato volume d'aria in un dato luogo e momento o periodo) non è semplice né intuitiva.

Gli inquinanti, emessi in atmosfera dalle varie sorgenti, si diluiscono e vengono trasportati a medie e lunghe distanze. Alcuni di essi reagiscono chimicamente tra loro o con gli elementi presenti già nell'aria (ossigeno atomico e molecolare, idrogeno, azoto) per formare nuovi inquinanti e tali reazioni possono essere favorite o sfavorite dalle diverse condizioni meteo-climatiche.

Il nostro Paese è caratterizzato da un'orografia complessa e possono essere individuate diverse zone climatiche, dove, a seconda del periodo stagionale, si possono verificare condizioni molto favorevoli all'accumulo e alla formazione in atmosfera degli inquinanti, come nel caso ad esempio del bacino padano e di alcune zone del centro-sud del Lazio nel periodo invernale, e condizioni che generalmente favoriscono la dispersione e riducono la possibilità di formazione di inquinanti secondari, come nel caso delle zone costiere.

Il periodo di marzo è solitamente meno favorevole all'accumulo degli inquinanti rispetto ai mesi di gennaio e febbraio, quando si verificano spesso condizioni di inversione termica a bassa quota e stabilità atmosferica

con valori elevati dei principali inquinanti, di conseguenza il confronto dei livelli osservati nel periodo del lockdown va fatto, in prima approssimazione, con riferimento alle osservazioni degli anni precedenti nello stesso periodo tardo invernale-primaverile.

Provvedimenti di distanziamento sociale nazionali

Si ritiene utile ricapitolare di seguito l'escalation dei principali provvedimenti nazionali e regionali per fronteggiare la diffusione del virus:

- •23 febbraio 2020: Decreto-Legge n. 6 del 23 febbraio 2020, che ha disposto misure di contenimento nelle aree in cui è stato riscontrato almeno un caso positivo
- •8 marzo 2020: Decreto del Presidente del Consiglio dei Ministri, che ha disposto misure di contenimento restrittive, tra cui il divieto di spostamento, in tutta la Lombardia
- 9 marzo 2020: Decreto del Presidente del Consiglio dei Ministri, che ha esteso i provvedimenti di cui al DPCM 8 marzo 2020 all'intero territorio nazionale

DPCM 31 gennaio 2020 - sospesi collegamenti aerei tra Italia e Cina - dichiarato lo stato di emergenza sanitaria

decreto legge 6/2020 e il DPCM 23 febbraio 2020 – zone rosse Lombardia e Veneto

DPCM 4 marzo 2020 – sospensione attività didattiche ed eventi

DPCM 8 marzo 2020 – spostamenti Lombardia + 14 province; chiusura luoghi pubblici ricreativi/culturali

DPCM 9 marzo 2020 – restrizione spostamento e assembramento di persone/ comprovate esigenze

DCPM 11 marzo 2020 - limitazioni attività commerciali

17 marzo "Decreto cura Italia" - lavoro "agile"

DPCM 22 marzo - limitazioni attività produttive

DPCM 10 aprile – estensione al 3 maggio; alcune riaperture

DPCM 26 aprile 2020 –ripresa (4/5) determinate attività produttive industriali e commerciali

D.L. 16 maggio 2020, n. 33 – FASE 2 ripresa graduale attività

DPCM 11 giugno 2020 - FASE 3

15.1 PIEMONTE

Lo studio ha preso in esame l'insieme dei dati disponibili (variazioni delle pressioni emissive, meteorologia e stato della qualità dell'aria) con lo scopo di verificare se fosse possibile evidenziare un effetto aggiuntivo dei provvedimenti legati all'emergenza COVID-19 (lockdown) sulla diminuzione delle concentrazioni degli inquinanti atmosferici rispetto a quanto avviene di norma nella stagione primaverile.

Periodo dell'indagine

Per quanto riguarda i dati di qualità dell'aria e meteorologici il periodo di studio va dal 1 gennaio al 30 aprile 2020, mentre l'analisi degli effetti del lockdown sulle emissioni in atmosfera è stata condotta su base settimanale dal 24 febbraio al 3 maggio.

Inquinanti considerati

PM₁₀, NO₂, NO e benzene.

Periodo di riferimento per confronto

Le concentrazioni dei primi quattro mesi del 2020 sono state analizzate confrontandole rispetto a quelle misurate nello stesso periodo per gli anni che vanno dal 2012 al 2019.

Provvedimenti aggiuntivi

Il DPCM del 25 febbraio 2020 con la sospensione degli eventi sportivi e dei viaggi di istruzione. Alle misure nazionali si sono aggiunte misure specifiche adottate dalla Regione Piemonte:

- DPGR n. 24 del 1 marzo 2020 ed il DPGR n. 25 del 2 marzo 2020 che anticipano il provvedimento nazionale di chiusura delle scuole.
- DPGR n. 34 del 21 marzo 2020 e DPGR n. 35 del 29 marzo 2020 "Ulteriori misure per la prevenzione e la gestione dell'emergenza epidemiologica da COVID-19....." con disposizioni in materia di igiene e sanità pubblica.

Metodi

L'analisi dei dati di qualità dell'aria è stata condotta su PM₁₀, NO₂, NO e benzene misurati dalle stazioni del sistema di monitoraggio della qualità dell'aria di ARPA Piemonte nel periodo 01 gennaio 30 aprile 2020, quindi sia prima che durante il periodo di lockdown. Sono state utilizzate nell'analisi le stazioni rappresentative delle maggiori aree urbane della regione. l'agglomerato urbano torinese, i capoluoghi di provincia e le principali città. La serie temporale delle concentrazioni di inquinanti in atmosfera è di per sé caratterizzata da un andamento stagionale, con livelli più alti in inverno, più bassi in estate ed intermedi nelle stagioni primaverili ed autunnali; pertanto, per eliminare gli effetti di stagionalità intrannuali, le concentrazioni dei primi quattro mesi del 2020 sono state analizzate confrontandole rispetto a quelle misurate nello stesso periodo per gli anni che vanno dal 2012 al 2019. Per tutti gli inquinanti i dati sono stati aggregati a livelli giornaliero e per ciascuno sono state calcolate ed analizzate:

- la distribuzione dei valori medi giornalieri su base mensile del 2020 e del periodo di confronto, considerando l'insieme di tutte le stazioni utilizzate:
- gli andamenti giornalieri dell'anno in corso rispetto ai valori giornalieri massimi, minimi e medi del periodo di confronto, sulle singole stazioni utilizzate.

L'analisi degli effetti sulle emissioni in atmosfera è stata condotta stimando per i vari comparti emissivi le variazioni settimanali dei determinanti nel periodo di lockdown, rispetto allo stesso periodo dell'anno in condizioni di normalità (in assenza quindi di provvedimenti di lockdown). La metodologia di stima è stata messa a punto, concordata ed applicata su tutto il Bacino Padano dalle Regioni e dalle Arpa coinvolte nel progetto LIFE PREPAIR (https://www.lifeprepair.eu/).

I dati emissivi si basano sull'Inventario Regionale delle Emissioni, ripartito in 208 attività emissive, con dettaglio comunale. Per ricostruire le emissioni settimanali del periodo di studio sono stati utilizzati i profili di modulazione temporale in uso nel sistema modellistico di Arpa Piemonte, specifici fino al livello di attività SNAP: le

emissioni totali annuali relative a ciascuna categoria SNAP sono state quindi moltiplicate per i propri coefficienti mensili (relativi ai mesi di febbraio, marzo, aprile e maggio) in modo da ottenere le sommatorie mensili per attività emissiva. Con lo stesso livello di dettaglio sono stati poi ottenuti i giorni tipo mensili, indispensabili per ricostruire lo step temporale settimanale. Al dato settimanale è stato applicato un coefficiente di riduzione delle emissioni (proxy), individuato integrando i dati provenienti da più fonti informative, con diverso dettaglio temporale. Alle categorie emissive modificate dal lockdown, sono state quindi applicate le proxy individuate, mentre le altre sono state lasciate invariate. Le riduzioni emissive sono state calcolate in modo differenziato a seconda della categoria emissiva: in alcuni casi rispetto al giorno-tipo dell'anno precedente, in altri rispetto al giorno-tipo o mese-tipo del periodo pre-Covid19.

Principali risultati

L'analisi dell'andamento temporale delle emissioni in atmosfera nel periodo marzo-aprile 2020 evidenzia una significativa differenza tra i dati emissivi degli inquinanti PM₁₀ primario e ossidi di azoto.

Nel primo caso (PM₁₀ primario) le quantità totali emesse fino alla prima metà di aprile sono rimaste sostanzialmente invariate rispetto a quelle che si sarebbero avute nello stesso periodo in assenza di lockdown (linea rossa in Figura 15.1.1), in quanto la riduzione del contributo da parte dell'industria e del trasporto stradale è stata compensata dall'aumento complessivo delle emissioni da riscaldamento domestico che, in Piemonte, sono quelle percentualmente prevalenti per questo inquinante, anche in condizioni standard; solo a partire dalla seconda metà di aprile, venendo a mancare il contributo del riscaldamento, si osserva una riduzione delle emissioni principalmente alla diminuzione del traffico stradale.

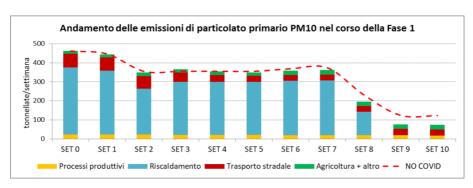


Figura 15.1.1. Andamento delle emissioni di particolato primario PM10 nel corso della fase 1.

Nel caso degli ossidi di azoto, invece, si osserva una netta riduzione delle emissioni - che arriva sino al 30% - rispetto alla situazione di assenza di lockdown (linea rossa nel grafico sottostante) in quanto per questa

tipologia di inquinante il contributo emissivo di gran lunga prevalente è quello del traffico veicolare.

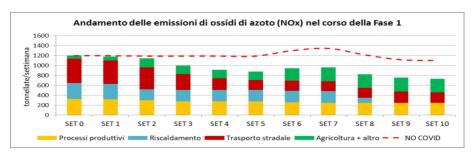


Figura 15.1.2. Andamento delle emissioni di ossidi di azoto NO_x nel corso della fase 1.

Tale situazione emissiva, unitamente alle diverse caratteristiche dei due inquinanti, si riflette sull'andamento delle concentrazioni in aria ambiente misurate dalle stazioni di monitoraggio della rete di qualità dell'aria.

In termini generali, nel caso del PM₁₀, le concentrazioni medie mostrano una lieve tendenza alla diminuzione rispetto a quelle rilevate nello stesso periodo degli anni dal 2012 al 2019 (Figura 15.1.3).

Nell'ultima parte del mese di marzo agli effetti del lockdown si sono sovrapposti in alcune giornate fenomeni contingenti - dapprima di accumulo per

formazione secondaria di particolato e successivamente di trasporto a grande scala di polveri provenienti dall'Est Europa – che hanno provocato episodicamente un aumento delle concentrazioni.

Va però sottolineato che nel periodo di lockdown si osserva, rispetto al riferimento, un calo significativo delle concentrazioni più elevate di PM₁₀, con una sensibile diminuzione del valore del 75° percentile della distribuzione dei dati sia nel mese di marzo che nel mese di aprile (Figura 15.1.4).

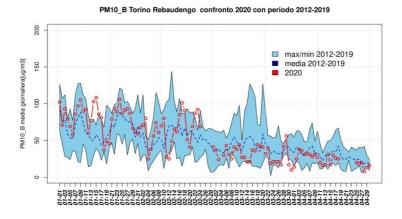


Figura 15.1.3. PM₁₀ - Torino Rebaudengo, confronto 2020 con periodo 2012 - 2019

2012-2019

PM10, confronto 2020 con 2012-2020

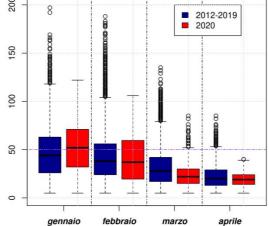


Figura 15.1.4. PM₁₀ - Torino Rebaudengo, confronto 2020 con periodo 2012 - 2019

Le concentrazioni di biossido di azoto – prevalentemente originato dal traffico autoveicolare - mostrano invece una netta diminuzione rispetto al periodo di riferimento 2012-2019, mantenendosi nella quasi totalità del tempo al di sotto dei valori medi del periodo e portandosi spesso su livelli inferiori, anche ai minimi di riferimento (Figura 15.1.5).

Il calo dei valori con concentrazioni più elevate è ancora più accentuato che per il PM₁₀, in quanto il 75° percentile

della distribuzione dei due mesi di lockdown è quasi dimezzato rispetto al periodo di riferimento 2012-2019 (Figura 15.1.6).

Considerazioni analoghe valgono anche per benzene e monossido di azoto, anch'essi originati prevalentemente dal traffico autoveicolare.

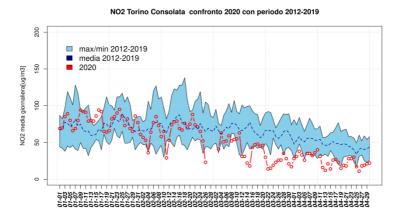
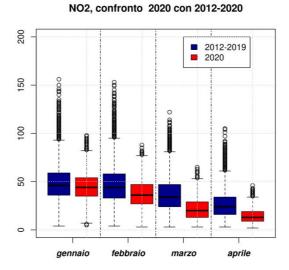



Figura 15.1.5. NO_2 – Torino Consolata. Confronto 2020 con periodo 2012 - 2019

Figura 15.1.6. NO₂ - confronto della distribuzione delle concentrazioni nel 2020 con periodo 2012 - 2019

Per approfondire:

ARPA PIEMONTE . Bande S., Bissardella F., Clemente M., Lollobrigida F. Analisi sul territorio piemontese degli effetti sulla qualità dell'aria e sulle emissioni in atmosfera dei provvedimenti legati all'emergenza COVID-19.

http://www.arpa.piemonte.it/arpa-comunica/file-notizie/2020/Qualit_aria_COVID_Piemonte.pdf

15.2 VALLE D'AOSTA

Periodo dell'indagine

È stato considerato un periodo di sei settimane (dal 9 marzo al 19 aprile).

Inquinanti considerati

PM₁₀, NO, NO₂

Periodo di riferimento per confronto

Confronto dei dati di qualità dell'aria del periodo 2020 analizzato rispetto allo stesso periodo dei precedenti quattro anni.

Provvedimenti aggiuntivi

Alle misure nazionali si sono aggiunte misure specifiche adottate dalla Regione, a partire dall'ordinanza del Presidente della regione n. 104 dell'11 marzo, cui sono seguiti ulteriori provvedimenti, con disposizioni in materia di igiene e sanità pubblica, che hanno implicato una riduzione sostanziale delle fonti emissive di alcuni settori.

Metodi

L'andamento delle concentrazioni rilevate nel 2020 sono state analizzate tenendo conto del contesto meteorologico del periodo. con particolare riferimento all'avvezione di masse d'aria ricche di particolato secondario e minerale provenienti dall'esterno dei confini regionali. Inoltre è stata valutata la riduzione dei flussi di traffico sulla base di misure effettuate sulle principali arterie stradali e a riduzione delle emissioni (a partire dall'inventario regionale) dovuta al lockdown. E' stato infine applicato un modello di Random Forest,addestrato sulle serie storiche dei dati di No2 e PM10 e applicato per la previsione dei valori di concentrazione del 2020. In questo modo è stato possibile valutare l'influenza delle meteorologia sulle concentrazioni misurate .

Principali risultati

Le misure di confinamento hanno inciso in modo molto significativo sul traffico e su alcune attività produttive. I dati della misura dei flussi di traffico mostrano una importante riduzione sia in ambito urbano (in Aosta dell'ordine dell'80%) sia autostradali e attraverso i due tunnel verso Francia e Svizzera (dal 46 % all'80%, per il traffico leggero e dal 20 % al 32% per il traffico pesante). La riduzione delle emissioni rilasciate in atmosfera durante le prime settimane di confinamento è stata stimata nel 41% per gli ossidi di azoto e del 17% per il particolato atmosferico.

In aria ambiente si conferma una evidente diminuzione delle concentrazioni per il biossido di azoto (pari al 40-50%) (Figura 15.2.1) mentre per il PM₁₀ non vi è una evidente diminuzione, se non per l'area industriale (Figura 15.2.2). Anche l'output del modello RF conferma che la riduzione delle concentrazioni di NO2 è legata alla riduzione del traffico, mentre per il PM₁₀ non si evidenzia una riduzione particolare. Questo è dovuto al fatto che il PM₁₀, in Valle d'Aosta, viene emesso soprattutto dagli impianti di riscaldamento ed in misura minore dal traffico e dalle attività produttive. Va inoltre considerato che i livelli di particolato in atmosfera, in Valle d'Aosta in risentono di dinamiche più complesse, legate al trasporto su media e larga scala quali il contributo di masse d'aria ricche di particolato secondario provenienti dalla Pianura Padana e eventi di trasporto di particolato minerale proveniente da zone anche molto lontane come avvenuto ad esempio nelle giornate del 29-30 marzo con il trasporto di particolato (polvere minerale-dust) dal Mar Caspio.

Peculiarità regionali

Nella città di Aosta ha sede un impianto industriale (Acciaieria) che a causa dell'emergenza sanitaria ha dovuto interrompere totalmente la sua attività produttiva. Nei pressi dello stabilimento la riduzione delle polveri PM10 è netta, come è risultato evidente dall'analisi dei dati della stazione industriale di I Maggio, sita nelle immediate vicinanze.

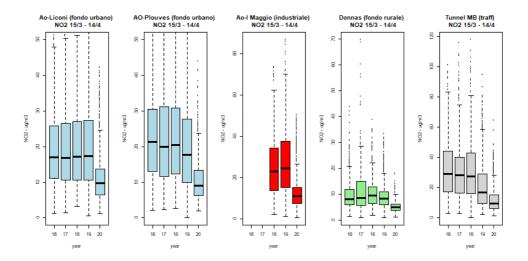


Figura 15.2.1. Concentrazione di biossido di azoto (NO₂) misurati dall'8/3/20 al 14/4/20 (periodo di lockdown) con i livelli misurati nello stesso periodo dei 4 anni precedenti nelle diverse stazioni di misura Valdostane

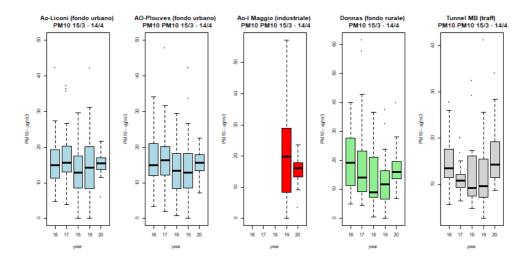


Figura 15.2.2 Concentrazione di particolato PM₁₀ misurati dall'8/3/20 al 14/4/20 (periodo di lockdown) con i livelli misurati nello stesso periodo dei 4 anni precedenti nelle diverse stazioni di misura Valdostane

Conclusioni

Si è osservato che drastiche riduzioni di alcune sorgenti (traffico e attività produttive) non sempre garantiscono una riduzione evidente di polveri. Ciò mostra in modo chiaro la complessità dei fenomeni correlati alla

formazione, all'accumulo e al trasporto di particolato e deve far riflettere sulla natura "globale" del fenomeno, sulla necessità di agire con misure a larga scala che siano strutturali e che abbiano una durata stabile nel tempo.

Per approfondire:

Claudia Tarricone, Manuela Zublena, Tiziana Magri, Giordano Pession ARPA VALLE D'AOSTA. Analisi preliminare della qualità dell'aria in Valle d'Aosta durante l'emergenza COVID-19

http://www.arpa.vda.it/images/stories/ARPA/news/2020/20200424_qa_aggiornamento/23_04_aggiornamentoqa_coronavirus.pdf

15.3 LOMBARDIA

La diffusione della COVID-19 in Lombardia ed in Italia ha comportato l'adozione progressiva di una serie di misure di contenimento del contagio che in Lombardia hanno determinato, a partire dal 23 febbraio 2020, una variazione delle attività antropiche repentina e ben superiore a quanto attuabile in condizioni ordinarie.

Periodo dell'indagine

Nello studio condotto da Regione Lombardia e ARPA Lombardia sono stati considerati due periodi: il primo compreso tra il 23 febbraio e l'8 marzo 2020, caratterizzato da prime misure di contenimento su aree limitate e il secondo, a partire dal 9 marzo, caratterizzato da misure più drastiche su tutto il territorio regionale. Il periodo con riduzioni molto significative delle attività è proseguito fino al 3 maggio. Lo studio iniziale ha riguardato il mese di marzo, ma risultati analoghi sono stati osservati per il mese di aprile.

Inquinanti considerati

PM₁₀, PM_{2.5}, NO₂, NO, benzene e NH₃

Periodo di riferimento per confronto

Confronto dei dati di qualità dell'aria del periodo 2020 analizzato rispetto allo stesso periodo del decennio precedente ed ai mesi di gennaio e febbraio 2020.

Provvedimenti aggiuntivi

- •23 febbraio 2020: Ordinanza del Ministero della Salute di concerto con la Regione Lombardia, che ha disposto, tra l'altro, la chiusura delle scuole di ogni ordine e grado
- •1° marzo 2020: Decreto del Presidente del Consiglio dei Ministri, che ha disposto misure di contenimento restrittive in 10 Comuni del lodigiano, epicentro del contagio, tra cui il divieto di spostamento e ulteriori misure di contenimento, come la sospensione di attività e manifestazioni, in Lombardia.

Metodi

Sono state utilizzate nello studio le concentrazioni medie giornaliere rilevate dalla strumentazione installata nelle stazioni di monitoraggio della qualità dell'aria di ARPA Lombardia. Per ogni inquinante considerato è stato effettuato un confronto tra le concentrazioni misurate nel 2020 e quelle minime e massime del decennio precedente.

Lo studio ha riguardato alcune città capoluogo (Milano, Bergamo, Brescia, Pavia e Lodi) per gli inquinanti standard. Per l'ammoniaca sono stati utilizzati i dati delle stazioni di pianura di fondo rurali (Bertonico, Corte dè Cortesi) e di Milano città (Pascal Città Studi).

Infine, l'andamento delle concentrazioni di PM₁₀ è stato correlato con alcuni parametri meteorologici, in particolare con l'andamento dell'altezza dello strato di rimescolamento alle ore 12 (PBL, Primary Boundary Layer, elaborazioni ARPA Lombardia dai radiosondaggi di Milano-Linate), che fornisce un'indicazione della massa d'aria che gli inquinanti hanno a disposizione per diluirsi, la velocità del vento al suolo e la temperatura.

Principali risultati

Relativamente alla QUALITÀ DELL'ARIA, sono stati analizzati i dati di PM₁₀, PM_{2.5}, NO₂, NO e benzene registrati nel primo trimestre 2020 messi a confronto con quelli rilevati nel decennio appena trascorso nelle città di Milano, Bergamo, Brescia, Pavia e Lodi. L'andamento delle concentrazioni degli inquinanti nel primo trimestre 2020 è anche valutato rispetto ad alcuni indici e parametri meteorologici, come l'altezza dello strato di rimescolamento (PBL), la velocità del vento al suolo e la temperatura.

Relativamente al PM₁₀ e al PM_{2,5}, i dati indicano in maniera evidente la stagionalità di questi inquinanti, che registrano tipicamente i valori più elevati nei mesi più freddi dell'anno: ciò è spiegato normalmente dalle variazioni delle fonti emissive ma soprattutto dalle condizioni meteoclimatiche molto più favorevoli all'accumulo degli inquinanti e che possono anche influire diversamente per la formazione di particolato

secondario. Il primo fattore di modulazione dell'andamento delle concentrazioni è rappresentato dall'altezza dello strato di rimescolamento (altezza PBL). L'analisi dei dati 2020 del mese di marzo, pur collocandosi nella fascia bassa della variabilità del periodo, evidenzia un alternarsi di giornate con concentrazioni più alte ed altre con valori inferiori.

L'episodio del 25 febbraio, in riferimento alle concentrazioni di PM_{10} rilevate a Lodi e in provincia con un massimo registrato a Codogno (82 μ g/m³) allora in piena "zona rossa", evidenzia l'importanza del fenomeno di trasporto del particolato ed il fatto che le concentrazioni non sono solo influenzate dalle emissioni di prossimità, ma da tutte quelle del bacino di riferimento.

Il periodo dal 18 al 20 marzo, interessato da un incremento significativo del PM₁₀ in gran parte della Regione nonostante la riduzione dei flussi di traffico e di parte delle attività industriali, può essere spiegato molto probabilmente con un contributo significativo della componente secondaria (le concentrazioni medie giornaliere di NH₃ evidenziano in modo chiaro valori di concentrazioni elevati nel periodo in analisi) e certamente con una situazione meteorologica più favorevole all'accumulo.

Nelle giornate del 28 e del 29 marzo in tutta la pianura Padana sono state osservate concentrazioni di PM_{10} molto elevate a fronte di un aumento inferiore delle concentrazioni di $PM_{2,5}$, tanto da determinare una variazione significativa del loro rapporto di massa a vantaggio della cosiddetta frazione coarse. In quei giorni il modello globale "Copernicus Atmosphere Monitoring Service" evidenzia il trasporto di particolato dalle regioni asiatiche, avvalorando la sua presunta origine desertica. Inoltre, l'andamento del PM_{10} può essere stato influenzato da un parziale aumento dell'uso della legna in relazione alla maggiore presenza delle persone nelle abitazioni private. Complessivamente, le variazioni per PM_{10} e $PM_{2,5}$ sono risultate inferiori a quanto ci si sarebbe aspettati

Fermo restando la stagionalità degli andamenti delle concentrazioni in funzione delle variazioni delle

condizioni meteoclimatiche, per il biossido di azoto (NO₂) e ancora più per il monossido di azoto (NO) le concentrazioni rilevate durante il periodo emergenziale in analisi si sono invece sensibilmente ridotte e in alcune stazioni perfino inferiori ai valori mai registrati; in questo caso è quindi più evidente l'effetto della riduzione delle emissioni connessa alla riduzione dei flussi di traffico che in ambito urbano è certamente la prima fonte di ossidi di azoto.

Anche per il benzene - inquinante che ha come sorgenti antropiche principali il traffico veicolare e i processi di combustione industriale - le concentrazioni atmosferiche nel periodo dell'emergenza COVID-19 corrispondono o sono inferiori al minimo registrato negli anni precedenti, a conferma del fatto che gli inquinanti primari diminuiscono più significativamente se le sorgenti si riducono rispetto a quanto non succede per inquinanti anche di origine secondaria.

Le CONCLUSIONI dello studio hanno evidenziato che:

- il trend di generale riduzione delle concentrazioni degli inquinanti che si è osservato deve essere attribuito, in proporzioni non quantificabili e comunque dipendenti dalle singole giornate e dal singolo inquinante, alla globalità dei seguenti 3 fattori: riduzione delle emissioni (in particolare dal settore trasporti), variazione delle condizioni meteorologiche (sempre meno favorevoli all'accumulo in questo periodo dell'anno) e condizioni ambientali che influiscono sulle reazioni chimico-fisiche in cui sono coinvolti gli inquinanti;
- fermo restando quanto sopra, l'analisi dei dati di qualità dell'aria evidenzia che le misure messe in atto per fronteggiare l'emergenza hanno certamente determinato una riduzione delle emissioni derivanti in particolare dal traffico veicolare, che sono più evidenti analizzando le concentrazioni degli inquinanti legati direttamente al traffico, ovvero NO, benzene e in parte NO2, attestandosi attorno ai valori minimi o inferiori ai valori più bassi registrati in ciascun giorno di calendario nel periodo di osservazione;
- l'andamento del particolato è stato influenzato in Lombardia in modo significativo dalla presenza della

componente secondaria, oltre che da fenomeni di trasporto e da possibili incrementi di alcune sorgenti (quali la legna). L'osservazione che drastiche riduzioni di alcune sorgenti non sempre impediscano il superamento dei limiti, pur contribuendo a ridurne l'entità, mostra in modo chiaro la complessità dei fenomeni correlati alla formazione e all'accumulo di particolato atmosferico e la conseguente difficoltà di ridurre in modo drastico i valori presenti in atmosfera in situazioni ordinarie.

Di seguito si mostrano gli andamenti delle medie mensili nella città di Milano in cui si evince come la riduzione di NO_2 e NO nel 2020 si sia registrata anche nel mese di aprile, mentre per il PM_{10} non si possa apprezzare la stessa variazione per le motivazioni già espresse.

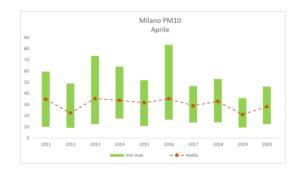
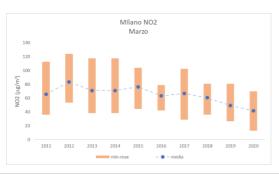



Figura 15.3.1. PM₁₀ nei mesi di marzo e aprile a Milano

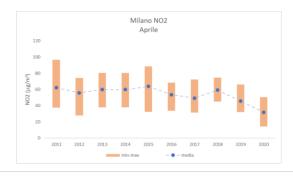


Figura 15.3.2. NO₂ nei mesi di marzo e aprile a Milano

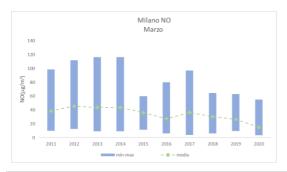


Figura 15.3.3 NO nei mesi di marzo e aprile a Milano

Per approfondire:

Regione LombardiaDG Ambiente

Elisabetta Buganza, Mauro Donzelli, Gian Luca Gurrieri, Matteo Lazzarini, Elisabetta Scotto Di Marco.

ARPA Lombardia -Settore Monitoraggi Ambientali-U.O. Qualità dell'Aria

Elena Bravetti, Umberto Dal Santo, Anna Di Leo, Guido Lanzani

ARPA Lombardia Settore Rischi Naturali, Clima e Usi Sostenibili delle Acque – U.O. Servizio Idro-Nivo-Meteo e Clima Orietta Cazzuli, Gian Paolo Minardi

Analisi preliminare della qualità dell'aria in Lombardia durante l'emergenza COVID-19. https://www.arpalombardia.it/sites/DocumentCenter/Documents/Aria%20-%20Relazioni%20approfondimento/Analisi%20preliminare%20QA-COVID19.pdf

15.4 BOLZANO

Periodo dell'indagine

Sono stati analizzati i dati delle stazioni da gennaio fino a fine aprile 2020

Inquinanti considerati

Sono stati considerati il biossido di azoto (NO₂), il monossido di azoto (NO) e le polveri fini (PM₁₀)

Periodo di riferimento per confronto

Il confronto è stato fatto con i dati degli ultimi 10 anni

Eventuali provvedimenti aggiuntivi

La Provincia di Bolzano non ha emesso provvedimenti aggiuntivi rispetto a quelli nazionali.

Metodi

Sono stati utilizzati i dati della qualità dell'aria rilevati in 4 stazioni in posizione trafficata. Poiché ogni anno si osserva una diminuzione di NO₂ da gennaio ad aprile si è confrontato il valore medio di NO₂ giorno per giorno degli ultimi 10 anni per confermare che i valori delle stazioni non sono dovuti solo al cambio stagionale.

Principali risultati

NO₂: il valore medio di biossido di azoto si è dimezzato sia a Merano che a Bolzano tra marzo ed aprile (mentre

per gennaio e febbraio i valori sono in linea con quelli degli ultimi 10 anni);

NO: la concentrazione di monossido di azoto si è ridotta ad un terzo del valore tipico del periodo;

PM₁₀: le polveri sottili sono rimaste sostanzialmente invariate.

I risultati dello studio di APPA Bolzano confermano che gli ossidi di azoto sono strettamente legati al traffico stradale. Si ribadisce inoltre che in Alto Adige le polveri sottili sono causate da molteplici fattori, di cui il traffico non è il più importante.

Peculiarità regionali

L'APPA Bolzano conclude lo studio della relazione tra qualità dell'aria ed emergenza Covid sottolineando l'indubbio miglioramento della qualità dell'aria durante la fase 1 dell'emergenza e auspicando che durante la fase 2 non si prediliga l'auto privata per gli spostamenti.

Inoltre ricorda come la Provincia di Bolzano punti al sostegno di trasporto pubblico e in particolare mobilità ciclistica in favore della quale è in via di definizione un pacchetto speciale di misure diretto sia ai privati che alle aziende. L'APPA Bolzano chiude lo studio invitando "tutti i cittadini ad assumere comportamenti virtuosi (andare a piedi, in bici, rinunciare se possibile all'auto privata) che incidono tantissimo e in tempi brevi sulla qualità dell'aria che respiriamo".

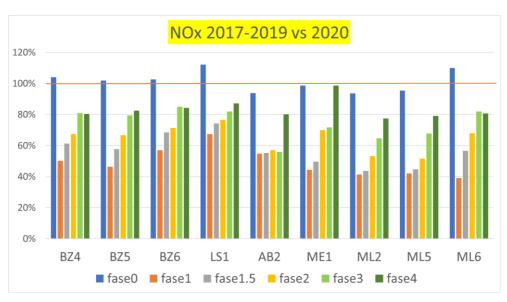


Figura 15.4.1. Il grafico si riferisce agli ossidi di azoto NOx fino a settembre 2020. In particolare riporta il rapporto fra la concentrazione di NOx misurata nel 2020 e la concentrazione media di NOx misurata negli anni 2017-2019, per diversi periodi e per diverse stazioni di misura. Prima del lock-down di marzo i valori sono in linea con gli anni precedenti, poi vediamo un brusco calo e quindi una ripresa graduale.

Legenda:			
fase 0	Gennaio-Febbraio		
fase 1	16 Marzo-19 Aprile		
fase 1.5	20 Aprile-4 Maggio		
fase 2	11 Maggio-26 Maggio		
fase 3	10 Giugno-10 Luglio		
fase 4	01 Agosto-09 Settembre		
BZ6	Bolzano, Via Amba Alagi, giardino		
BZ5	Bolzano, Piazza Adriano		
BZ4	Bolzano, Via C. August		
ML6	Bolzano, Via Roma, ex-Saetta		
LS1	Laives, zona Galizia		
AB2	A22– Egna		
ML5	A22 km 103, BrennerLEC		
ML2	A22 km 107, BrennerLEC		
ME1	Merano, Via Trogmann		

Andamento NO2 a Bolzano - Via C. Augusta

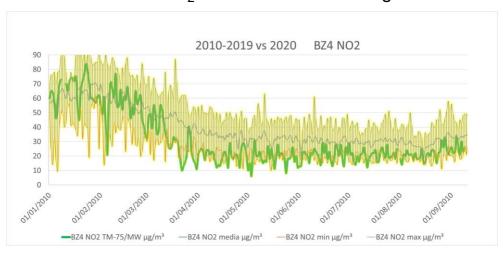


Figura 15.4.2. NO₂, Stazione di misura di via Claudia Augusta a Bolzano (BZ4). Il grafico riporta la fascia gialla che delimita i valori minimi e massimi registrati giorno per giorno negli anni 2010-2019. In grassetto verde è indicata la concentrazione di quest'anno, fino a settembre.

Per approfondire

Luca Verdi, Laboratorio Analisi aria e radioprotezione Agenzia provinciale per l'ambiente e la tutela del clima (2020). Emergenza COVID-19 e qualità dell'aria in Alto Adige Uno studio del Laboratorio Analisi aria e radioprotezione.

https://ambiente.provincia.bz.it/downloads/08_Studio-qualita-aria-coronavirus-2020-Rev3-ITA.pdf

15.5 TRENTO

Periodo dell'indagine

Il periodo di indagine è compreso tra i mesi di marzo e maggio 2020.

Inquinanti considerati

Sono stati considerati gli inquinanti biossido di azoto (NO₂), monossido di azoto (NO) e le polveri sottili PM₁₀.

Periodo di riferimento per confronto

2015-2019 (marzo - maggio).

Eventuali provvedimenti aggiuntivi

La Provincia di Trento provvedimenti aggiuntivi rispetto a quelli nazionali in grado di modificare ulteriormente il quadro emissivo.

Metodi

Sono state confrontate le concentrazioni misurate fra i mesi di marzo e maggio 2020 con quelle mediamente misurate nello stesso trimestre nell'ultimo quinquennio 2015-2019, e assunte come "clima" atteso, distinte fra quelle raccolte dalle stazioni orientate al traffico e quelle

posizionate per la verifica della qualità dell'aria di fondo urbano.

Principali risultati

Per quanto riguarda il biossido di azoto le diminuzioni medie nel periodo rispetto al clima atteso sono risultate essere mediamente del -38%, con una punta massima del -51% nella settimana 13-19 aprile, per le stazioni di fondo urbano, e -45%, con una punta massima del -62% sempre nella settimana 13-19 aprile, per stazioni orientate al traffico. Una diminuzione quindi molto rilevante riscontrata sia in ambito urbano, sia lungo le strade maggiormente trafficate.. Per come è strutturata la rete di monitoraggio ed i criteri con i quali sono state posizionate le stazioni questi risultati, misurati puntualmente, possono essere estesi con sufficiente confidenza anche a tutto il territorio provinciale.

Importante evidenziare come il trend di progressiva diminuzione delle concentrazione da inizio marzo alla fine di aprile sia da ricondurre alla normale dinamica stagionale che vede le concentrazioni più elevate per tutti gli inquinanti durante i mesi più freddi rispetto a quelli primaverili ed estivi.

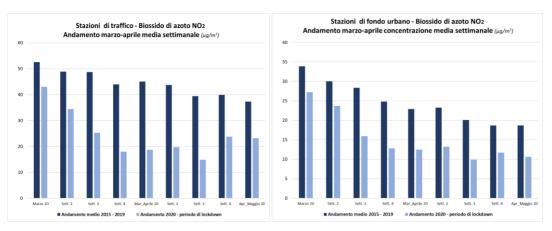


Figura 15.5.1 e 15.5.2 Confronto andamento delle concentrazioni medie settimanali del biossido di azoto (NO2) nel periodo 201-2019 e nelle stesse settimane del 2020.e nel periodo di lockdown (09/03-03/05) per la stazione km164.

Seppure in termini di concentrazione effettiva i valori, e quindi le diminuzioni, siano quantitativamente inferiori rispetto all'NO2, le stesse valutazioni fatte per il biossido possono essere fatte anche per il monossido di azoto – NO dove, anche in questo caso, la diminuzione è più evidente lungo le strade più trafficate che non in ambito urbano.

Per la sua origine solo "primaria" in quanto direttamente emesso dalla sorgente che in questo caso abbiamo visto

essere principalmente il traffico, un dato sicuramente importante ed evidente è la diminuzione anche superiore all'80% (- 84% durante la settimana 13-19 aprile) presso le stazioni di Trento Via Bolzano e Avio lungo la A22, a dimostrazione di un periodo durante il quale questa fonte è stata praticamente quasi del tutto azzerata.

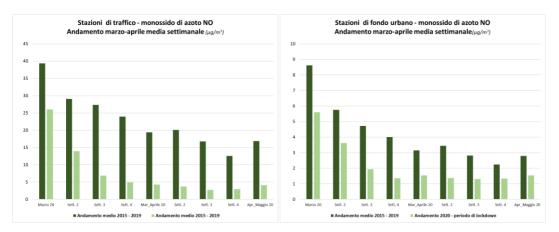


Figura 15.5.3 e 15.5.4 Confronto andamento delle concentrazioni medie settimanali del monossido di azoto (NO) nel periodo 201-2019 e nelle stesse settimane del 2020.

Per quanto riguarda le polveri sottili PM₁₀, la diminuzione stimata delle emissioni di particolato durante il periodo del lockdown non è sicuramente stata così rilevante come per gli ossidi di azoto e questo si è tradotto in un impatto sulla qualità dell'aria assai meno evidente.

Oltre al dato emissivo, per il particolato si devono considerare inoltre altri due fattori che hanno sicuramente influito anche in questo periodo, e sono la sua importante e in certi momenti preponderante componente "secondaria" e i fenomeni di trasporto.

Per quanto riguarda la componente secondaria, la diminuzione anche rilevante di inquinanti precursori del

particolato come gli ossidi di azoto ha sicuramente contribuito a ridurre la presenza di particolato, ma la complessità dei meccanismi di formazione ne rende difficile la quantificazione se non dopo valutazioni e approfondimenti che potranno essere fatti con tempi più lunghi.

Nel complesso la diminuzione media nel periodo rispetto al clima atteso sono risultate essere mediamente del -8% nelle stazioni di fondo urbano, ma con concentrazioni che di fatto, per tutto il mese di aprile e quindi sempre in periodo di pieno lockdown, sono risultate essere uguali o anche superiori a quelle misurate nello stesso mese durante il quinquennio 2015-2019.

La stessa considerazione, seppure con una diminuzione media complessiva superiore e pari al 20%, possono essere fatte per le stazioni di misura orientate al traffico. Questi dati, che dovranno comunque essere ulteriormente affinati e approfonditi, sorprendono solo parzialmente, atteso che i provvedimenti di restrizione

alle attività che hanno caratterizzato questo bimestre non hanno impattato, quantomeno in Trentino, in maniera rilevante sulle emissioni primarie di particolato sottile.

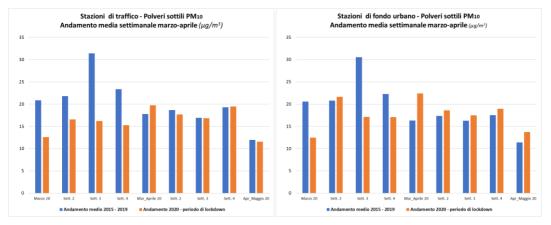


Figura 15.5.5 e 15.5.6 Confronto andamento delle concentrazioni medie settimanali del particolato sottile (PM10) nel periodo 201-2019 e nelle stesse settimane del 2020.

L'analisi degli impatti sulla qualità dell'aria per effetto dei provvedimenti di sospensione parziale delle attività in conseguenza dell'epidemia da Covid-19, sono quindi emerse indicazioni piuttosto chiare relativamente al contributo del traffico in particolare per quanto riguarda le concentrazioni degli ossidi di azoto, e con esse la conferma delle valutazioni e misure contenute anche nel

Piano di tutela della qualità dell'aria volte a contrastarne progressivamente le emissioni.

Se ne ricava altresì conferma che per quanto riguarda invece il particolato sottile – PM_{10} (e anche $PM_{2,5}$), il traffico ha sì una sua rilevanza, ma le azioni di contrasto alle emissioni da adottare anche in futuro dovranno considerare principalmente anche altri fattori.

Per approfondire

Agenzia provinciale per la protezione dell'ambiente della Provincia Autonoma di Trento http://www.appa.provincia.tn.it/aria/

15.6 PROGETTO BRENNERLEC (brennerlec.life): VALUTAZIONE DELL'IMPATTO DELLE MISURE PER CONTRASTARE LA PANDEMIA DI COVID-19 SULLA QUALITÀ DELL'ARIA LUNGO L'AUTOSTRADA DEL BRENNERO

ESTRATTO SULL'ANALISI DELL'INQUINANTE BLACK CARBON

Nell'ambito del progetto europeo LIFE BrennerLEC, le stazioni di monitoraggio delle Agenzie per l'Ambiente delle Province Autonome di Bolzano e di Trento hanno permesso di valutare l'impatto sulla qualità dell'aria delle misure imposte per il contenimento della diffusione del virus SARS-Cov-2. Nel periodo di lockdown, dal 9 marzo al 3 maggio 2020, il traffico veicolare lungo l'autostrada del Brennero ha subito un forte calo dei transiti, con una riduzione di circa il 92% di veicoli leggeri e 42% per quelli pesanti.

Durante il periodo di lockdown, la concentrazione di NO_2 misurata a bordo autostrada si è ridotta di circa il 50% rispetto al triennio precedente; piccoli spostamenti dalla sede autostradale hanno comportato grandi variazioni percentuali di NO_2 che sono arrivate ad una riduzione del 40% a 30m dalla carreggiata. Distanze superiori (da 30 a 800m) hanno implicato variazioni percentuali inferiori con una riduzione media del 37-39%.

Le stime delle emissioni di NOx e CO_2 sulla base della riduzione del traffico durante il lockdown del 2020, confrontate con quelle dello stesso periodo del triennio precedente, hanno evidenziato un calo rispettivamente del 66% e del 64%.

Si riportano di seguito le analisi dei dati relativi all'inquinante black carbon acquisiti tramite lo strumento di misura etalometro, collocato a bordo autostrada presso la stazione di APPA Trento al km 164 (in funzione da fine febbraio 2017). Tale strumento permette di misurare la concentrazione totale di black carbon distinguendo, inoltre, tra la componente di black carbon legata alla combustione di biomassa tipica dei riscaldamenti domestici, e quella connessa al traffico veicolare.

Analogamente a quanto osservato per l'inquinante NO₂, anche per le concentrazioni di black carbon si nota un importante calo in corrispondenza del periodo del lockdown dal 9 marzo a al 3 maggio 2020; in generale, le concentrazioni di black carbon totale hanno subito mediamente un calo di poco superiore al 50% ma, nella tabella e nei grafici seguenti, è interessante osservare il comportamento delle due componenti.

Tabella 15.6.1. Confronto tra le concentrazioni di black carbon nel triennio 2017-2019 e nel 2020 nel periodo con traffico inalterato (01/01-24/02) e nel periodo di lockdown (09/03-03/05) per la stazione km164.

Stazione al km 164 - Variazione Black Carbon 2020 vs. triennio 2017-2019				
Periodo	Black Carbon totale	Black Carbon combustibili fossili (ff)	Black Carbon combustione biomassa (BB)	
	[%]	[%]	[%]	
01/01 – 24/02	8.7	6.6	11.8	
09/03 - 03/05	-51.5	-57.5	4.7	

A causa del forte calo dei transiti veicolari e a riconferma della stretta correlazione di questo inquinante con il

traffico dei veicoli, la componente di black carbon derivante da motori e combustibili fossili (BC_ff, fossil fuel), ha registrato una riduzione media superiore al 57%.

Nonostante la specificità del sito di traffico, però, si coglie anche un altro interessante aspetto; la seconda componente, legata alla combustione della biomassa, ha subito un aumento del 5% rispetto al triennio precedente e ciò ben si correla con un certo incremento dell'utilizzo dei riscaldamenti domestici legato alla limitazione delle

attività lavorative e quindi della permanenza di cittadini e lavoratori (smart working) nelle proprie abitazioni.

Nei grafici presentati nelle Figure seguenti si nota la forte riduzione, nel periodo di lockdown, delle concentrazioni della componente di black carbon legata al traffico (BC_ff) e il sostanziale mantenimento, rispetto al triennio precedente, della componente legata ai riscaldamenti domestici (BC BB).

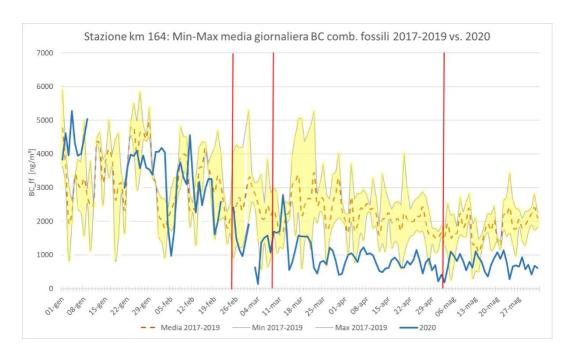


Figura 15.6.2. Serie temporale su base giornaliera delle concentrazioni di black carbon dovute al traffico veicolare misurate presso la stazione al km 164 dell'Autostrada del Brennero. La linea arancione tratteggiata rappresenta la concentrazione media nel periodo 2017-2019, gli estremi dell'area gialla rappresentano la concentrazione minima e massima nel periodo 2017-2019, mentre la linea verde continua rappresenta la concentrazione nell'anno 2020

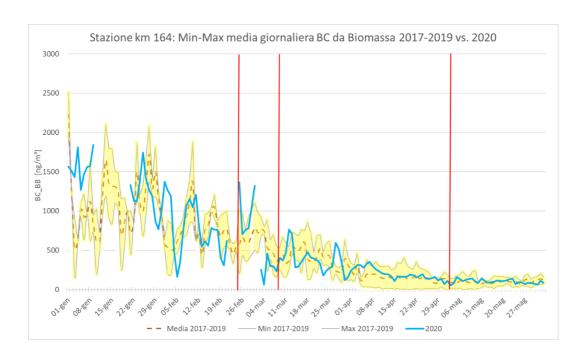


Figura 15.6.3. Come in Figura precedente, ma per la componente di black carbon dovuto alla biomassa.

Per approfondire

Valentina Miotto (APPA Trento), Patrick Dalpiaz (APPA Bolzano), Lorenzo Giovannini e Elena Bertazza (Università di Trento), Ilaria Todeschini (CISMA S.r.I.). Valutazione dell'impatto delle misure per contrastare la pandemia di COVID 19 sulla qualità dell'aria (LIFE BrennerLEC 2020)

https://brennerlec.life/it/technical-details

15.7 VENETO

Periodo dell'indagine

Il periodo di indagine è compreso tra il 1 febbraio e il 31 maggio 2020.

Inquinanti considerati

Sono stati considerati gli inquinanti biossido di azoto (NO_2) , monossido di azoto (NO), polveri sottili PM_{10} . Di questi sono state analizzate le concentrazioni in atmosfera. Parallelamente sono state valutate le riduzioni delle emissioni di NOx e PM_{10} primario .

Periodo di riferimento per confronto

2016-2019 (1 febbraio - 31 maggio).

Eventuali provvedimenti aggiuntivi

Limitazione allo spostamento di persone (Ordinanze della Giunta Regionale del Veneto n. 28, 29, 30 del 14 e 20 marzo 2020).

Limitazioni delle attività commerciali (Ordinanza della Giunta Regionale del Veneto n. 33 del 20 marzo 2020 e n. 37 del 3 aprile 2020).

Metodi

La valutazione è stata effettuata, a cura dell'Osservatorio Regionale Aria, utilizzando un triplice approccio: l'analisi delle concentrazioni degli inquinanti misurate dalle stazioni della rete di monitoraggio della qualità dell'aria di ARPAV; la stima delle variazioni delle emissioni inquinanti dei settori interessati dalle restrizioni del lockdown e l'analisi delle concentrazioni stimate dal sistema modellistico SPIAIR utilizzato per la previsione e

la valutazione dell'inquinamento atmosferico. La prima analisi è stata svolta nel mese di maggio in relazione ai dati di qualità dell'aria e delle emissioni relative al periodo 1 gennaio - 31 marzo 2020; successivamente, nel mese di luglio 2020, è stata realizzata un'estensione dell'analisi dei dati fino al 31 maggio 2020, ovvero comprendendo tutta la fase 1 (dal 24 febbraio al 3 maggio 2020) e la fase 2 (dal 4 maggio al 31 maggio).

Principali risultati

L'effetto delle misure di restrizione che hanno comportato la riduzione delle emissioni di alcuni settori emissivi chiave, tra cui, in primis, i trasporti, è stato evidenziato da una riduzione, ben visibile, delle concentrazioni di biossido di azoto durante le fasi 1 e 2, rispetto a quanto mediamente monitorato nel quadriennio precedente, tranne che per la stazione di Rovigo (RO-Borsea) che ha registrato concentrazioni elevate di biossido di azoto verso la fine di maggio (Figura 15.7.1).

Per quanto riguarda il PM₁₀, la valutazione dell'effetto del lockdown sulle concentrazioni delle polveri sottili, risulta di più difficile quantificazione in quanto si tratta di un inquinante costituito, sia da una frazione primaria direttamente emessa, sia da una frazione secondaria dovuta alla trasformazione, di altri inquinanti gassosi, in particolato sottile. I fenomeni che avvengono in atmosfera e che portano alla formazione del PM₁₀ sono molteplici e complessi e spesso le condizioni meteorologiche rivestono un ruolo preponderante nel determinare variazioni, sia stagionali che giornaliere, delle concentrazioni di tale inquinante (Figura 15.7.2).

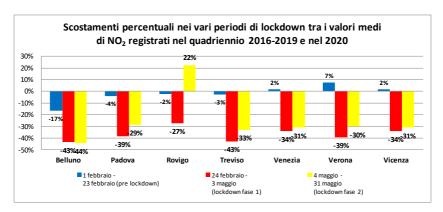


Figura 15.7.1. Scostamenti percentuali nei vari periodi di lockdown tra i valori medi di NO2 registrati nel quadriennio 2016-2019 e nel 2020

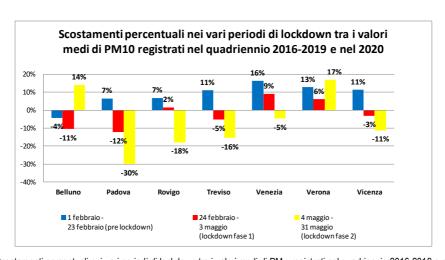


Figura 15.7.2. Scostamenti percentuali nei vari periodi di lockdown tra i valori medi di PM₁₀ registrati nel quadriennio 2016-2019 e nel 2020

Per quanto riguarda le emissioni rilasciate in atmosfera, grazie alla consolidata metodologia di calcolo adottata per la compilazione dell'inventario INEMAR Veneto, è stato possibile valorizzare gli indicatori statistici raccolti relativi alla variazione delle attività antropiche a causa delle restrizioni, giungendo non solo a calcolare differenze in termini relativi ma anche a stimare i

quantitativi assoluti di emissioni risparmiate durante i vari sotto-periodi del lockdown. In particolare la stima dei decrementi emissivi si è focalizzata sugli ossidi di azoto (NOx) e sulle polveri PM₁₀ primarie.

Il massimo decremento emissivo raggiunto per gli NOx si è avuto nel periodo dal 25 marzo al 26 aprile con un

decremento del 36%, mentre per le polveri PM10, dal 4 al 17 maggio con un decremento del 17%, nel periodo stagionale, ormai caldo, in cui non erano più in funzione i riscaldamenti domestici (Figura 15.7.3).

Considerando il periodo dal 1 marzo al 31 maggio, si è stimato, che le condizioni di restrizione delle attività antropiche abbiano comportato un risparmio

dell'emissione di poco meno di 5 mila tonnellate di NOx e di circa 150 tonnellate di polveri PM₁₀ primarie. Questi quantitativi corrispondono rispettivamente al 28% e al 5% delle emissioni che si sarebbero avute da tutti i settori emissivi in Veneto nel periodo in esame.

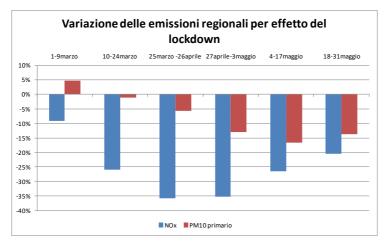


Figura 15.7.3. Variazione delle emissioni regionali per effetto del lockdown.

Il terzo ed ultimo approccio di valutazione, tramite l'analisi degli output modellistici del sistema SPIAIR per il sito corrispondente alla stazione di Padova Mandria, indica un decremento fino al 50% delle concentrazioni orarie massime giornaliere del biossido di azoto (NO₂) nel mese di aprile ed un calo più contenuto per le concentrazioni giornaliere di PM₁₀, con un decremento massimo superiore al 20%, sempre nel mese di aprile. Nella cosiddetta "fase 2" (4-31 maggio) si è stimato un minor decremento delle concentrazioni di NO₂ (30% circa), in accordo con l'andamento generale riscontrato dall'analisi dei valori misurati dalle stazioni della rete di monitoraggio. Anche il decremento della concentrazione di PM₁₀ si riduce a maggio rispetto al mese di aprile, ma

in misura minore, risultando leggermente inferiore al 20%

Peculiarità regionali

E' stata effettuata anche una valutazione dei dati di qualità dell'aria durante il periodo del lockdown in provincia di Padova, con una particolare attenzione dell'area di Vò Euganeo, comune diventato tristemente famoso nel febbraio 2020 poiché è stato, insieme a Codogno, il primo focolaio italiano della pandemia di COVID-19 (per maggiori informazioni: https://www.arpa.veneto.it/arpav/chi-e-arpav/file-e-allegati/dap-padova/aria/QA_PD_covid19.pdf)

Per approfondire

https://www.arpa.veneto.it/temi-ambientali/aria/riferimenti/documenti

Servizio Osservatorio Regionale Aria - ARPAV

Dirigente: Salvatore Patti

Autori: Alberto Dalla Fontana, Francesca Liguori, Ketty Lorenzet, Giovanna Marson, Silvia Pillon, Laura Susanetti,

Luca Zagolin

15.8 FRIULI VENEZIA GIULIA

La relazione di ARPA FVG utilizza un'impostazione DPSR (determinanti, pressioni, stato, risposte).

Periodo dell'indagine

Il periodo di studio copre febbraio e marzo 2020 per i determinanti antropici e le pressioni, estendendosi al 16 maggio per i determinanti meteorologici e per gli indicatori di stato.

1 febbraio 16 maggio per gli indicatori di stato, la qualità dell'aria

Inquinanti considerati

Sono stati considerati gli inquinanti benzene (C_6H_6), biossido di azoto (NO_2), ozono (O_3), polveri sottili PM_{10} e $PM_{2,5}$ nella analisi relativa alla Stato. La gamma di inquinanti considerati per le Pressioni è stata più ampia.

Periodo di riferimento per confronto

2016-2019 nella analisi relativa allo Stato dello schema DPSR.

Eventuali provvedimenti aggiuntivi

Il 23 febbraio il FVG anticipa il provvedimento nazionale di chiusura delle scuole.

Metodi

Nella relazione di ARPA FVG (Relazione Tecnica di ARPA FVG, giugno 2020) è stato seguito lo schema DPSR, dove per Determinanti, sono state considerate le variazioni nelle attività umane (determinanti antropici, traffico su strada e traffico aereo; le attività industriali sono state considerate invariate) e dei parametri meteorologici più rilevanti dal punto di vista della qualità dell'aria (determinanti naturali, come le condizioni meteorologiche relative a stagnazione, ricircolo, ventilazione);. Per queste determinanti si è fatta una stima delle variazioni rispetto a periodi non interessati da lockdown. Le Pressioni sono invece individuate come le emissioni in atmosfera di elementi inquinanti e sono

utilizzate le misure delle stazioni per valutare le relative variazioni di concentrazioni; per valutare lo Stato si cerca di capire come la composizione dell'aria che respiriamo è cambiata nelle settimane considerate.

In aggiunta alle concentrazioni in atmosfera per l'analisi di Stato si è usata l'analisi dei rapporti tra concentrazioni di inquinanti che consente di ridurre l'effetto confondente della meteorologia, focalizzandosi meglio sugli effetti delle variazioni delle emissioni: i rapporti utilizzati sono toluene/benzene e ossidi di azoto/monossido di azoto.

Ulteriore metodo per ridurre l'effetto confondente della meteorologia è l'analisi della granulometria delle polveri sottili che consente di valutare se l'andamento della frazione grossolana (coarse) delle polveri sia correlato alle condizioni meteorologiche e/o alle sorgenti emissive locali.

Lo studio di ARPA FVG procede presenta anche la caratterizzazione chimica delle polveri sottili. I metalli selezionati sono stati antimonio Sb e rame Cu (fra loro ben correlati e indicativi del traffico veicolare) nonché ferro Fe, manganese Mn e piombo Pb (fra loro ben correlati e a loro volta ben correlati col PM₁₀).

Principali risultati

Le determinanti ci descrivono che i volumi di traffico urbani si sono ridotti dalla quarta settimana di febbraio fino a registrare un calo del 76% a fine marzo, mentre i volumi di traffico su strade extra-urbane si sono ridotti dalla quarta settimana di febbraio fino a raggiungere a fine marzo riduzioni comprese tra il -87% degli autoveicoli e il -68% dei veicoli commerciali pesanti; infine le percorrenze totali sulle autostrade si sono notevolmente ridotte per i veicoli leggeri (fino a -91%), meno sensibilmente per i veicoli pesanti (-53% a fine marzo). Il traffico aereo è stato drasticamente ridotto fino ad azzerarsi nelle ultime settimane di marzo.

Le determinanti naturali sono descritte mediante tre indicatori, la stagnazione, il ricircolo e la ventilazione, per offrire una rappresentazione sintetica e qualitativa della capacità dell'atmosfera di disperdere e diluire gli inquinanti, o al contrario della tendenza ad accumularli.

Nella relazione di ARPA FVG i tre indicatori sono rappresentati graficamente in pannelli per provincia. Di rilievo per tutta la Regione la configurazione meteorologica a grande scala che ha determinato il trasporto in quota di notevoli masse di polveri di origine desertica dalle regioni vicine al Mar Caspio verso ovest che tra il 27 e il 29 marzo hanno raggiunto anche il Friuli Venezia Giulia.

Per capire come le pressioni sono variate rispetto ad un periodo "normale" i dati delle emissioni del periodo di confronto sono stati presi dall'ultima versione disponibile dell'inventario delle emissioni del Friuli Venezia Giulia. realizzato da ARPA-FVG con tecnologia INEMAR e riferito all'anno 2013. Dalla base dati sono state escluse alcune emissioni puntuali rilevanti, non attive durante il periodo di studio: la centrale termoelettrica di Monfalcone e l'area a caldo dell'impianto siderurgico di Servola (Trieste). Dalle emissioni annuali, si sono ricavate le emissioni settimanali. Rispetto alle condizioni di confronto si sono considerate le variazioni del trasporto su strada e traffico aereo, considerando invece invariate le attività produttive industriali e agricole, i traffici portuali, la produzione energetica e i consumi per il riscaldamento domestico. I confronti tra le stime emissive e un periodo "normale" portano a misurare un calo continuo nelle emissioni tra l'ultima settimana di febbraio e la fine di marzo 2020. Particolarmente marcato il calo delle emissioni di ossidi di azoto (NOx), che raggiunge il -25%, dell'anidride carbonica (CO2, -19%) e del monossido di carbonio (CO, -17%). Meno netto il calo delle emissioni di polveri sottili (PM₁₀ e PM_{2,5}), inferiore al 10% e probabilmente almeno in parte compensato dall'aumento nei consumi per riscaldamento domestico a biomassa. Infine, le emissioni dei composti organici volatili nel loro insieme (COV), di ammoniaca (NH₃) e di biossido di zolfo (SO₂) non hanno subito variazioni di rilievo

Per capire come la composizione dell'aria che respiriamo è cambiata nelle settimane considerate, lo Stato, si valuta l'andamento della qualità dell'aria. Analizzando le concentrazioni misurate dalle stazioni di monitoraggio e confrontandole con le misure degli anni precedenti, il report di ARPA FVG verifica se le riduzioni di emissioni

abbiano determinato effetti sulla qualità dell'aria, e di quale entità.

Il benzene (C_6H_6) ha generalmente concentrazioni più basse rispetto agli anni precedenti, ma poiché questa tendenza è già evidente prima del lockdown e della chiusura delle scuole, è da attribuirsi ad una diminuzione delle emissioni che prescinde dalle azioni di contenimento.

Il biossido di azoto, NO₂, ha concentrazioni in linea con gli anni precedenti nelle prime settimane di febbraio. Il calo progressivo che si osserva nei giorni 27 febbraio – 7 marzo potrebbe essere determinato sia dalla chiusura delle scuole sia dalle condizioni meteo favorevoli alla dispersione. Invece l'ulteriore calo nel periodo successivo, seppur accompagnato da fluttuazioni coerenti con le condizioni meteo, è da attribuire agli effetti del lockdown. Infatti esso interessa tutta la regione e corrisponde a un netto smorzamento dei picchi corrispondenti alle ore di punta nel traffico stradale, la mattina e la sera.

L'ozono (O_3) , inquinante secondario di origine fotochimica, non risente in maniera evidente degli effetti del lockdown. Le concentrazioni di aprile, più alte degli anni precedenti, sono da attribuirsi alle temperature particolarmente miti di quelle settimane. I giorni medi conservano l'andamento tipico.

Le polveri PM₁₀ mostrano un vistoso picco di concentrazioni corrispondenti al trasporto a grande scala di polveri di origine desertica che ha interessato il Friuli Venezia Giulia nei giorni 27-29 marzo. Il picco è meno marcato per le polveri più sottili PM_{2.5}, segno che le polveri desertiche avevano una granulometria grossolana. Al di là di questo fattore confondente, non si notano particolari scostamenti rispetto agli anni precedenti, neppure nei giorni tipo.

L'analisi dei rapporti tra concentrazioni di inquinanti inizia con il primo rapporto tra inquinanti, toluene/benzene, utile a ridurre l'effetto confondente della meteorologia. La relazione ARPA FVG riporta che l'analisi utilizza i valori del rapporto toluene/benzene prima e durante l'attuazione delle azioni di limitazione alla mobilità

individuale, e in particolare utilizza il confronto con gli anni precedenti e tra stazioni collocate a distanze diverse dalle strade. Lo studio di questo rapporto conferma ancora una volta la diminuzione dei flussi di traffico veicolare, e segnala un probabile lieve aumento delle emissioni da combustione di biomassa per riscaldamento domestico. Si è quindi validato l'utilizzo di questo rapporto tra inquinanti.

Il secondo rapporto tra inquinanti ad essere utilizzato è tra ossidi di azoto NOx/NO utile alla diagnostica: è una grandezza adimensionale il cui valore dipende sia dalla distanza delle fonti emissive di ossidi di azoto sia dai fattori che influenzano la cinetica chimica dell'ossidazione dell'NO a NOx durante il corso della giornata. L'analisi riportata nella relazione di ARPA FVG per poter comprendere se vi siano variazioni peculiari durante il periodo di lockdown rispetto agli andamenti degli anni precedenti riporta un effettivo aumento di tale indice nelle settimane di lockdown a traffico ridotto e mentre nelle settimane immediatamente precedenti e seguenti invece un lieve aumento ma nella variabilità tipica dell'indicatore (NOx/NO presenta i valori minimi in corrispondenza di traffico, essendo il monossido di azoto NO un inquinante primario emesso direttamente dal traffico veicolare; il monossido di azoto prodotto nella fase trafficata viene ossidato a Nox, tipicamente le fasi sono diurna e notturna).

L'analisi della granulometria delle polveri nella relazione di ARPA FVG trova una sua conferma. Prima del blocco in prossimità delle strade si registra un maggior contributo della frazione grossolana, probabilmente determinato dall'azione di risollevamento delle polveri depositate sull'asfalto, causata dal frequente passaggio

di veicoli. Durante il lockdown invece il metodo utilizzato rileva che è venuto meno quel contributo alla concentrazione di polveri sottili (risollevamento), importante ma limitato alle aree più urbanizzate e trafficate.

La relazione di ARPA FVG mette in evidenza i risultati della caratterizzazione chimica delle polveri sottili con l'analisi dei metalli antimonio Sb, rame Cu, ferro Fe, manganese Mn e piombo Pb. La diminuzione percentuale più drastica, durante il lockdown, si è riscontrata proprio per quei metalli, Sb e Cu, che derivano dall'usura dei freni e dei contatti elettrici dei veicoli. Gli altri metalli invece procedono all'unisono con le concentrazioni di PM₁₀ Antimonio e rame negli anni precedenti invece presentavano un trend confrontabile con quello degli altri metalli.

Interessante nello studio di ARPA FVG l'analisi degli idrocarburi policiclici aromatici (IPA) ricercati nel PM₁₀. Gli IPA sono una tipologia di inquinanti dovuta alla combustione (da traffico o da riscaldamento a legna). La riduzione del traffico ha determinato la riduzione degli IPA associati ai trasporti, facendo così risaltare quelli principalmente legati alla combustione domestica.

Peculiarità regionali

i dati raccolti nel periodo del lockdown sono stati utilizzati anche per valutare l'efficacia di alcuni indicatori combinati, rapporti tra inquinanti, l'analisi granulometrica delle polveri sottili e l'analisi del contenuto di metalli nelle polveri sottili.

Per approfondire

Edi Baiutti, Marco Bellini, Giovanni Bonafè, Andrea Mistaro, Francesco Montanari, Alessia Movia, Alessandra Petrini, Fulvio Stel, Arianna Tolloi, Marco Visintin (2020). Effetti sulla matrice ambientale ARIA delle azioni di contenimento del COVID-19.

http://www.arpa.fvg.it/export/sites/default/tema/aria/utilita/Documenti_e_presentazioni/tecnico_scientifiche_docs/Report_Lockdown_ARPAFVG_Approvato.pdf

15.9 PROGETTO PREPAIR (WWW.LIFEPREPAIR.EU)

Regioni del Bacino Padano interessate: Valle d'Aosta, Lombardia, Piemonte, Veneto, Friuli Venezia Giulia, Emilia-Romagna e Provincia di Trento

Periodo e perimetro dell'indagine

Per la parte determinanti ed emissioni: febbraio – maggio, a livello di bacino padano nel periodo delle limitazioni e nei periodi di allentamento progressivo delle misure emergenziali sanitarie.

Per i dati di qualità dell'aria: Gennaio-Maggio.

Inquinanti considerati

Per la parte determinanti ed emissioni: ossidi di azoto, particolato atmosferico (PM₁₀)

Per la qualità dell'aria: PM₁₀ PM_{2,5} NO NO₂ Benzene NH₃

Periodo di riferimento per confronto

scenario di riferimento o anno di inventario delle emissioni disponibile, attualizzato

Per la qualità dell'aria: 2020 vs 2016-2019

Metodi

Determinanti ed emissioni: analisi dati di riduzione dei determinanti (flussi di traffico per ciclo di guida e classi veicolari, consumi energetici, numero movimenti aerei) nell'intero bacino padano. Stima delle variazioni settimanali di emissioni, rispetto allo scenario di riferimento o anno di inventario delle emissioni disponibile, attualizzato, mediante proxy, a partire dai dati di riduzione dei determinanti e cercando di effettuare valutazioni per ogni settore di sorgenti emissive con metodologie omogenee, compatibilmente con i dati a disposizione per il settore considerato

Qualità dell'aria: analisi descrittive (boxplot mensili, andamenti giornalieri, giorno tipo, range di variazione)

Eventuali provvedimenti aggiuntivi:

Cronosintesi delle misure di lockdown in Italia le prime misure per il contenimento dell'emergenza sanitaria sono state adottate con il DPCM 23 febbraio 2020 per alcuni Comuni delle Regioni Lombardia e Veneto. Il 25 febbraio il Presidente del Consiglio ha adottato un proprio decreto che ha introdotto misure in materia di svolgimento delle manifestazioni sportive, di organizzazione delle attività scolastiche e della formazione superiore, di prevenzione sanitaria presso gli Istituti penitenziari, di regolazione delle modalità di accesso agli esami di guida, di organizzazione delle attività culturali e per il turismo. Il 1 marzo un nuovo DPCM ha recepito e prorogato alcune delle misure già adottate e ne ha introdotte ulteriori, valide su tutto il territorio nazionale. Il 4 marzo è stato adottato un DPCM recante ulteriori misure, che prevede in particolare la sospensione in tutta Italia delle attività didattiche negli istituti scolastici e nelle università. Il 6 marzo 2020 Il Consiglio dei Ministri ha approvato il decreto legge n.35, che introduce misure straordinarie ed urgenti. L'8 marzo 2020 è stato adottato un DPCM che prevede ulteriori nuove misure su tutto il territorio nazionale nonché misure rafforzate e omogenee in un'area comprendente il territorio della Regione Lombardia e di altre 14 Province (cinque dell'Emilia-Romagna, cinque del Piemonte, tre del Veneto e una delle Marche). Il DPCM 9 marzo 2020 estende le misure del DPCM 8 marzo 2020 a tutto il territorio nazionale. È inoltre vietata ogni forma di assembramento di persone in luoghi pubblici o aperti al pubblico ed eventi e manifestazioni sportive. Tali disposizioni producono effetto dalla data del 10 marzo 2020 e sono efficaci fino al 3 aprile 2020. Infine, l'11 marzo, è stato adottato il nuovo DPCM recante ulteriori misure in materia di contenimento e gestione dell'emergenza epidemiologica da COVID-19 sull'intero territorio nazionale che prevede in particolare la chiusura di tutte le attività commerciali, di vendita al dettaglio, ad eccezione dei negozi di generi alimentari, di prima necessità, delle farmacie e delle parafarmacie. Il DPCM 10 aprile 2020 estende le misure di contenimento dell'epidemia di coronavirus fino al 3 maggio 2020 e partire dal 14 aprile permette l'apertura delle cartolerie, delle librerie e dei negozi di vestiti per bambini e neonati e vengono inserite tra le attività produttive consentite la silvicoltura e l'industria del legno.

(Fonte

http://www.governo.it/it/approfondimento/coronavirus/13 968).

Si è poi assistito ad una progressiva ripresa delle attività socio-economiche e di mobilità delle persone, con l'attivazione delle Fasi 2 e 3 a partire dai mesi di maggio e giugno 2020 (4 giugno 2020: ripresa della mobilità interregionale).

La Tabella 15.9.1 (riportata alla fine del paragrafo) include le principali misure di contenimento adottate nel periodo di lockdown. Si noti che il quadro non è esaustivo dei numerosi provvedimenti assunti dai singoli Enti, ma vuole costituire uno schema di riferimento.

Principali risultati

Le misure restrittive hanno avuto un impatto sulla maggior parte dei settori delle attività umane, che sono responsabili delle emissioni di inquinanti.

Gli spostamenti su strada hanno subito una riduzione progressiva via via sempre più importante differenziata per area, tipologia di ciclo di guida e tipo di veicoli: in ambito urbano, riduzioni di traffico privato dal 10% al 80% e sino al 50% per quello commerciale; in ambito extraurbano, dal 20 all'80 % per il traffico leggero e sino al 50% di quello pesante; in ambito autostradale dal 10% al 85% per i veicoli leggeri e dal 10% al 55% per i veicoli pesanti. Nel mese di maggio, a seguito del progressivo riavvio delle attività socio-economiche, è stato rilevato un progressivo incremento dei flussi di traffico sia autoveicolare che commerciale, anche se ancora negativi rispetto ai volumi di traffico pre-lockdown. Per i settori domestico, terziario ed industriale, l'analisi delle variazioni dei consumi energetici nel periodo di emergenza sanitaria è stata effettuata sui dati di volume di gas naturale (GN) distribuito e di energia elettrica (EE) erogata. I volumi di gas sulle reti di distribuzione nel primo semestre del 2020 hanno mostrato una riduzione rispetto allo stesso periodo degli anni precedenti, con contrazioni del GN distribuito ad aprile e maggio pari al 25% rispetto all'anno precedente. Il consumo di GN destinato ad un uso domestico ad inizio anno ha

mostrato una contrazione, dovuta ad un clima particolarmente mite rispetto agli anni precedenti, mentre durante il periodo emergenziale ha evidenziato una richiesta termica superiore a quella degli anni precedenti. con un incremento dei consumi termici residenziali tra il 5% e il 15% (con differenze anche evidenti fra le varie regioni da imputarsi alla diversa composizione del patrimonio edilizio). Nei mesi di Aprile e Maggio, periodo in cui generalmente si assiste ad una progressiva riduzione dei consumi da riscaldamento domestico, è stata riscontrata una riduzione dei consumi nei servizi pubblici o privati (settore terziario) dal 25% al 65%. I consumi di gas per usi industriali nel periodo della crisi sanitaria si sono progressivamente ridotti, rispetto allo stesso periodo del 2019, all'inasprirsi delle limitazioni delle attività produttive, fino a raggiungere una riduzione dei consumi energetici nel settore industriale del 35% in alcuni contesti produttivi. L'analisi della domanda di gas per usi termoelettrici nei mesi da marzo a maggio mostra una riduzione rispetto allo stesso periodo dell'anno precedente tra il 20% e il 30%, a fronte di una riduzione della produzione di energia elettrica da impianti termoelettrici pari al 20%. Tutti gli aeroporti presenti sul territorio del bacino padano mostrano un drastico calo dei movimenti aerei nel periodo del lockdown.

La contrazione nei trasporti e nelle attività ha determinato una riduzione delle emissioni derivanti, in particolare dal traffico veicolare

Nella stima della riduzione delle emissioni, le emissioni derivanti dal settore agricolo e zootecnico sono state considerate invariate poiché tali attività non sono state interessate dalle misure di limitazione legate al COVID. Questo trova conferma dalle concentrazioni di ammoniaca in atmosfera, che non hanno mostrato variazioni legate ai provvedimenti. La riduzione delle emissioni è risultata maggiore per gli ossidi di azoto, meno per il particolato atmosferico PM₁₀. Mediamente, sul bacino padano, si è arrivati ad avere una riduzione settimanale massima fino al 40% per gli ossidi di azoto e fino al 21% per il PM₁₀.

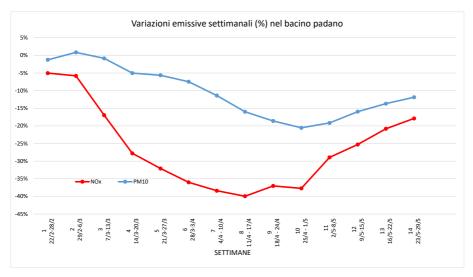


Figura 15.9.1. Variazioni emissive settimanali (percentuali) nel bacino padano.

L'analisi dei dati di qualità dell'aria nel bacino del Po è stata condotta su 5 inquinanti: NO2, NO, PM10, PM2,5 e benzene, cui si aggiunge l'ammoniaca (NH3) laddove disponibile. I dati sono stati raccolti su tutto il bacino padano utilizzando le stazioni di monitoraggio della qualità dell'aria della rete dei partner Prepair (stazioni da traffico e fondo urbano, a parte quelle per l'ammoniaca). Come è noto la concentrazione in aria degli inquinanti dipende da diversi fattori (emissioni antropiche e naturali, condizioni meteorologiche che ne influenzano formazione, dispersione, trasporto, rimozione e deposizione) ed è caratterizzata pertanto da una marcata variabilità inter annuale. In considerazione di questa variabilità, i valori medi del periodo 2016-2019 sono stati utilizzati per confrontarli con quelli del 2020, affetti dai provvedimenti lockdown.

Il confronto effettuato tramite boxplot mensili (dati giornalieri da gennaio a maggio, Figura 15.9.2) del 2020 rispetto il periodo 2016-2019, per le concentrazioni di benzene, NO2, NO, PM10, evidenzia una notevole diminuzione della mediana (in alcuni casi fino al suo dimezzamento) per tutti i gas nel periodo marzo - maggio 2020 mentre quella del PM10 non mostra variazioni se non un calo delle concentrazioni più elevate (visibile anche dalla distribuzione di frequenza mensile del PM10).

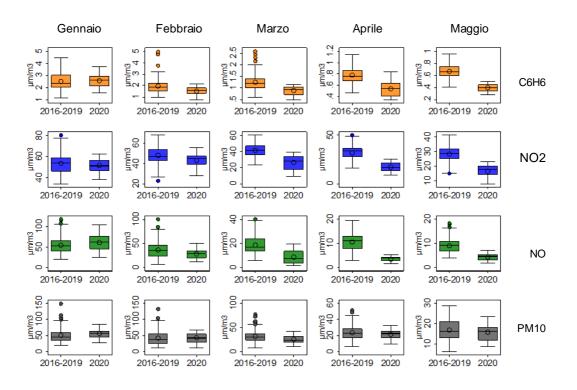


Figura 15.9.2. boxplot mensili (dati giornalieri da gennaio a maggio) del 2020 rispetto il periodo 2016-2019, per le concentrazioni di benzene, NO₂, NO. PM₁₀

L'ammoniaca rilevata nelle stazioni presenti in Emilia-Romagna (2 stazioni), Piemonte (2 stazioni) e Lombardia (10 stazioni) evidenzia solo un lieve aumento della mediana non essendo un parametro le cui sorgenti siano state influenzate dai regolamenti di DPCM del lockdown.

L'andamento temporale della concentrazione giornaliera media di NO, NO_2 e benzene diminuisce gradualmente nel tempo da gennaio a maggio, come avviene di consueto nel passaggio verso la stagione più calda, il decremento risulta però particolarmente evidente dal mese di marzo 2020, per poi proseguire nei mesi successivi. Il confronto con i dati dello stesso periodo, ma negli anni 2016-2019, mostra infatti come le

concentrazioni dei gas presentino valori ampiamente inferiori alla media e prossimi ai valori minimi.

L'andamento del PM₁₀ è più complesso. Il particolato evidenzia un brusco calo a fine febbraio, quando è stato osservato un importante rimescolamento delle masse d'aria durato alcuni giorni, e successivamente si mantiene per buona parte dei mesi di marzo, aprile e maggio, seppur all'interno della variabilità della media di riferimento (minimi e massimi), con valori più bassi rispetto alla media del quadriennio precedente. I periodi con valori più alti di PM₁₀ sono spesso associati a periodi di stagnazione e ridotto ricircolo e coincidono con valori elevati di PM_{2,5}. Il comportamento di questi due inquinanti

è infatti molto simile, soprattutto nella stagione fredda e anche nel mese di marzo, quando il PM₁₀ risulta composto in prevalenza da PM_{2,5}: quest'ultima frazione granulometrica è nota avere una importante origine secondaria che è il risultato di complessi processi fisicochimici che dipendono fortemente dalle condizioni meteorologiche. L'unico picco di PM₁₀ in cui è scarso l'apporto di PM_{2,5} è quello di fine marzo causato dal trasporto di polveri a grande scala proveniente da est Europa e in prevalenza caratterizzato da granulometrica grossolana. Dall'analisi delle immagini da satellite (ESA SENTINEL-3) si è potuto inoltre evidenziare, nella giornata del 24 marzo, la formazione di un "dust-storm" (tempesta di polveri) nella zona del lago di Aral (est Europa, zona del Mar Caspio), attualmente del tutto prosciugato. Queste masse d'aria ricche di "dust" si sono poi introdotte, nei giorni seguenti, all'interno del bacino padano rimanendo intrappolate dall'arco alpino e appenninico. Anche il mese di maggio presenta un evento dovuto al trasporto di polveri, seppur ridotto in termini di concentrazione rispetto a quello di marzo, e proprio in quei giorni (14-22) i valori di PM₁₀ sono prossimi alla media degli anni precedenti e in alcuni giorni superiori al massimo. L'evento ha portato a una crescita delle concentrazioni in pianura padana ma soprattutto nel centro-sud d'Italia, dove in molte stazioni i valori di PM₁₀ hanno superato il limite di legge. Il trasporto è durato fino al 19-20 maggio ma dal 20 l'estensione di un promontorio anticiclonico ha favorito condizioni atmosferiche stabili. Nell'ultima decade del mese di maggio le concentrazioni sono prossime ai minimi degli anni passati grazie anche a un'onda depressionaria che ha portato rimescolamento e successivamente peggioramento delle condizioni atmosferiche

L'andamento temporale giornaliero dell'ammoniaca che dipende quasi totalmente dalle emissioni del comparto agricolo e zootecnico, non mostra invece variazioni nei mesi di marzo, aprile e maggio e non evidenzia relazioni con il periodo legato al lockdown.

In generale gli inquinanti primari (cioè emessi come tali, come il monossido di azoto e il benzene) risultano in costante diminuzione su tutta l'area oggetto dello studio,

mentre il particolato (PM₁₀ e PM_{2,5}) presenta un andamento maggiormente collegato alle condizioni meteo e con una distribuzione spaziale sul bacino variabile. L'ammoniaca mostra un andamento peculiare in quanto le sue emissioni hanno una modulazione temporale caratteristica, influenzata in modo significativo dalle diverse fasi delle attività agricole e zootecniche, a loro volta dipendenti dalle variabili meteorologiche. Inoltre, l'andamento dell'ammoniaca rappresenta la media tra misure effettuate in stazioni diverse, il cui andamento nel tempo può essere più o meno influenzato dalla modulazione temporale delle emissioni agricole e zootecniche. Le stazioni infatti sono localizzate in posizioni differenti tra loro, alcune in territori urbani, altre in posizioni in aree rurali, dove le attività agricole o gli allevamenti sono più rilevanti.

L'analisi del giorno tipo, che mostra l'evoluzione delle concentrazioni orarie nell'arco di una giornata media. è stata calcolata mediando i valori rilevati alla stessa ora in tutte le stazioni da traffico per i mesi da gennaio a maggio, sia nel 2020 che nei 4 anni precedenti. Gli andamenti di benzene, NO e NO2 sono simili a quelle degli anni precedenti, indicando scarse variazioni nella modulazione temporale delle sorgenti (non scontata visto le modifiche di comportamenti a cui la maggior parte della popolazione è stata soggetta causa i provvedimenti COVID-19), con i due tipici picchi mattutini e serali e riduzioni, in termini di concentrazione, già a partire dal mese di febbraio (a causa di una meteo favorevole della dispersione degli inquinanti). Dal mese di marzo in poi il decremento è evidente sia per le concentrazioni che per i picchi, con una intensità di guesti ultimi molto attenuata soprattutto per il benzene.

Una ulteriore analisi a boxplot è stata fatta per identificare i superamenti del valore limite (VL) di PM₁₀. I singoli boxplot in questo caso rappresentavano giomo per giorno la variabilità di tutte le stazioni di monitoraggio presenti nel bacino padano (situate nell'area del progetto PREPAIR). Nel mese di marzo, nei giorni dal 10 al 13 e dal 17 al 21, alcune stazioni hanno rilevato concentrazioni di particolato maggiori di 50 µg/m³. In particolare il 12 marzo ha evidenziato un numero di stazioni con valori maggiori del limite tra il 75° e 95°

percentile, mentre il 13 marzo è quello in cui si sono verificati isolati picchi di concentrazione prossimi a 100 $\mu g/m^3$. Entrambi i periodi sono stati soggetti a condizioni meteorologiche stabili e favorevoli alla formazione ed accumulo di inquinanti. Mentre nel primo il PM_{10} è aumentato in particolare nel Triveneto, nel secondo i superamenti hanno interessato prevalentemente la parte centrale della pianura padana. Nei mesi successivi solo nella prima metà di aprile si sono osservati isolati e sporadici superamenti del valore limite giornaliero di PM_{10} e solo su singole stazioni.

Una analisi quantitativa è stata fatta per il primo trimestre. Si è calcolata la percentuale media di decremento del 2020 rispetto al 2016-2019 per ogni mese. I dati evidenziano un netto calo dei gas a marzo (dal 30 % per il benzene a quasi un 60 % per NO) e variazioni inferiori al 20 % per il PM₁₀ e PM_{2,5} con riduzioni in termini di massa per il particolato di alcuni microgrammi. Seppur di pochi punti percentuali la media delle stazioni da traffico evidenzia un decremento maggiore di quelle del fondo urbano (per NO e NO₂). Interessante notare che anche il mese di febbraio mostra dei valori più bassi nel 2020 rispetto al quadriennio precedente, indice di una meteorologia mediamente più favorevole alla dispersione degli inquinanti rispetto agli anni passati.

Anche a causa della variabilità del dato del particolato, si è successivamente scelto di esprimere la variabilità spaziale dei dati calcolando il range tra il 10° e il 90° percentile sull'intero dataset delle stazioni disponibili del fondo urbano e traffico. Mentre i gas, seppur con

differenze, mostrano continuità nel decremento da marzo a maggio, con la variazione maggiore nel mese di aprile, che è stato il mese in cui le disposizioni anti Covid19 sono state attive per tutti i giorni (con picchi attorno ai 60 % per NO₂ e benzene, e 80 % per NO), il PM₁₀ e il PM_{2,5} presentano le riduzioni maggiori a marzo e soprattutto evidenziano anche variazioni in positivo (incrementi di concentrazione nel 2020 rispetto al 2016-2019). In generale mentre la concentrazione dei gas diminuisce a marzo e a maggio e ancora più ad aprile, il PM ha decrementi sostenuti solo a marzo, in parte grazie alle condizioni meteorologiche favorevoli in diversi giorni del mese (i giorni affetti dal trasporto di sabbia non sono stati inseriti).

Sebbene ci siano variazioni percentuali importanti in tutti i mesi soggetti al lockdown, ad aprile e maggio 2020 le concentrazioni dei gas, in molte stazioni di misura, sono prossime o inferiori ai limiti di quantificazione, in particolare per NO e benzene.

All'interno del report è presente anche l'analisi meteorologica, emissiva, dei determinati e modellistica (NINFA-ER e FARM-PI); inoltre è stata impostata una metodologia per la valutazione del contributo dello smart working alle variazioni emissive.

Peculiarità regionali

Non sono state indagate le singole Regioni

Tabella 15.9.1. Principali misure di contenimento adottate nel periodo di lockdown. Si noti che il quadro non è esaustivo dei numerosi provvedimenti assunti dai singoli Enti, ma vuole costituire uno schema di riferimento.

SETTIMANA	DATE SETTIMANA	PROVVEDIMENTO	MISURE DI LOCKDOWN	AREA DI INTERESSE
1	22/2-28/2	Ordinanza del 21 febbraio 2020	Misure urgenti di contenimento e sospensione delle attività commerciali, delle manifestazioni pubbliche, delle attività ludiche, attività scolastiche, etc	Comuni lombardi (Codogno, Castiglione D'Adda, Casalpusterlengo, Fombio, Maleo, Somaglia, Bertonico, Terranova dei Passerini,

SETTIMANA	DATE SETTIMANA	PROVVEDIMENTO	MISURE DI LOCKDOWN	AREA DI INTERESSE
				Castelgerundo, San Fiorano)
		DPCM 23 febbraio 2020	Misure urgenti di contenimento	Comuni "zone rosse" delle Regioni Lombardia e Veneto
		Ordinanza contingibile e urgente n. 1, "Misure urgenti in materia di contenimento e gestione dell'emergenza epidemiologica da COVID-2019", firmata dal Ministro della Salute e dal Presidente della Regione Emilia-Romagna il 23/02/2020 e decreto legge 23/2/2020 n. 6	Chiusura scuole	Emilia-Romagna
		Ordinanza contingibile e urgente n. 1, "Misure urgenti in materia di contenimento e gestione dell'emergenza epidemiologica da COVID-2019", firmata dal Ministro della Salute e dal Presidente della Regione Veneto il 23/02/2020	Chiusura scuole	Veneto
		Decreto n°498 del 24/02/2020	Ulteriori misure applicative dell'ordinanza del 23 febbraio 2020- Riunioni in uffici pubblici ed attività di front-office	Regione Lombardia
		DPCM 25 febbraio 2020	Sospensioni eventi sportivi, viaggi di istruzione	Regioni Emilia- Romagna, Friuli- Venezia Giulia, Lombardia, Veneto, Liguria e Piemonte
2	29/2-6/3	DPGR n. 24 del 1 marzo 2020 "Ordinanza regionale di sospensione delle attività didattiche nei giorni 2 e 3 marzo 2020		Piemonte
		DPGR n. 25 del 2 marzo 2020 "Ordinanza regionale di sospensione delle attività didattiche ed educative fino al giorno 8 marzo 2020		Piemonte
2	29/2-6/3	DPCM 4 marzo 2020 del 4 marzo 2020 (Misure riguardanti il contrasto e il contenimento sull'intero territorio nazionale del diffondersi del coronavirus)		Intero territorio nazionale
2	29/2-0/3	Ordinanza contingibile e urgente n. 1, "Misure per la prevenzione e gestione dell'emergenza epidemiologica da COVID-2019", firmata dal Presidente della Provincia	Chiusura scuole	Trentino

SETTIMANA	DATE SETTIMANA	PROVVEDIMENTO	MISURE DI LOCKDOWN	AREA DI INTERESSE
		Linee Guida della Provincia Autonoma di Trento (DPCM 4 marzo 2020) firmate dal Presidente della Provincia	Sospensioni eventi sportivi, viaggi di istruzione	Trentino
3	7/3-13/3	DPCM 8 marzo 2020	Divieto di spostamento delle persone fisiche in entrata e in uscita dai territori e all'interno di essi, non motivato da comprovate esigenze lavorative o situazioni di necessità o motivi di salute. Chiusura impianti nei comprensori sciistici. Sospensione di tutte le manifestazioni organizzate e degli eventi in luogo pubblico o privato. Chiusura dei i musei e degli altri istituti e luoghi della cultura. Sospensione dei servizi educativi per l'infanzia e delle attività didattiche in presenza nelle scuole di ogni ordine e grado, della frequenza delle attività di formazione superiore, comprese le Università. Sospensione delle attività di palestre, centri sportivi, piscine, centri natatori, centri benessere, centri termali, centri culturali, centri sociali, sportivi, ricreativi. Sospensione di convegni, riunioni meeting, ed eventi sociali; Sospensione delle attività di pub, scuole di ballo, sale giochi, scommesse, discoteche, ecc; Accesso limitato di parenti e visitatori a strutture residenziali per anziani (RSA), hospice, ecc.	Prima parte: Regione Lombardia e province di Modena, Parma, Piacenza, Reggio nell'Emilia, Rimini, Pesaro e Urbino, Alessandria, Asti, Novara, Verbano- Cusio-Ossola, Vercelli, Padova, Treviso e Venezia Seconda parte: Intero territorio nazionale.
		DPCM 9 marzo 2020	Estensione delle misure di contenimento all'intero territorio nazionale. Divieto di ogni forma di assembramento di persone in luoghi pubblici o aperti al pubblico.	Intero territorio nazionale
		DPCM 11 marzo 2020	Chiusura di tutte le attività commerciali, di vendita al dettaglio, ad eccezione dei negozi di generi alimentari, di prima necessità, delle farmacie e delle	

SETTIMANA	DATE SETTIMANA	PROVVEDIMENTO	MISURE DI LOCKDOWN	AREA DI INTERESSE
		Direttiva 2/2020 di Funzione pubblica (registrata presso la Corte dei conti il 12/03/2020 - n. 446)	Il lavoro agile dovrà diventare la modalità ordinaria ed essere esteso anche ad attività escluse in precedenza. Inoltre, non sono più previste soglie minime o massime.	Intero territorio nazionale
		Ordinanza del Presidente della Regione Emilia-Romagna n. 34 del 12/3/2020 Riduzione del servizio ferroviario regionale; Erogazione del servizio di trasporto pubblico locale su bus (urbano ed extraurbano) secondo la programmazione prevista nei periodi di vacanza scolastica; rimodulazione servizio taxi e servizio di noleggio con per garantire i servizi minimi essenziali.		Regione Emilia- Romagna
		Ordinanza del Presidente della Regione Veneto n. 28 del 12/3/2020	Misure urgenti in materia di contenimento e gestione dell'emergenza epidemiologica da virus COVID-19. Disposizioni per il Trasporto Pubblico Locale su ferro.	Veneto
		Ordinanza del Presidente della Regione Veneto n. 29 del 12/3/2020 Misure urgenti in materia di contenimento e gestione dell'emergenza epidemiologica da virus COVID-19. Disposizioni per il Trasporto Pubblico Locale su gomma e acqua.		Veneto
		ORDINANZA N. 104 DEL PRESIDENTE DELLA REGIONE (11 MARZO 2020) - misure per la prevenzione e gestione dell'emergenza epidemiologica da covid-2019. ordinanza ai sensi dell'art. 32, comma 3, della legge 23 dicembre 1978, n. 833 in materia di igiene e sanità pubblica		Valle d'Aosta
		Ordinanza del Presidente della Regione Veneto n. 30 del 18/3/2020	Misure urgenti in materia di contenimento e gestione dell'emergenza epidemiologica da virus COVID-19. Disposizioni per il Trasporto Pubblico non di linea taxi e noleggio con conducente e per i servizi atipici.	Veneto
4	4 14/3-20/3	Ordinanza del Presidente della Regione Veneto n. 30 del 18/3/2020	Misure urgenti in materia di contenimento e gestione dell'emergenza epidemiologica da virus COVID-19. Disposizioni per il contrasto dell'assembramento di persone	Veneto
		Ordinanza 3 del 19/03/2020	Chiusura dei parchi pubblici, chiusura nella giornata di domenica di tutti gli esercizi commerciali, obbligo di effettuazione della	Friuli-Venezia Giulia

SETTIMANA	DATE SETTIMANA	PROVVEDIMENTO	MISURE DI LOCKDOWN	AREA DI INTERESSE
			spesa da parte di una sola persona per nucleo familiare	
		ORDINANZA N. 115 DEL PRESIDENTE DELLA REGIONE (19 marzo 2020) - misure per la prevenzione, e gestione dell'emergenza epidemiologica da covid-19. ordinanza ai sensi dell'art. 32, comma 3, della legge 23 dicembre 1978, n. 833 in materia di igiene e sanità pubblica		Valle d'Aosta
		ORDINANZA N. 116 DEL PRESIDENTE DELLA REGIONE (19 marzo 2020) - ulteriori misure per la prevenzione e gestione dell'emergenza epidemiologica da covid-19. ordinanza ai sensi dell'art. 32, comma 3, della legge 23 dicembre 1978, n. 833 in materia di igiene e sanità pubblica. Chiusura dei cantieri e contrasto alle forme di assembramenti di persone		Valle d'Aosta
		Ordinanza Ministro Salute 20 marzo 2020	Divieto di accesso del pubblico ai parchi, alle ville, alle aree gioco e ai giardini pubblici; divieto di svolgere attività ludiche o ricreative all'aperto.	Intero territorio nazionale
		Ordinanza del Ministero della Salute del 22/3/2020	Divieto a tutte le persone fisiche di trasferirsi o spostarsi, con mezzi di trasporto pubblici o privati, in comune diverso da quello in cui si trovano, salvo che per comprovate esigenze lavorative, di assoluta urgenza ovvero per motivi di salute (previsti dalla norma)	Intero territorio nazionale
5	21/3-27/3	DPCM 22 marzo 2020	Chiusura attività produttive non essenziali o strategiche.	Intero territorio nazionale
		DPGR n. 34 del 21 marzo 2020 "Ulteriori misure per la prevenzione e la gestione dell'emergenza epidemiologica da COVID-19. Ordinanza ai sensi dell'art. 32, comma 3, della legge 23 dicembre 1978, n. 833 in materia di igiene e sanità pubblica"		Piemonte
		DECRETO-LEGGE 25 marzo 2020, n. 19 Misure urgenti per fronteggiare l'emergenza epidemiologica da COVID-19		Intero territorio nazionale

SETTIMANA	DATE SETTIMANA	PROVVEDIMENTO	MISURE DI LOCKDOWN	AREA DI INTERESSE
		Ordinanza n° 514 del 21/03/2020	Limitazione degli spostamenti su tutto il territorio regionale	Regione Lombardia
		Ordinanza n° 515 del 22/03/2020	Sospensione attività in presenza di amministrazioni pubbliche e dei soggetti privati preposti all'esercizio di attività amministrative nonché modifiche dell'ordinanza n° 514 del 21/03/2020	Regione Lombardia
		Decreto MiSE del 25 marzo	Sospensione delle attività non essenziali con elenco dei codici ATECO	Intero territorio nazionale
		Ordinanza 5 del 25/03/2020	demandare alle aziende di TPL di riorganizzare una riduzione del servizio	Friuli-Venezia Giulia
		ORDINANZA N. 123 DEL PRESIDENTE DELLA REGIONE (26 marzo 2020) - misure per la prevenzione e la gestione dell'emergenza epidemiologica da covid-19, finalizzate alla riduzione dei servizi di trasporto pubblico locale		Valle d'Aosta
	DPGR n. 35 del 29 marzo 2020 "Ulteriori misure per la gestione dell'emergenza epidemiologica da COVID-19. Ordinanza ai sensi dell'art. 32, comma 3, della legge 23 dicembre 1978, n. 833 in materia di igiene e sanità pubblica"		Piemonte	
6	28/3-3/4	ORDINANZA N. 124 DEL PRESIDENTE DELLA REGIONE (27 marzo 2020) - ulteriori misure per la prevenzione e gestione dell'emergenza epidemiologica da covid-2019. ordinanza ai sensi dell'art. 32, comma 3, della legge 23 dicembre 1978, n. 833 in materia di igiene e sanità pubblica. indicazioni per la gestione dell'emergenza covid- 19 sul territorio della regione autonoma Valle d'Aosta e la standardizzazione dei comportamenti da adottare in tutti gli ambiti socio-		Valle d'Aosta

NOTA: Ogni provvedimento, di norma, è entrato in vigore il giorno successivo alla sua emanazione, salvo diversa specificazione riportata nel testo.

Per approfondire

Chiara Agostini, Roberta Amorati, Barbara Arvani, Giulia Giovannini, Simona Maccaferri, Vanes Poluzzi, Michele Stortini, Arianna Trentini, Simonetta Tugnoli, Matteo Vasconi, Giordano Pession, Claudia Tarricone, Ivan Tombolato, Giovanni Bonafè, Francesco Montanari, Alessia Movia, Alessandra Petrini, ,Selene Cattani, Gabriele Tonidandel, Ketty Lorenzet, Silvia Pillon, Laura Susanetti, Stefano Bande, Francesca Bissardella, Monica Clemente, Elisabetta Angelino, Giuseppe Fossati, Guido Lanzani, Alessandro Marongiu, Alessandra Pantaleo, Matteo Balboni (2020). Report 2 covid-19, studio preliminare degli effetti delle misure covid-19 sulle emissioni in atmosfera e sulla qualità dell'aria nel bacino padano

https://www.lifeprepair.eu/wp-content/uploads/2020/09/COVIDQA-Prepair-2-17Settembre2020.pdf

15.10 LIGURIA

Periodo dell'indagine

Gennaio giugno 2020

Inquinanti considerati

NO, NO₂, PM₁₀, PM_{2,5}

Periodo di riferimento per confronto

5 anni precedenti, 2015-2019

Eventuali provvedimenti aggiuntivi

25 febbraio: sospensione di manifestazioni ed eventi pubblici e chiusura delle scuole di ogni ordine e grado,

1 marzo: istituzioni di alcune 'zone rosse' (in Liguria la provincia di Savona)

Metodi

Sono stati analizzati i valori medi mensili e gli andamenti dei valori medi giornalieri degli ossidi di azoto nonché gli andamenti giornalieri orari per giorno tipo di ciascun mese, aggregati in settimane.

Per PM₁₀ e PM_{2.5} l'analisi ha riguardato solo i valori medi mensili.

Sono stati utilizzati anche dati di flusso veicolare.

I dati provengono da stazioni rappresentative prevalentemente delle pressioni legate al traffico

veicolare e di fondo urbano. Sono stati anche valutati gli andamenti rilevati presso 3 stazioni influenzate anche dalle emissioni delle navi, ubicate rispettivamente a Genova, Savona e La Spezia.

Principali risultati

PM₁₀ e PM₂ 5:

Per le stazioni della città di Genova, gli andamenti del PM₁₀ osservati non forniscono un'indicazione univoca: si osservano valori più bassi rispetto al quinquennio precedente, con l'eccezione di una stazione dove questo andamento si manifesta per il solo periodo che ricomprende la FASE1 del lockdown; nelle altre stazioni della regione, non si osservano variazioni significative. Per quanto riguarda il PM_{2,5}, la situazione è analoga a quella del PM₁₀: andamenti non univoci a Genova, senza variazioni di rilievo nelle altre stazioni.

NOx

Nel caso del biossido di azoto invece, si osservano differenze significative quasi ovunque, in particolare nelle stazioni orientate al monitoraggio del traffico veicolare dove gli effetti del lockdown sono evidenti in maniera diretta

Le stazioni urbane orientate al traffico rilevano che durante la FASE1 si sono rilevate concentrazioni di NO_2 e di NO significativamente più basse di quelle misurate negli anni precedenti.

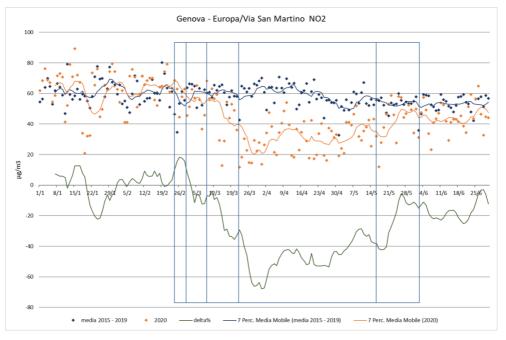


Figura 15.10.1. Stazione da traffico di Genova – Corso Europa. Concentrazioni medie giornaliere di NO₂ del quinquennio 2015 – 2019 (punti blu), quelle del 2020 (punti arancio), i rispettivi andamenti della media mobile settimanale (linee blu e arancio) ed il delta percentuale (linea grigia). La griglia rappresenta le diverse fasi del lockdown.

Nella Figura 15.10.1 sono riportati come esempio per la stazione da traffico di Genova – Corso Europa gli andamenti delle concentrazioni medie giornaliere di NO₂ del quinquennio 2015 – 2019, quelle del 2020, i rispettivi andamenti della media mobile settimanale ed il *delta* percentuale. La griglia rappresenta le diverse fasi del lockdown.

Le stazioni di fondo urbano hanno andamenti analoghi alle precedenti, ma con variazioni assolute di minore entità.

Le più significative diminuzioni sono avvenute con l'inizio della FASE1, per poi ridursi gradualmente fino all'inizio della FASE3

Per le 3 stazioni che sono influenzate dalle emissioni delle navi attraccate, NO e NO₂ sono diminuiti rispetto ai valori medi mensili rilevati nei cinque anni precedenti ma da notare i picchi rilevati durante la FASE1 in alcune

situazioni associabili a giornate di sottovento più marcato rispetto al porto passeggeri.

Durante il lockdown per buona parte del periodo una o più navi hanno stazionato in ciascun porto passeggeri: dai dati resi disponibili dalle compagnie è risultato che le stesse, pur prive di passeggeri presentavano un regime di funzionamento dei motori dell'ordine di circa l'80% della potenza di piena operatività.

In una stazione di tipo industriale, orientata al monitoraggio di un'attività produttiva che non ha interrotto la produzione durante il lockdown le variazioni assolute sono estremamente contenute.

ARPA Liguria ha analizzato anche l'andamento della settimana tipo, tramite medie giornaliere orarie nelle varie giornate della settimana, di monossido di azoto (NO) e di biossido di azoto (NO2) rilevati nei primi 5 mesi del 2020 con quelli del quinquennio precedente, nonché il confronto tra i valori medi per NO2 nei due periodi.

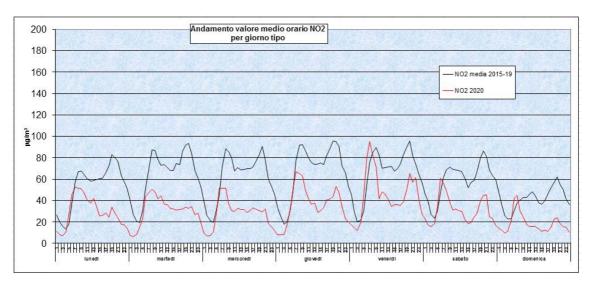


Figura 15.10.2. Genova – Corso Europa. Confronto della settimana tipo delle concentrazioni di NO₂ (mese di aprile) tra il quinquennio 2015 – 2019 ed il 2020.

Nella Figura 15.10.2 è rappresentato come esempio per la stazione di Genova – Corso Europa il confronto della settimana tipo delle concentrazioni di NO_2 (mese di aprile) tra il quinquennio 2015 – 2019 ed il 2020.

Risulta ben evidente in tutte le postazioni la variazione nei valori degli ossidi di azoto, fatto salvo per una stazione a La Spezia, dove gli andamenti risultano solo lievemente differenti: si può notare una minore rilevanza delle *rush hours* nel corso dell'aprile 2020 mentre è evidente il prevalere dell'impatto della nave da crociera

(picco di NO₂ nelle ore centrali della giornata in concomitanza con l'instaurarsi della brezza di mare) permanentemente presente al vicino molo Garibaldi.

Nel grafico di Figura 15.10.3 è rappresentato per la stazione di La Spezia – San Cipriano il confronto della settimana tipo delle concentrazioni di NO_2 (mesi di aprile) tra il quinquennio 2015 - 2019 ed il 2020.

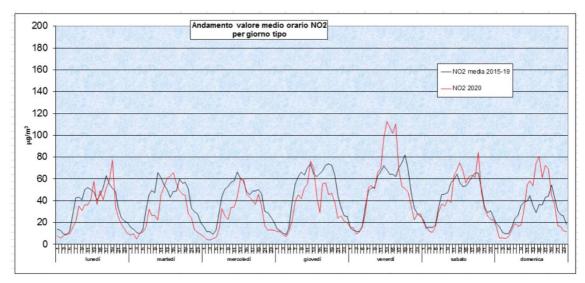


Figura 15.10.3. Stazione di La Spezia – San Cipriano. Confronto della settimana tipo delle concentrazioni di NO₂ (mesi di aprile) tra il quinquennio 2015 – 2019 ed il 2020

Analisi traffico veicolare

L'analisi del traffico veicolare è significativa nel mese di aprile, nel pieno lockdown, e perciò quello più rappresentativo: infatti le prime significative misure restrittive del 9 marzo hanno comportato una riduzione del traffico privato considerevole, mentre la circolazione dei mezzi leggeri e pesanti destinati al trasporto delle persone e delle merci è rimasta pressoché invariata,

mentre dal 22 marzo l'impatto sul traffico è stato molto più rilevante.

ARPA Liguria ha a disposizione una stazione di misura del flusso veicolare che rileva come si sia passati da valori con picchi di circa 800 veicoli/ora a valori nel mese di aprile 2020 tra i 250 e 500 veicoli/ora. I dati di questa stazione concordano con la stima EnelX, che hanno evidenziato per il mese di aprile una variazione nella movimentazione dei veicoli su strada di circa -50%.

Riassumendo, il confronto con gli anni precedenti ha evidenziato che, mentre il particolato ha visto variazioni di scarso rilievo, consistenti differenze si sono rilevate nei valori di concentrazione degli ossidi di azoto; la ripresa del traffico a partire dal mese di giugno ha riportato la situazione alla "normalità", confermando come, nel territorio regionale, questa sorgente incida significativamente su questo parametro.

Peculiarità regionali

Regione caratterizzata da proprietà orografiche e di pressioni ambientali molto disomogenee sul suo

territorio: una sottile striscia costiera dove si concentrano la maggior parte della popolazione, le maggiori attività produttive, 3 grandi porti ed un aeroporto internazionale, le autostrade, le attività turistiche ed un entroterra montuoso e scarsamente popolato, con alcune valli con collegamenti autostradali e stradali ed attività produttive.

Durante il lockdown si è registrato lo stazionamento per buona parte del periodo di una o più navi in ciascun porto passeggeri.

Uso dello strumento EnelX per i dati di flusso del traffico.

Per approfondire

Monica Beggiato, Roberto Cresta, Massimiliano Pescetto, Daniele Franceschini, Valerio Stabielli, Massimo Giannotti, Gianfranco Fortunato, Federico Manni, Sandro Tuvo, Andrea Giordano, Annamaria Casalini, Bianca Vallarino, Luigi Federici, Giancarlo Leveratto, Fabrizia Colonna. L'effetto lockdown sulla qualità dell'aria in Liguria.

https://www.arpal.liguria.it/files/ARIA/2020/Lockdown/report_lockdown_4_0_ok.pdf

15.11 TOSCANA

Periodo dell'indagine

1 Gennaio - 30 aprile 2020

Inquinanti considerati

NO₂ ,PM₁₀ PM_{2,5}

Periodo di riferimento per confronto

2017 - 2019

Metodi

Sono state prese in esame le medie mensili dei primi 4 mesi del 2020 e sono state confrontate con la media su base mensile dei tre anni precedenti. Dato che nei mesi di gennaio e febbraio del 2020 l'andamento degli inquinanti non è stato condizionato da misure di contenimento Covid il confronto della media di gennaio e febbraio 2020 con le medie dei rispettivi mesi del triennio antecedente dovrebbe evidenziare una generale tendenza del 2020 rispetto al triennio.

Principali risultati

Gli effetti delle misure di contenimento Covid 19 sul territorio toscano sono stati analizzati per aree territoriali.

Valdamo Pisano e Piana Lucchese: 4 stazioni nella provincia di Lucca (1 rurale, 2 urbane di fondo, 1 urbana di traffico) e 3 nella provincia di Pisa (2 urbane di fondo, 1 urbana di traffico)

Agglomerato di Firenze: 6 stazioni (1 suburbana, 3 urbane di fondo, 2 urbane di traffico)

Valdamo aretino e Val di Chiana: 3 stazioni (2 urbane di fondo, 1 urbana di traffico)

Prato Pistoia: 4 stazioni (1 suburbana, 2 urbane di fondo, 1 urbana di traffico)

Zona costiera: 12 stazioni (1 suburbana industriale, 8 urbane di fondo, 3 urbana di traffico)

Montana collinare: 3 stazioni (2 urbane di fondo, 1 urbana di traffico, 1 rurale, 1 suburbana)

Per ciascuna zona vengono riportati le variazioni percentuali (+/- 90%) e assolute (+/- $45\mu g/m^3$) delle medie mensili dei primi 4 mesi del 2020 rispetto alla media del triennio 2017-2019 sia per gli NO₂ che per PM₁₀ e PM_{2.5}.

Vengono riportati i grafici di tali andamenti con evidenza dei risultati significativi ovvero delle variazioni rispettivamente >15% per gli ossidi di azoto e > 25% per il PM poiché tale è l'incertezza massima accettata su base normativa.

Valdamo Pisano: gli ossidi di azoto hanno medie mensili sono in linea con quelle del triennio 2017-2019 a gennaio e febbraio per tutte le stazioni mentre a marzo ed aprile si osserva un decremento. Mentre per il PM₁₀ la media di gennaio è superiore al triennio e si osserva una leggera diminuzione nei mesi di febbraio marzo e aprile.

Piana Lucchese: si riscontrano diminuzioni generalizzate degli ossidi di azoto in tutti i mesi, con una riduzione più accentuata nei mesi primaverili (in particolare ad aprile per la stazione di LU-S.Concordio). Per il PM₁₀ invece si osserva un aumento a gennaio e variazioni poco significative per gli altri mesi.

Agglomerato di Firenze: tutte le stazioni hanno un andamento delle medie mensili di NO_2 in diminuzione a marzo e aprile mentre a gennaio e febbraio le variazioni rispetto al triennio sono contenute entro il 15%. Per il PM_{10} le variazioni % sono di segno positivo a gennaio e contenute entro il 25% nei mesi successivi.

Valdarno aretino e Val di Chiana: le medie mensili del 2020 di NO_2 mostrano un decremento già a partire da gennaio anche se a marzo e aprile la diminuzione è più importante e superiore al 40%. Per il PM_{10} si osserva un decremento sempre inferiore al 25%

Pistoia e Prato: Si osservano riduzioni rilevanti solamente per gli ossidi di azoto a marzo e aprile. Il PM_{10} diminuisce in percentuale inferiore al 25% ritenuto significativo.

Zona Costiera-nord: a gennaio gli ossidi di azoto fanno registrare medie mensili in linea con il triennio precedente mentre a febbraio si osserva un incremento nelle stazioni di traffico. Marzo aprile registrano decrementi tra il 35 e il 48% in tutte le stazioni.per il PM₁₀ non ci sono decrementi >25%.

Zona Costiera-livornese: si ha in generale una coerenza con gli anni precedenti per gennaio e febbraio e un aumento delle concentrazioni di ossidi di azoto per marzo e aprile. Tale aumento in termini assoluti per le stazionidi fondo è poco rilevante.

Il PM₁₀ fa registrare contenuti aumenti nei mesi di gennaio e febbraio e poco rilevanti diminuzioni a marzo e aprile.

Zona Costiera-sud: Si registra uno situazione di sostanziale stabilità nelle stazioni di fondo per le stazioni di traffico si registra una diminuzione importante a marzo e ancor maggiore ad aprile (-43 e -63% rispettivamente). Per il PM_{10} si osservano medie mensili stabili rispetto al triennio precedente ad eccezione della stazione di traffico GR-Sonnino che mostra riduzioni rilevanti a marzo (-24%) e soprattutto ad aprile (-32%).

Zona collinare e montana: Le stazioni di LU-Fornoli, SI-Bracci e SI-Poggibonsi mostrano diminuzioni a marzo e, in misura minore, limitatamente alla stazione di SI-Bracci, anche ad aprile, mentre per le stazioni di fondo non si registra una situazione di stabilità rispetto aggli

anni precedenti. Per il PM_{10} non si registrano variazioni significative rispetto al triennio 2017-2019 nemmeno per l'unica stazione della zona che si trova in un'area di superamento per il PM_{10} (LU-Fornoli).

In generale si osserva che gli effetti relativi alle disposizioni per l'emergenza COVID-19 si diversificano per inquinante e tipo di sito. Per gli ossidi di azoto è maggiormente apprezzabile una riduzione che può essere attribuita a fattori diversi da quelli stagionali; per il PM_{10} si osservano variazioni in generale meno rilevanti e non sempre chiaramente riconducibili alla contingente situazione del 2020. Il $PM_{2,5}$ non mostra variazioni per nessuna delle zone esaminate, mentre per tutte le zone le variazioni di PM_{10} e NO_2 più rilevanti si riscontrano nei siti di traffico.

Si riportano a titolo di esempio alcune figure relative all' Agglomerato di Firenze, dove sono illustrate le differenze (% e assolute) delle medie mensili di NO_2 nei mesi di gennaio, febbraio, marzo e aprile tra triennio 2017-2019 e anno 2020 (Figura 15.11.1), alla Zona Prato Pistoia dove sono riportate le differenze (% e assolute) delle medie mensili di PM_{10} nei mesi di gennaio, febbraio, marzo e aprile tra triennio 2017-2019 e anno 2020 (Figura 15.11.2).

Infine la Figura 15.11.3 illustra la distribuzione dati orari nel mese di marzo e di gennaio nelle stazioni di traffico della Toscana con il confronto tra il periodo 2017-2019 ed il 2020.

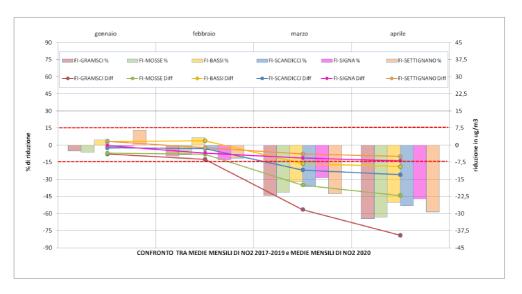


Figura 15.11.1 - Agglomerato di Firenze - grafico delle differenze (% e assolute) delle medie mensili di NO₂ nei mesi di gennaio, febbraio, marzo e aprile tra triennio 2017-2019 e anno 2020. Le riduzioni più evidenti a marzo e aprile si hanno per le stazioni di FI-Mosse e FI-Gramsci che sono urbane traffico.

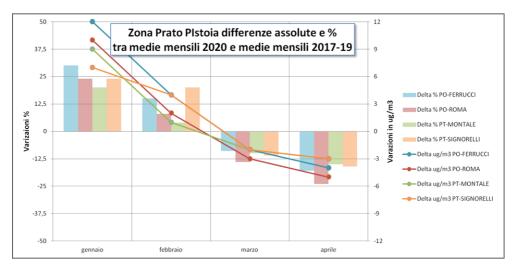
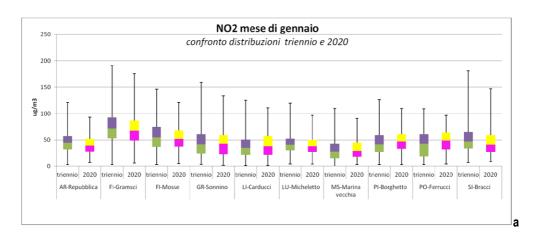



Figura 15.11.2 – Zona Prato Pistoia - grafico con le differenze (% e assolute) delle medie mensili di PM_{10} nei mesi di gennaio, febbraio, marzo e aprile tra triennio 2017-2019 e anno 2020. A marzo e ad aprile si osservano per tutte le stazioni differenze negative (abbassamento dei valori medi) nel 2020 rispetto al triennio, ma si tratta di poche unità di μ g/m³ e la percentuale è contenuta entro il 25% (valore di riferimento per l'incertezza del metodo di misura).

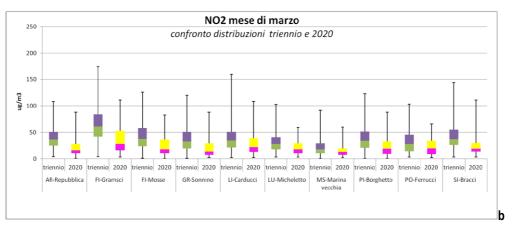


Figura 15.11.3 (a e b) –nel mese di gennaio (non sottoposto a provvedimenti di restrizione) e nel mese di marzo. Mentre la distribuzione dei valori nel mese di gennaio 2020 è in media confrontabile con quella del precedente triennio, per il mese di marzo si osserva un generalizzato abbassamento dei valori.

Per approfondire

Centro regionale tutela qualità dell'aria ARPAT (2020). Emergenza Covid-19 e andamento di alcuni inquinanti nell'area fiorentina. <a href="http://www.arpat.toscana.it/notizie/arpatnews/2020/044-20/emergenza-covid-19-e-andamento-di-alcuni-inquinanti-nellarea-fiorentina?searchterm=Covid-19%2520area%2520fiorentina

Centro regionale tutela qualità dell'aria ARPAT (2020). Qualità dell'aria nelle stazioni di traffico toscane nei primi tre mesi dell'anno.

http://www.arpat.toscana.it/notizie/arpatnews/2020/055-20/qualita-dellaria-nelle-stazioni-di-traffico-toscane-nei-primitre-mesi-dellanno?searchterm=Covid

Centro regionale tutela qualità dell'aria ARPAT (2020) L'andamento dei principali inquinanti in marzo e aprile in Toscana. http://www.arpat.toscana.it/notizie/notizie-brevi/2020/landamento-dei-principali-inquinanti-in-marzo-e-aprile-in-toscana?searchterm=Covid

15.12 UMBRIA

Periodo dell'indagine

Le analisi si riferiscono alle concentrazioni medie del periodo 5 marzo-31 maggio 2020

Inquinanti considerati

Sono stati analizzati i dati di concentrazione del biossido di azoto e particolato PM₁₀ e PM_{2.5}.

È stato fatto anche un focus su altri inquinanti, BTEX, Metalli, IPA.

Periodo di riferimento per confronto

Il periodo di confronto è riferito alle concentrazioni medie del periodo 5 marzo-31 maggio 2019

Eventuali provvedimenti aggiuntivi

Ai sensi dell'art. 32, comma 3, della legge 23 dicembre 1978, n. 833, a partire dalla fine di febbraio 2020, la regione Umbria ha adottato Ordinanze in materia di igiene e sanità pubblica, per il contenimento del contagio, riferite principalmente alla scuola, al trasporto pubblico locale, alla gestione dei rifiuti consultabili all'indirizzo https://www.regione.umbria.it/ordinanze-documenti-e-decreti-coronavirus/archivio ordinanze

Metodi

L'Arpa Umbria descrive la situazione meteorologica registrata nella regione nel periodo 5 marzo – 31 maggio 2020 e quelli nello stesso periodo dal 2015 al 2019 per quanto riguarda precipitazioni e temperatura. Si descrive anche la registrazione dei tre episodi di intrusioni di polveri provenienti rispettivamente da Est il 29 marzo, e da sud tra il 6 e 13 aprile e il 14-15 maggio. All'inizio del 2020 ed in particolare a gennaio si è instaurato un lungo periodo di inversione termica e basse precipitazioni tali da determinare frequenti superamenti del limite giornaliero per il PM₁₀ e innalzamento dei valori del Biossido di Azoto.

I confronti per tutti gli inquinanti sono condotti sulla base delle concentrazioni medie dei periodi in ciascuna stazione di monitoraggio presa per la valutazione per i periodi annuali presi a riferimento.

Il confronto è effettuato sulla base dei dati misurati dalla rete di monitoraggio della QA costituita da 25 stazioni distribuite secondo la zonizzazione regionale.

Principali risultati

Per l'NO2 vi è un evidente riduzione delle concentrazioni soprattutto nelle le postazioni più influenzate dal traffico come Perugia Ponte San Giovanni, Foligno e Terni Carrara (dove la riduzione rispetto al corrispondente periodo del 2019 è pari al 70%), mentre per le stazioni di fondo si osserva una situazione inalterata o una riduzione più contenuta variabile tra il 18% e 37%. Queste riduzioni sono maggiori a partire dal 12 marzo. Dal 24 marzo si osserva una riduzione dei valori di NO2 che coincide un cambiamento meteorologico, ovvero con l'irruzione della tramontana; la riduzione è continuata nei giorni successivi con l'attenuazione e cambio direzione del vento. Dopo il 3 maggio questa tendenza è continuata anche se in modo meno forte. La Tabella 15.10.1 mostra le differenze di concentrazione nel confronto dei due periodi 2019 e 2020. La Figura 15.10.1 evidenzia la differenza tra le concentrazioni di NO2 misurate durante i due periodo. Nelle stazioni di traffico si registrano le diminuzioni più importanti.

Per il particolato PM_{10} e $PM_{2,5}$ il confronto tra le stazioni evidenzia un diverso comportamento. In alcune non si registrano variazioni significative, in altre un aumento delle concentrazioni mentre in altre ancora si registra una diminuzione. Il confronto effettuato sui valori medi del periodo nei 5 anni precedenti misura una variabilità tra -28% a Perugia Cortonese e -19% a Terni Le Grazie, stazioni di fondo, a +12% ai Monti Martani (s.l.m. 1050 m), sempre di fondo, e +15% a Foligno, stazione di traffico. Il confronto dei dati in Tabella 15.10.2 mostra diminuzioni di PM_{10} per alcune stazioni variabili tra -10% a -28%, in altre un aumento da lieve fino al 15%. Per il $PM_{2,5}$ analoga variabilità tra le stazioni, con una

diminuzione tra -2.5% al 35%, in altre un aumento che raggiunge anche il 18%.

Tabella 15.12.1. Confronto delle concentrazioni misurate di NO₂ nello stesso periodo 2019 e 2020 e variazione percentuale

Stazioni (tipologia)	Media 5/3/2019 31/5/2019	Media 5/3/2020 31/5/2020	variazione % 2020/2019
	μg/m³	μg/m³	
Perugia Cortese (FU)	11,3	6,9	-39
Ponte S Giovanni (T)	17,4	12,9	-26
Foligno (T)	17,1	10	-42
Terni Borgovivo (FU)	14,6	14,8	+1
Terni Carrara (T)	28,4	13,5	50
Terni le Grazie (FU)	13,5	11,1	-18
Narni Scalo (FU)	10,2	6,4	-37

Figura 15.12.1. Confronto delle concentrazioni medie di NO2 dei due periodi 2019 e 2020 nelle stazioni di monitoraggio Umbre.

Nelle figure 15.12.2 e 15.12.3 si rappresentano le misure nelle stazioni della rete. L'evento di intrusione di polveri dal deserto asiatico di fine marzo, è particolarmente rilevabile nella stazione in quota sui Monti Martani (figura 15.12.4). La figura mostra anche una successiva intrusione di polvere sahariana nella zona sud

dell'Umbria ed una successiva intrusione tra il 14 e 15 maggio.

Tabella 15.12.2. Confronto delle concentrazioni medie del periodo tra le postazioni di PM₁₀ e PM_{2,5} e variazione percentuale

	PM10			PM2,5		
Stazioni	Media 5/3/2019 31/5/2019 μg/m ³	Media 5/3/2020 31/5/2020 μg/m ³	variazione % 2020/2019	Media 5/3/2019 31/5/2019 μg/m ³	Media 5/3/2020 31/5/2020 μg/m ³	variazione %
Perugia Cortese	22,7	16,4	-28	14,9	9,7	-35
Ponte S Giovanni	17,4	17,7	+2	9,9	9,7	-2,5
Foligno	18,6	21,4	+15	11,8	13,9	+18
Terni Borgovivo	23	20,8	-10	15,4	14,2	-8
Terni Carrara	24,4	21	-14	15	13,1	-13
Terni le grazie	27,1	22	-19	16,1	14,2	-12
Narni Scalo	22,8	19,9	-13	15,1	13,1	-13
Martani	11,8	13,2	+12	7,6	7,9	+4

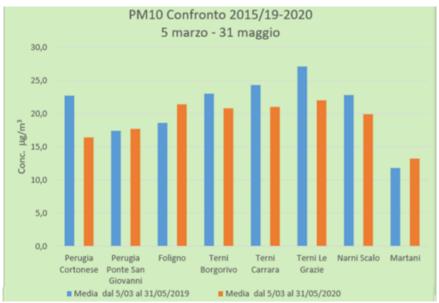


Figura 15.12.2. Confronto concentrazioni medie di PM₁₀ dei due periodi 2019 e 2020

Figura 15.12.3. confronto concentrazioni medie di PM2,5 dei due periodi 2019 e 2020

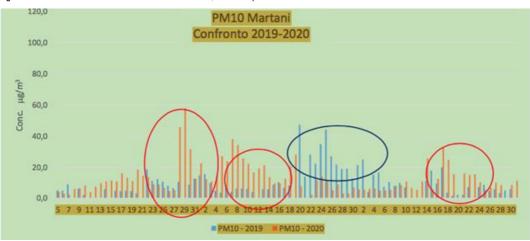


Figura 15.12.4. Concentrazioni medie giornaliere di PM₁₀, sovrapposizione dei due periodi 2019 e 2020 con l'individuazione dei peridi di intrusione di polveri sia dall'est asiatico sia dal sud sahariano.

Altri inquinanti

Sono stati analizzati altri inquinanti per comprendere il peso delle diverse sorgenti d'emissione della regione. Le analisi di laboratorio hanno riguardato i BTEX, i metalli e gli IPA nelle deposizioni atmosferiche; metalli, IPA e levoglucosano nel PM₁₀. Le determinazioni di carbonio organico e carbonio elementare, anioni e cationi nel PM_{2.5}, sono ancora in fase di elaborazione. Per quanto riguarda i BTEX, nel periodo marzo-aprile 2020 si rileva che le misure hanno ridotto sensibilmente l'inquinamento da traffico con diminuzioni anche del 60% dei livelli di Toluene. Nel mese di maggio con il riprendere graduale delle varie attività i valori sono risaliti parallelamente al traffico veicolare.

L'analisi della composizione delle polveri sedimentabili e delle polveri sospese (PM₁₀), in riferimento ai metalli, mostrano il forte ruolo delle attività siderurgiche della Conca Ternana. Nel resto della regione si registra un

decremento più contenuto dei metalli, in particolare del rame elemento spesso associato alla sorgente traffico (Figura 15.12.5).

Gli IPA, in termini di benzo(a)pirene, e Levoglucosano, strettamente correlati alla combustione delle biomasse, nel periodo marzo-maggio 2020, sono in controtendenza con i dati del traffico e dell'industria, ma in linea con la meteorologia: ad una diminuzione delle temperature e ad un aumento della stabilità atmosferica corrisponde un incremento del PM₁₀ e dei livelli di Benzo(a)Pirene e Levoglucosano. L'ottima correlazione tra PM₁₀, Levoglucosano e Benzo(a)Pirene conferma l'origine nella combustione delle biomasse (Figura 15.12.6).

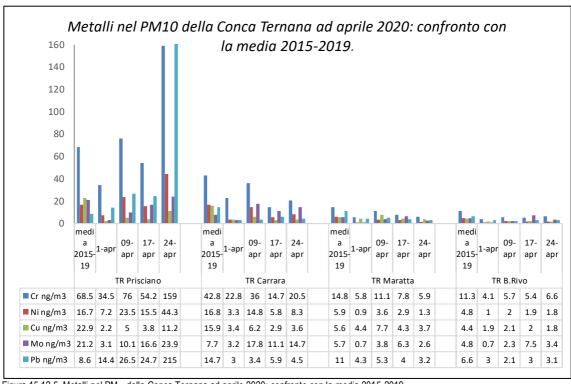


Figura 15.12.5. Metalli nel PM₁₀ della Conca Ternana ad aprile 2020: confronto con la media 2015-2019

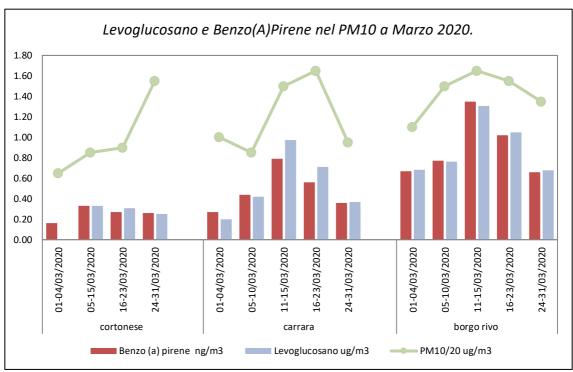


Figura 15.12.6. Levoglucosano e Benzo(A)Pirene nel PM₁₀ a Marzo 2020

Peculiarità regionali

Non si evidenziano peculiarità specifiche

Per approfondire

ARPA Umbria M. Pompei, M.Galletti, I.Corbucci (a cura di). collaboratori M. Areni, E. Bubù, G. Caiello, L. Selvaggio, A. Pileri, A. Petrini, F.Sebastiani, N.Corvi, C.Austeri, D. Bartoli (2020).

Qualità dell'Aria e emergenza Covid-19 in Umbria.

https://www.arpa.umbria.it/MC-API/Risorse/StreamRisorsa.aspx?guid=dfac2a71-83d8-4a60-8f07-ef33107211b8

15.13 MARCHE

Periodo dell'indagine

L'indagine di ARPA MARCHE è basata sui dati di qualità dell'aria disponibili dal 1 gennaio 2020 al 30 aprile 2020.

Inquinanti considerati

Sono stati considerati nell'indagine il biossido di azoto (NO₂) e il PM₁₀.

Periodo di riferimento per confronto

I dati orari sono stati aggregati in varie forme (medie giornaliere, medie mensili, giorno tipo). I dati rilevati nel 2020 sono stati confrontati con quelli rilevati nel triennio 2017 – 2019

Eventuali provvedimenti aggiuntivi

Nella relazione di ARPA MARCHE (Direzione Tecnica Scientifica di ARPAM, 2020) non sono riportate informazioni circa provvedimenti aggiuntivi su scala regionale o locale sebbene siano citate genericamente le "ordinanze Regionali" entrate in vigore a partire dal 26 febbraio.

Metodi

Sono state considerati i dati di tutte le stazioni di monitoraggio ubicate nelle zone in cui è suddiviso il territorio regionale ai fini della valutazione della qualità dell'aria ai sensi del D.Lgs 155/2010. È riportata un'analisi delle anomalie di temperatura e pluviometriche dei primi quattro mesi del 2020. Sono analizzate le distribuzioni mensili dei dati e confrontate con le analoghe distribuzioni rilevate per ciascuno dei quattro mesi nel triennio precedente (2017-2019). Sono riportate anche le serie temporali di alcune stazioni riferite al periodo gennaio – aprile 2020.

Principali risultati

I dati meteorologici mettono in evidenza una significativa anomalia pluviometrica nel mese di marzo (periodo di riferimento 1981 – 2010). Questo a fronte di anomalie negative (di scarsa entità quella di aprile) negli altri tre mesi.

Per quanto riguarda le temperature si segnala un mese di febbraio con anomalia pari a + 3,8 °C.

Nella relazione viene analizzato l'intenso fenomeno di intrusione di sabbie desertiche (provenienti dal deserto del Karakum/Asia centrale) che ha interessato la nostra penisola alla fine di Marzo. Il versante adriatico è stato particolarmente colpito e le concentrazioni di PM₁₀ hanno superato abbondantemente i 100 μg/m³ in diverse stazioni per 2-3 giorni (https://www.arpa.marche.it/comunicazione/prima-pagina/441-30-03-2020-polveri-sottili).

Al netto di questo evento, in generale non sembra possibile evidenziare significative variazioni nei mesi interessati dai provvedimenti restrittivi nelle concentrazioni di PM_{10} rispetto agli analoghi periodi del triennio precedente.

La massima riduzione si registra nelle stazioni di traffico, confrontando il mese di aprile 2020 con lo stesso mese del triennio precedente, con una riduzione percentuale paria a circa il 10%.

Diverso il discorso per quanto riguarda il biossido di azoto.

Mentre l'andamento delle concentrazioni medie giornaliere di NO_2 nel mese di febbraio 2020 rientra nel range (massimo – minimo) osservato nel triennio precedente, a partire dalla prima settimana di marzo 2020, si osserva una quasi sistematica riduzione su gran parte delle stazioni, con livelli inferiori ai minimi del periodo di "controllo".

L'analisi delle distribuzioni mensili dei dati mette ancor più in evidenza il netto e significativo calo, più marcato in aprile, ma importante anche a marzo.

Escludendo le stazioni di fondo rurali, in media in tutta la rete i valori di concentrazione giornaliera di NO₂ rilevati nel mese di Aprile2020 sono inferiori di circa il 27% rispetto ai valori medi di Aprile del triennio precedente.

Considerando le sole stazioni di traffico urbano la diminuzione è del 45% circa.

Alcune eccezioni sono la stazione di Ancona Cittadella (fondo urbano) di Montemonaco (fondo rurale) e, in misura minore, Falconara Scuola (industriale suburbana).

Peculiarità regionali

Per approfondire

Direzione Tecnica Scientifica di ARPAM (2020). La qualità dell'aria nelle Marche al tempo del Coronavirus https://www.arpa.marche.it/images/pdf news/2020/qualita aria covid/Covid Qualita aria aggto Aprile 2020 https://www.arpa.marche.it/images/pdf news/2020/qualita aria covid/Covid Qualita aria aggto Aprile 2020 https://www.arpa.marche.it/images/pdf news/2020/qualita aria covid/Covid Qualita aria aggto Aprile 2020 https://www.arpa.marche.it/images/pdf news/2020/qualita aria covid/Covid Qualita aria aggto Aprile 2020 https://www.arpa.marche.it/images/pdf news/2020/qualita aria covid/Covid Qualita aria aggto Aprile 2020 https://www.arpa.marche.it/images/pdf news/2020/qualita aria covid/Covid Qualita aria aggto Aprile 2020 https://www.arpa.marche.it/images/pdf news/2020/qualita aria covid/Covid Qualita aria aggto Aprile 2020 https://www.arpa.marche.it/images/pdf news/2020/qualita aria covid/Covid Qualita aria aggto Aprile 2020 https://www.arpa.marche.it/images/pdf news/2020/qualita aria aggto aggree aria aggto aggree aria aggto aggree aggree

15.14 LAZIO

Periodo dell'indagine

L'indagine è basata sui dati della rete di monitoraggio della qualità dell'aria dell'ARPA Lazio nei mesi di marzo, aprile e maggio 2020

Inquinanti considerati

PM₁₀, PM_{2.5}, NO₂, NO, benzene

Periodo di riferimento per confronto

Confronto dei dati di qualità dell'aria nei mesi di marzo, aprile e maggio 2020 rispetto ai rispettivi mesi degli anni 2016-2019.

Eventuali provvedimenti aggiuntivi

È stata effettuata un'analisi dei provvedimenti adottati dalla Regione attraverso la verifica dei Bollettini Ufficiali della Regione (BUR) Lazio da febbraio-all'08 ottobre 2020. Sono stati individuati i provvedimenti che, in prima analisi, sono stati ritenuti utili a incidere sull'inquinamento atmosferico e/o sulla qualità dell'aria. Oltre ad una prima classificazione dei provvedimenti, è stato definito anche un "grado di affinità" del provvedimento rispetto alla possibile correlazione tra il provvedimento finalizzato al contenimento della diffusione del virus e l'inquinamento atmosferico.

Metodi

Durante i mesi di marzo, aprile e maggio 2020 a causa dell'emergenza sanitaria COVID-19, sono stati emanati dei provvedimenti da parte del Governo e delle Regioni, che hanno previsto, tra l'altro, la sospensione di pressoché tutte le attività socio-economiche, produttive e

culturali (scuole, attività ludico ricreative, commerciali etc.), per limitare la trasmissione dell'infezione tra gli individui, e hanno conseguentemente diminuito gli spostamenti sul territorio incidendo sul traffico veicolare, determinandone una notevole riduzione. Gli effetti dei provvedimenti del lockdown e i profondi cambiamenti dello stile di vita delle persone hanno certamente influito sulla qualità dell'aria della regione Lazio.

Allo scopo di studiare tali effetti l'ARPA Lazio ha realizzato una prima analisi dei dati raccolti dalla rete di monitoraggio della qualità dell'aria nei mesi di marzo, aprile e maggio 2020.

La limitazione degli spostamenti ha causato un forte calo delle emissioni del settore dei trasporti, che risulta chiaramente dalla diminuzione delle concentrazioni degli inquinanti legati direttamente al traffico (monossido di azoto, benzene, in parte biossido di azoto e particolato).

Benzene

Nelle 8 stazioni urbane da traffico della rete regionale di monitoraggio si ha nei mesi di marzo, aprile e maggio un'evidente riduzione del benzene rispetto agli anni 2016-2019 e questo in tutte le stazioni ad eccezione di quelle della zona Litoranea.

Nell'ambiente urbano di Roma, nella stazione di Fermi, stazione da traffico che negli ultimi anni ha registrato i valori più elevati, l'abbattimento percentuale mensile registrato per il benzene a marzo è stato del 60%, nel mese di aprile è stato del 74% e a maggio del 72%.

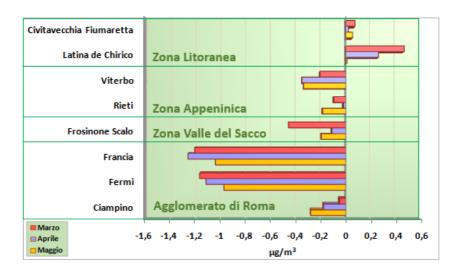


Figura 15.14.1. Riduzione del benzene nei mesi di marzo, aprile e maggio 2020 rispetto ai rispettivi mesi degli anni 2016-2019 nelle stazioni urbane da traffico della rete ragionale di monitoraggio della qualità dell'aria.

Biossido di azoto

Confrontando i dati misurati con le medie dei mesi di marzo ed aprile dei 4 anni precedenti (2016-2019) emerge una significativa riduzione del biossido di azoto (NO₂) misurata nelle stazioni urbane da traffico. La diminuzione delle concentrazioni è maggiore nel mese di aprile rispetto al mese di marzo.

La riduzione percentuale media del periodo marzomaggio 2020 rispetto agli ultimi quattro anni è stata del 47% nelle stazioni dell'Agglomerato di Roma, del 43% nella Valle del Sacco, del 66% nella zona Appenninica e del 43% in quella Litoranea.

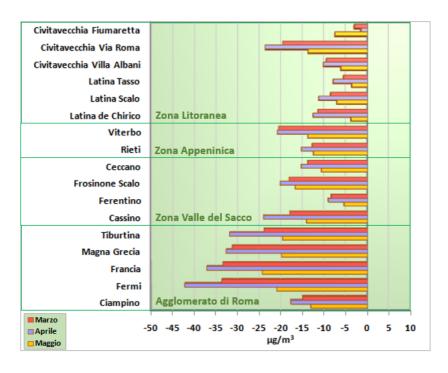


Figura 15.14.2. Riduzione dell'NO₂ nei mesi di marzo, aprile e maggio 2020 rispetto alle medie dei rispettivi mesi degli anni 2016-2019 nelle stazioni urbane da traffico della rete ragionale di monitoraggio della qualità dell'aria.

Nella città metropolitana di Roma nelle quattro stazioni urbane da traffico, la diminuzione percentuale dell'NO2 rispetto ai quattro anni precedenti, nel mese di marzo varia dal 55% di Francia al 44% di Tiburtina, mentre nel mese di aprile la variazione è più marcata, difatti per la stazione di Francia è stata del 65%, a Tiburtina del 61 %, mentre la stazione di Fermi ha raggiunto l'abbattimento maggiore (68%). Per il mese di maggio la riduzione dell'NO2 varia dal 45% di Francia al 38% di Fermi.

Particolato - PM₁₀

Per quanto riguarda il particolato (PM₁₀), confrontando le concentrazioni giornaliere con quelle caratteristiche del periodo misurate negli anni precedenti e, osservando l'andamento delle stesse nel mese di marzo 2020, non si osserva la stessa drastica diminuzione osservata per gli inquinanti gassosi.

Nel mese di aprile, invece, la riduzione del PM₁₀ appare con maggiore evidenza e si rileva in quasi tutte le stazioni urbane da traffico del Lazio.

Nel mese di maggio, quando a partire dal giorno 4 è iniziata la "fase 2" con l'allentamento delle restrizioni, sebbene si riscontri una diminuzione in alcune stazioni rispetto agli anni precedenti, si nota una minore riduzione rispetto al mese di aprile.

Va aggiunto che nel marzo 2020 però (dal 26 al 30), le condizioni meteo in Italia sono state influenzate da una depressione ciclonica (in mezzo al Mediterraneo), che ha portato sabbia (dalla regione Caucasica e/o dal deserto del Sahara) che, con l'ausilio di venti provenienti dall'est Europa, ha determinato un innalzamento delle polveri nel Nord-Centro Italia, coinvolgendo in parte anche la regione Lazio, nella quale, di conseguenza, si sono

registrati dei valori alti di PM₁₀, dovuti a sorgenti di tipo naturale.

Anche nel mese di maggio (dal 13 al 18) si è registrato un fenomeno di trasporto di polveri probabilmente provenienti dal deserto del Sahara, che hanno provocato un aumento delle polveri sottili.

Si riporta lo scarto in $\mu g/m3$ della media mensile di PM_{10} per le stazioni urbane da traffico della rete regionale di

monitoraggio della qualità dell'aria divise per zone, di marzo, aprile e maggio 2020 rispetto agli anni 2016-2019

Nel mese di aprile la riduzione del PM₁₀ appare con maggiore evidenza e si rileva in quasi tutte le stazioni urbane da traffico della regione.

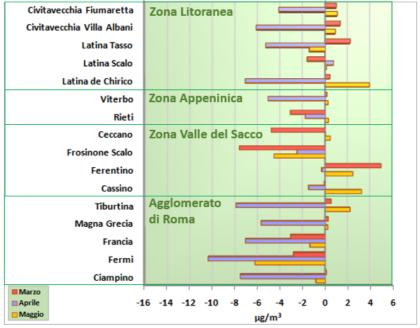


Figura 15.14.3. Riduzione del PM₁₀ nel mese di marzo, aprile e maggio 2020 rispetto ai rispettivi mesi degli anni 2016-2019 nelle stazioni urbane da traffico della rete ragionale di monitoraggio della qualità dell'aria.

Per comprendere quanto il lockdown abbia inciso nella città di Roma sulle concentrazioni di PM_{10} , sono state effettuate diverse analisi finalizzate a tenere conto della complessità di un'area urbana che presenta una grande estensione territoriale, un diverso grado di urbanizzazione a seconda delle zone, una molteplicità di sorgenti di emissione.

Sono riportate le medie di PM_{10} misurate presso le stazioni di monitoraggio del comune di Roma relative al mese di marzo, aprile e maggio degli ultimi cinque anni.

Nel mese di marzo non sembra evidenziarsi la stessa diminuzione delle concentrazioni in aria osservata per gli inquinanti gassosi (NO, NO₂ e Benzene) nel periodo di limitazione delle attività, legato al periodo di emergenza per la diffusione del COVID-19. Nel mese di aprile,

invece, nell'anno corrente, si può notare come le medie mensili del PM₁₀ registrato nelle stazioni all'interno dell'ambiente urbano di Roma siano molto simili alla media mensile registrata a Castel di Guido (le medie

registrate sono comprese tra 18 e 23 μg/m³). Nel mese di maggio non si apprezzano variazioni rispetto agli anni precedenti indagati.

Tabella 15.14.1. Media mensile di PM₁₀ in μg/m³ delle stazioni localizzate all'interno del GRA di Roma e della stazione rurale Castel di Guido.

		Preneste	Francia	M.Grecia	Cinecittà	Villa Ada	Guido	Fermi	Bufalotta	Cipro	Tiburtina	Arenula
Marzo	2016	25	27	28	28	22	17	26	23	22	28	22
	2017	31	27	32	29	25	20	31	28	25	32	24
	2018	27	24	28	23	21	16	34	24	22	26	23
	2019	31	25	30	28	25	18	32	28	27	31	27
	2020	28	23	30	25	23	22	28	26	24	30	28
Aprile	2016	25	27	28	30	25	24	28	27	25	31	23
	2017	26	23	25	25	23	18	28	22	20	26	21
	2018	36	30	34	34	28	25	37	32	30	35	33
⋖	2019	32	23	28	27	23	21	30	26	24	29	26
	2020	22	19	23	20	18	19	20	21	18	22	21
Maggio	2016	25	23	24	24	18	18	23	20	20	24	19
	2017	23	20	23	22	19	16	23	19	17	23	18
	2018	25	24	24	25	20	19	25	22	21	21	22
	2019	19	15	18	16	15	10	21	16	14	16	13
	2020	20	19	22	21	21	19	17	21	18	23	21

Complessivamente da una prima analisi dei dati del comune di Roma, prendendo in considerazione in particolare le stazioni da traffico, nei mesi di marzo ed aprile emerge un avvicinamento delle concentrazioni rilevate nell'area urbana a quelle misurate in aree rurali più prossime all'urbe. Nell'area di Roma si registra un decremento dei valori di PM₁₀ nelle stazioni situate all'interno del Grande Raccordo Anulare (localizzate in aree generalmente fortemente antropizzate) e una minore differenza tra le stazioni le cui concentrazioni di PM₁₀ sono fortemente condizionate dalle emissioni locali Per approfondire

(ad esempio Fermi e Tiburtina) e quelle che non presentano sorgenti locali significative, più legate al fondo regionale (ad esempio Castel di Guido). Nel mese di maggio questa differenza appare meno evidente e comunque non viene osservata in diversi stazioni di misura

La riduzione media del PM₁₀ del periodo marzo-aprile 2020 rispetto agli ultimi quattro anni delle stazioni interne al GRA è stata di circa il 9 %.

Antonio Amoroso, Alessandro Domenico Di Giosa, Massimo Enrico Ferrario, Stefano Listrani, Giada Marchegiani, Arianna Marinelli, Donatella Occhiuto (2020). L'effetto sulla qualità dell'aria nel Lazio dell'emergenza COVID-19 -Analisi preliminare dei dati (marzo-maggio 2020).

http://www.arpalazio.gov.it/download/?sez=eventi&pid=112&fln=Report QA COVID maggio 2020.pdf

15.15 ABRUZZO

Periodo di indagine

È stato analizzato il periodo delle misurazioni giornaliere registrate dal 1 febbraio alla prima settimana di Aprile.

Inquinanti considerati

Sono stati analizzati il biossido di azoto e il particolato PM_{10} e $PM_{2.5}$.

Eventuali provvedimenti aggiuntivi

L'Arta non riporta alcuna informazione in merito a ulteriori provvedimenti presi per il contenimento del contagio da COVID-19 per la regione.

Metodi

L'ARTA durante il periodo di lockdown, imposto per limitare la diffusione del CoViD-19, ha garantito la continuità delle misurazioni della qualità dell'aria e la loro pubblicazione senza mai interrompere le rilevazioni degli inquinanti atmosferici.

A distanza di circa 30 giorni dal blocco del traffico in Abruzzo, in questa breve relazione vengono quindi riportati in forma grafica alcuni dati che sono stati selezionati tra quelli raccolti in questo periodo.

Il dettaglio di tutti i dati quotidiani è stato pubblicato giornalmente e resta a disposizione per chi ne facesse richiesta. Abbiamo tuttavia ritenuto di esprimere in questo momento le conclusioni che possiamo trarre con sufficiente certezza, rinviando a un periodo successivo altri necessari e quanto mai opportuni approfondimenti.

I grafici di seguito riportati si riferiscono alle misurazioni giornaliere registrate dal 1 febbraio alla prima settimana di Aprile. In ogni grafico vengono riportati i dati dello stesso periodo in esame riferito al 2019.

Delle 16 centraline della rete regionale ne abbiamo selezionate alcune, le conclusioni a cui siamo pervenuti si riferiscono comunque all'intera rete della Regione Abruzzo.

Dall'osservazione dei grafici, è possibile osservare quindi sia le concentrazioni misurate per ogni inquinante a cui il grafico si riferisce (prima e dopo l'inizio del lockdown) che fare un confronto anche con lo stesso periodo dello scorso anno.

Gli inquinanti che abbiamo scelto come i più significativi sono il Biossido di Azoto (NO_2) il particolato PM_{10} e il particolato $PM_{2,5}$.

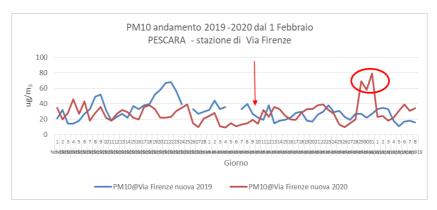
Come noto, in Abruzzo il periodo di blocco è iniziato il 10 marzo; nei grafici viene riportata una freccia rossa corrispondente a questo giorno. Con un cerchio rosso vengono indicati i dati corrispondenti all'innalzamento di polveri di origine desertica registrati il 28, 29 e 30 Marzo.

Dall'esame dei dati riportati nei grafici, possono essere tratte le seguenti conclusioni:

- 1) E' evidente sull'intera regione la riduzione della concentrazione degli ossidi di azoto a seguito del blocco delle attività (a partire dal 10 marzo) rispetto al periodo immediatamente precedente.
- 2) Come noto, nei giorni 28, 29 e 30 marzo 2020 si è avuto su quasi tutto il territorio nazionale un notevole incremento di particolato PM_{10} di origine desertica proveniente dall'Asia (cerchio rosso nei grafici). Si è registrato invece un aumento inferiore delle concentrazioni di $PM_{2.5}$.

Anche nella Regione Abruzzo negli stessi giorni è stato registrato da tutte le stazioni di misurazione, posizionate nell'agglomerato di Chieti - Pescara e nella stazione di misurazione di Teramo, l'innalzamento di PM₁₀ da polveri desertiche. È stato invece registrato un incremento molto più contenuto, evidente solo nella giornata di domenica 29 marzo, nelle stazioni sia de L'Aquila che di Castel di Sangro. L 'incremento di polveri della frazione più grossolana (PM₁₀) su buona parte del territorio nazionale e le contingenze meteorologiche depongono per un'origine naturale del fenomeno, ipotesi condivisa anche dal Sistema Nazionale Protezione Ambientale (SNPA), che potrà essere oggetto di ulteriori approfondimenti.

3) È evidente che nel periodo di lockdown non vi è stato un crollo né del particolato PM₁₀ né del particolato PM_{2.5}. La serie storica dei dati raccolti, tuttavia, è ancora statisticamente poco significativa per valutazioni definitive. I livelli di particolato sono influenzati dalle condizioni meteo che, nella prima metà del mese di febbraio (ma anche negli ultimi 4 giorni e nella prima decade di marzo del 2020) in cui i livelli di inquinamento sono risultati più bassi, sono state effettivamente caratterizzate da ventilazione vivace e, occasionalmente, da deboli precipitazioni. Questi fattori potrebbero aver determinato la riduzione degli inquinanti.


Anche analizzando l'andamento meteo del corrispondente periodo del 2019, emerge che i periodi con ventilazione ridotta e regimi di stabilità atmosferica (che per esempio caratterizzano la seconda decade di febbraio) determinano accumulo di inquinanti. In conclusione, emerge chiaramente il ruolo dei regimi circolatori atmosferici nel determinare le concentrazioni di particolato, anche a prescindere da episodi particolari come quello del 28-30/03/2020.

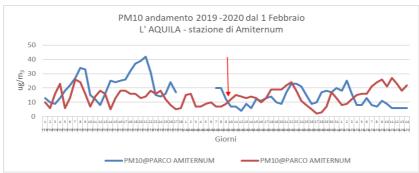


Figura 15.15.1. Andamento delle concentrazioni di NO_2 per la stazione di Chieti scalo, Pescara - Via Firenze e Teramo - Parco Gammarana, confronto medie giornaliere 2019-2020.

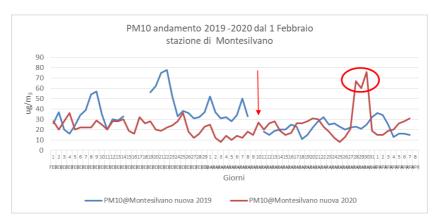
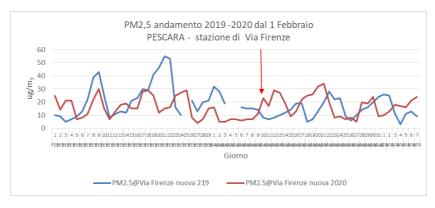



Figura 15.15.2. Andamento delle concentrazioni di PM₁₀ per la stazione di fondo urbano L'Aquila – Amiternum, di traffico Pescara - Via Firenze, e Montesilvano. Confronto medie giornaliere 2019-2020.

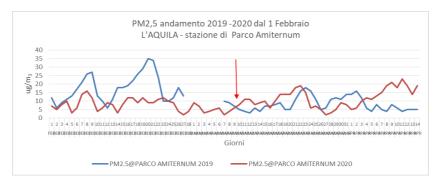


Figura 15.15.3. Andamento delle concentrazioni di PM_{2.5} per la stazione di fondo urbano L'Aquila – Amiternum, di traffico Pescara - Via Firenze, e Montesilvano. Confronto medie giornaliere 2019-2020.

Peculiarità regionali

Non sono riportate peculiarità.

Per approfondire

Arta Abruzzo-agenzia regionale per la protezione dell'ambiente-Direzione generale (2020). Lo stato di qualità dell'aria nella regione Abruzzo durante il periodo coronavirus. Prime valutazione.

https://www.artaabruzzo.it//download/pubblicazioni/20200416_qual_aria_abruzzo_coronavirus.pdf

15.16 MOLISE

Periodo di indagine

L'Arpa Molise ha effettuato le sue analisi per il periodo gennaio-aprile 2020.

Inquinanti considerati

Sono stati considerati per l'analisi il biossido di azoto ed il particolato.

Periodo di riferimento per confronto

Sono stati presi i dati misurati dalla rete di monitoraggio della QA per il periodo gennaio-aprile degli anni tra il 2009 e il 2019 per l'NO $_2$, per il particolato PM $_{10}$ sono stati considerati gli anni 2017-2019 e per il PM $_{2,5}$ è stato considerato il 2019, in entrambi i casi sono stati presi in esame solo i mesi in cui vi è stata una raccolta di dati superiore al 75%.

Eventuali provvedimenti aggiuntivi

Nella regione Molise le misure di lockdown, predisposte dal Governo, sono state integrate con una numerosa serie di Ordinanze, 23 ordinanze al 20 aprile 2020, in applicazione dell'art.3 comma 2 del decreto legge 25

marzo 2020, n.19, per l'applicazione di ulteriori misure per la prevenzione e gestione dell'emergenza epidemiologica da Covid-19, soprattutto in relazione ai cluster evidenziati nei territori di Cercemaggiore, Pozzilli, Venafro, Agnone, Termoli, Riccia, Montenero di Bisaccia

Metodi

Sono stati considerati i dati misurati da tutta le stazioni della rete di monitoraggio della QA ubicate nelle diverse aree di zonizzazione del territorio regionale, come da tabella, integrati con i dati provenienti dalle stazioni installate dalla società Sorgenia Power, sita nel Consorzio Industriale della Valle del Biferno, (TE3 Fondo urbano), Termoli4 (fondo rurale) e Termoli5, utilizzate per l'analisi del particolato, poiché per il comune di Termoli non si ha a disposizione la serie di dati 2020. Per il biossido di azoto il confronto è stato elaborato sui dati medi orari del giorno tipo, mentre per il particolato PM₁₀ e PM_{2,5} sono state confrontate le concentrazioni medie giornaliere.

Le stazioni di monitoraggio che costituiscono l'attuale rete regionale sono riportate in Tabella 15.16.1.

Tabella 15.16.1. Com	posizione rete monitora	ggio della gualità	dell'aria del Molise

Denominazione stazione	Tipologia	Inquinanti misurati
Campobasso1 – CB1	Traffico	NOx, SO ₂ , CO, PM ₁₀ , BTX.
Campobasso3 – CB3	Background	NOx, PM ₁₀ , O ₃ , BTX, As, Cd, Ni, Pb, B(a)P, PM _{2.5}
Campobasso4 – CB4	Background	NO _X , CO, O ₃ .
Termoli1 – TE1	Traffico	NOx, SO ₂ , CO, PM ₁₀ , BTX,
Termoli2 – TE2	Traffico	NO _X , PM ₁₀ , O ₃ , BTX, PM _{2.5} , As, Cd, Ni, Pb, B(a)P
Isernia1 – IS1	Traffico	NOx, SO ₂ , CO, PM ₁₀ , BTX.
Venafro1 – VE1	Traffico	NOx, SO ₂ , CO, PM ₁₀ , BTX.
Venafro2 – VE2	Traffico	NOx, PM ₁₀ , O ₃ , BTX, As, Cd, Ni, Pb, B(a)P, PM _{2.5}
Guardiaregia – GU	Background	NO _X , SO ₂ , O ₃ .
Vastogirardi – VA	Background	NOx, PM ₁₀ , O ₃ , As, Cd, Ni, Pb, B(a)P

Principali risultati

Per il NO₂ il confronto operato sulle stazioni da traffico dell'area di Campobasso, mostra chiaramente l'effetto dovuto alle misure di restrizione attraverso l'applicazione dei DPCM governativi; le differenze sono meno marcate per le concentrazioni relative alle misure delle stazioni di fondo urbano (CB3) e rurale (GU). La Figura 15.16.1 illustra la curva oraria giornaliera dei due periodi a confronto, per le stazioni di traffico CB1, IS1, VE2 e di fondo urbano TE3, evidenziando il forte abbassamento delle concentrazioni. Per le stazioni di fondo il confronto tra le due curve del giorno tipo evidenziano sempre una riduzione ma meno marcata. Questo avvalora ulteriormente l'ipotesi che le misure hanno influito nella regione soprattutto sulla riduzione delle emissioni da traffico.

Nelle analisi mese specifico, l'Arpa rileva che la maggiore differenza si osserva nel confronto delle concentrazioni del mese di aprile. La stazione GU, dedicata alla misura dell'ozono, mostra una riduzione delle concentrazioni meno forte delle stazioni precedenti.

Nel 2020, il mese di gennaio e gran parte di febbraio sono stati caratterizzati, sul Molise e anche sul resto del territorio nazionale, da condizioni atmosferiche avverse alla dispersione degli inquinanti, causando l'aumento delle concentrazioni medie giornaliere di PM₁₀ e PM_{2,5} per un lungo periodo, con conseguenti superamenti del valore della media giornaliera previsto dalla normativa vigente. Quando le condizioni climatiche sono cambiate diventando favorevoli alla dispersione, i valori di concentrazione si sono ridotti a causa delle azioni di lockdown.

Quindi per il PM_{10} il confronto è stato fatto per il mese di marzo per la stazione CB3 e per i mesi di marzo ed aprile

per la stazione TE2; per la stazione VE2 il confronto è stato fatto sui mesi da gennaio ad aprile e per marzo-aprile. I confronti sono illustrati nella figura Figura 15.16.2 tramite box plot. Dalle analisi emerge che il lockdown non ha prodotto gli stessi effetti sul PM₁₀ come avvenuto con il biossido di azoto. Quindi, l'andamento in diminuzione rappresentato nei box-plot delle medie giornaliere registrati dalle stazioni di monitoraggio potrebbe essere legato più all'andamento stagionale delle polveri che alle misure restrittive per il contenimento del COVID-19.

Per il PM_{2,5} il confronto è sul periodo gennaio-aprile 2019 e 2020. L'aumento delle concentrazioni per le condizioni meteorologiche sfavorevoli alla dispersione è stato particolarmente rilevante nella stazione di misura VE2. Quando le condizioni meteo sono cambiate diventando favorevoli alla dispersione degli inquinanti, i valori di PM_{2,5} registrati sono diminuiti.

Anche il $PM_{2,5}$, in misura minore, ha risentito dell'introduzione delle polveri del Caucaso sul finire del mese di marzo. Le polveri desertiche, infatti, sono state di tipo grossolano e quindi hanno avuto un maggiore peso sulle concentrazioni di PM_{10} e meno su quelle di $PM_{2.5}$.

Per il PM2,5, il lockdown non ha inciso sulle concentrazioni di particolato in maniera evidente. Dall'analisi dei valori di concentrazione non si osserva un andamento tale da poter attribuire un effetto positivo del lockdown sulle concentrazioni misurate del PM2,5 confermato anche dalla circostanza che in alcuni casi si sono registrati valori di concentrazioni maggiori del 2019.

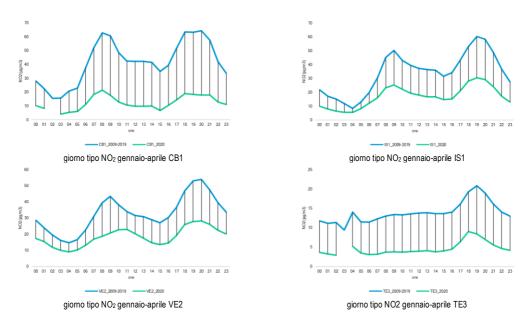


Figura 15.16.1. Curva oraria giornaliera dei due periodi a confronto, per le stazioni di traffico CB1, IS1, VE2 e di fondo urbano TE3

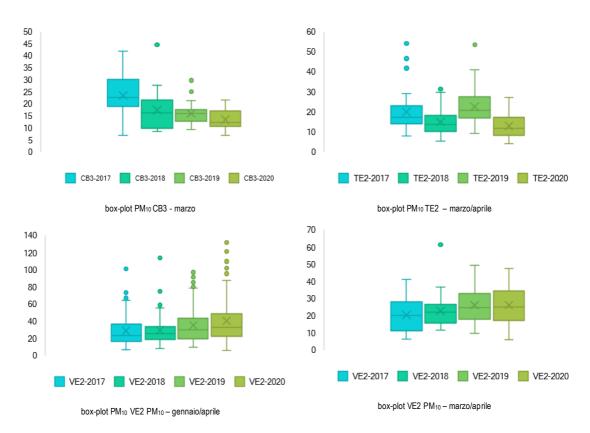


Figura 15.16.2. Confronti tra le concentrazioni rilevate di PM10 in vari siti durante il lockdown con gli analoghi periodi degli anni precedenti.

Peculiarità regionali

Non sono segnalate specifiche peculiarità

Per approfondire

ARPA Molise Direzione Tecnico Scientifica Staff per le Attività di Gestione della Rete di Monitoraggio della Qualità dell'Aria (2020). Qualità dell'aria in Molise nel periodo di Lockdown- Analisi dei dati gennaio-aprile 2020. http://www.arpamoliseairquality.it/relazioni-sulla-qualita-dellaria/

15.17 CAMPANIA

Periodo dell'indagine

25 febbraio -31 marzo

Inquinanti considerati

NO, NO₂, PM₁₀, PM_{2,5}, Benzene, CO, O₃

Periodo di riferimento per confronto

2017-2019

Eventuali provvedimenti aggiuntivi

26 febbraio. Con Ordinanza n. 4/2020 del Presidente della Giunta regionale viene disposta la prima chiusura delle scuole e delle università in tutto il territorio regionale, in seguito ai primi casi di contagiati in Campania.

10 marzo con ordinanza n. 10/2020 del Presidente della Giunta regionale, viene disposta la chiusura degli esercizi di barbieri, parrucchieri ed estetisti con anticipo di due giorni sugli analoghi provvedimenti a livello nazionale.

12 marzo con ordinanza n. 14/2020 del Presidente della Giunta regionale, dispone la riduzione fino al 50% delle corse delle aziende di trasporto pubblico locale.

19 marzo con l'ordinanza n.19/2020 la Regione Campania sospende l'attività dei cantieri edili privati, tranne gli interventi di urgenza, e dei lavori pubblici che possono essere differiti con 4 giorni di anticipo sui provvedimenti analoghi riguardanti il territorio nazionale.

Metodi

Sono state confrontate le medie e le medie mobili giornaliere delle tre decadi successive ai provvedimenti Covid con quelle corrispondente allo stesso periodo nel triennio di riferimento.

È stato inoltre effettuato un confronto fra dati misurati al suolo nel marzo 2020 e risultati della modellistica. In questo modo, valutando la differenza tra i valori misurati e i valori previsti da modello, è stato possibile definire una misura delle riduzione delle concentrazioni dovute ai provvedimenti COVID.

Principali risultati

Le concentrazioni di PM₁₀ nelle tre decadi considerate in concomitanza dei provvedimenti di restrizione per Covid hanno un andamento altalenante, le condizioni meteo dello stesso periodo variano da alta pressione a condizioni dispersive ed infine presenza di polveri di origine naturale. Le concentrazioni di PM₁₀ misurate nel mese di marzo 2020 sono confrontabili, addirittura superiori in alcuni giorni, rispetto a quelle misurate nei tre anni precedenti.

Le concentrazioni medie orarie del monossido di azoto, ante e post restrizioni, mostrano che i livelli di questo inquinante hanno avuto riduzioni molto significative, dell'ordine del 60% (Figura 15.17.1). L'analisi statistica condotta sui valori medi giornalieri di NO del marzo 2020 e rilevati nei tre anni precedenti evidenzia riduzioni di concentrazione fino al 70-80% rispetto agli anni precedenti (Figura 15.17.2).

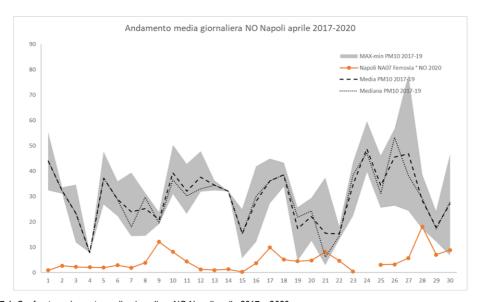


Figura 15.17.1. Confronto andamento media giornaliera NO Napoli aprile 2017 – 2020

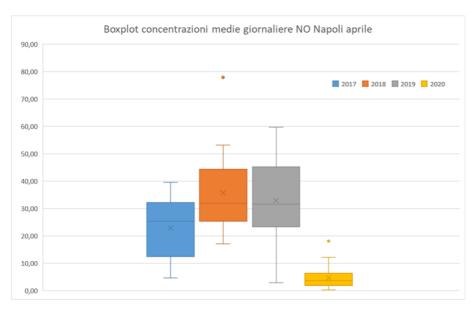


Figura 15.17.2. Distribuzione statistica NO Napoli aprile 2017 - 2020

Per l'NO₂ si osserva, sia per la media giornaliera che per la media mobile, un decremento importante solo nella terza decade a valle del provvedimento "Chiudi Italia".

Per la sola stazione di Napoli Ferrovia (NA07 Ferrovia) e per le concentrazioni assolute di ossido di azoto e PM₁₀ sono stati elaborati dei "giorni tipo" per il mese di marzo negli anni dal 2017 al 2020 allo scopo di valutare se e in quali fasce orarie dei giorni feriali o di fine settimana si siano verificati nel marzo 2020 delle diminuzioni di concentrazione rispetto agli anni di riferimento.

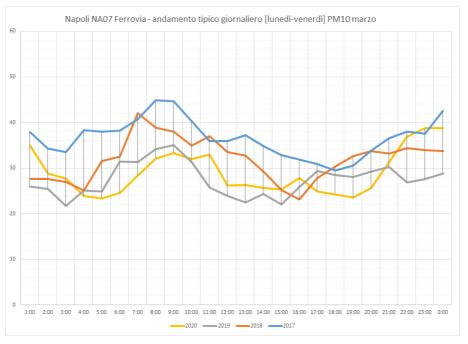


Figura 15.17.3. Andamento tipico giornaliero feriale del PM₁₀ a Napoli. Confronto marzo 2017 - 2020

Da questo confronto appare evidente la netta riduzione in valore assoluto delle concentrazioni del monossido di azoto caratterizzato da un andamento giornaliero praticamente stabile in cui sono poco percettibili i classici picchi delle fasce orarie. Per il PM_{10} la diminuzione del valore assoluto di concentrazione nel mese di marzo 2020 rispetto agli anni precedenti non è altrettanto evidente (Figura 15.17.3).

L'analisi delle medie giornaliere di CO e benzene nel periodo 25 febbraio-31 marzo mette in evidenza per entrambi gli inquinanti una diminuzione delle concentrazioni intorno al 23 marzo data di entrata in vigore di ulteriori provvedimenti restrittivi determinati dall'emergenza Covid-19.

Sono infine state calcolate le medie giornaliere di O_3 in stazioni rappresentative dei vari capoluoghi di provincia nel periodo 25 febbraio-31 marzo ma non si evincono andamenti e tendenze facilmente collegabili ai provvedimenti anti coronavirus.

Peculiarità regionali

Per la valutazione delle variazioni del quadro emissivo a livello regionale è stata considerata una molteplicità di fonti. Il riferimento per le emissioni è rappresentato dalle attività in corso da parte della Regione Campania per l'aggiornamento del piano regionale della qualità dell'aria in cui è stata curata anche la elaborazione del nuovo inventario delle emissioni al 2016 con il supporto della società Techne. In questo documento, corredato da un data base e da elaborazioni modellistiche, sono riportate le emissioni per i settori produttivi. Per il mese di marzo sono state elaborate appositamente alcune stime delle emissioni per settori produttivi e di attività.

Per valutare cosa è successo nel marzo 2020 ovviamente, non essendo disponibile un inventario aggiornato, è possibile fare alcune elaborazioni tenendo conto dei provvedimenti anti coronavirus e dei dati pubblicati da grandi gestori di dati globali come Google.

Moovit, e nazionali (Terna), che hanno stimato le variazioni di attività antropiche anche per l'Italia, per la Campania e per la città di Napoli. Pertanto è stato possibile attribuire dei fattori di riduzione/incremento a ciascuna decade di marzo 2020, utilizzati per rielaborare l'inventario emissivo di marzo già disponibile.

Il quadro di sintesi della riduzione di emissioni per macrosettore mostra che solo per gli impianti di combustione non industriali, ovvero i riscaldamenti domestici e non, si ha un aumento delle emissioni. mentre per tutti gli altri settori si ha una riduzione sia per NOx che per PM₁₀, con i decrementi più significativi per trasporti ed altre sorgenti mobili. Da notare che, mentre le variazioni per macrosettore sono pressoché uguali per entrambi gli inquinanti, il valore totale del cambiamento %, calcolato sulla base delle variazioni complessive di tonnellate emesse, è molto diverso: mentre le emissioni di NOx diminuiscono di circa un terzo, le emissioni di PM₁₀ sono sostanzialmente inalterate, a causa del contributo in incremento dei riscaldamenti che rappresentano oltre l'80% delle emissioni totali e compensano le riduzioni negli altri settori.

codms nomemsettore			PM10
01	Combustione nell'industria dell'energia e trasformaz.fonti energetiche	-7%	-7%
02	Impianti di combustione non industriali	5%	9%
03	Impianti di combustione industriale e processi con combustione	-19%	-24%
04	Processi senza combustione	-13%	-10%
06	Uso di solventi	-22%	-29%
07	Trasporti	-38%	-38%
08	Altre sorgenti mobili e macchine	-42%	-40%
09	Trattamento e smaltimento rifiuti	-10%	-10%
10	Agricoltura		-9%
11	Altre sorgenti/natura	-67%	-100%
Totale		-31%	3%

Figura 15.17.4. Percentuale di variazione nel marzo 2020 rispetto all'inventario emissioni per il mese di marzo, stimate per i macro settori con contributi emissivi aggregati per NOx e PM₁₀.

Per approfondire

ARPAC (2020). Prima valutazione degli effetti dei provvedimenti per il contenimento del contagio da Coronavirus 19 sulla qualità dell'aria in Campania.

https://www.arpacampania.it/relazioni-e-report

ARPAC (2020). I provvedimenti per il contenimento del contagio da Covid 19 e la qualità dell'aria in Campania.

https://www.snpambiente.it/wp-content/uploads/2020/04/Laqualit%C3%A0dellariainCampaniaelemisuredicontenimentodelCovid-19 10aprile2020finale.pdf

15.18 PUGLIA

Periodo dell'indagine

L'indagine di ARPA Puglia è stata basata sui dati di qualità dell'aria disponibili dal I gennaio al 31 ottobre 2020.

Inquinanti considerati

NO₂, Benzene, PM₁₀ e PM_{2,5}

Periodo di riferimento per confronto

Sono stati messi a confronto i dati medi mensili registrati nel 2020 (dati disponibili fino a ottobre) con le medie dei dati registrati mensilmente nel triennio 2017-2019.

Eventuali provvedimenti aggiuntivi

I provvedimenti regionali aggiuntivi a quelli nazionali, sono relativi alla seconda ondata di contagi avvenuta nell'autunno 2020 e hanno disciplinato la modalità di frequenza scolastica:

- -Ordinanza del Presidente della Regione Puglia n.397 del 22 ottobre 2020 –sospensione delle attività didattiche "in presenza" per le ultime tre classi delle scuole secondarie di secondo grado, dal 26 ottobre al 13 novembre.
- -Ordinanza del Presidente della Regione Puglia n.399 del 25 ottobre 2020 adozione della didattica digitale integrata per una quota non inferiore al 75% in tutte le classi del ciclo della scuola secondaria di secondo grado, dal 27 ottobre al 24 novembre
- -Ordinanza del Presidente della Regione Puglia n.407 del 27 ottobre 2020 adozione della didattica digitale

integrata tutte le scuole di ogni ordine e grado dal 30 ottobre al 24 novembre 2020.

Metodi

Per ognuno dei 6 capoluoghi di provincia è stata scelta una stazione di monitoraggio campione tra quelle collocate in area urbana. La finalità dello studio è stata la valutazione degli effetti dei vari interventi adottati dal Governo Italiano per il contenimento e la gestione della pandemia, in primis il cosiddetto *lockdown* del periodo 5 marzo - 17 maggio 2020, sulle concentrazioni dei principali inquinanti in aria ambiente (biossido di azoto (NO₂), benzene, PM₁₀ e PM_{2.5}).

Principali risultati

Per meglio interpretare i dati di qualità dell'aria registrati nel 2020 in Puglia, sono stati utilizzati i report di Google Mobility che, sulla base di set di dati aggregati e anonimi di utenti che hanno attivato l'impostazione "cronologia delle posizioni", ricostruiscono le variazioni degli spostamenti verso luoghi differenti (vendita al dettaglio, attività ricreative, generi alimentari e farmacie, stazioni di transito, luoghi di lavoro e residenziali). Il giorno di riferimento è il valore mediano del periodo 3 gennaio - 6 febbraio 2020 (Figura 15.18.1).

Il grafico mostra il decremento degli spostamenti verso i luoghi di lavoro durante il lockdown e la successiva ripresa, senza che si torni comunque ai valori antecedenti l'emergenza sanitari. Sullo stesso grafico si osserva che l'andamento degli spostamenti in zone residenziali, è speculare a quello degli spostamenti verso luoghi di lavoro, mostrando infatti un incremento della permanenza nelle case durante il lockdown.

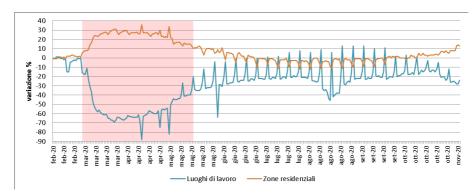


Figura 15.18.1 – Spostamenti verso luoghi di lavoro e verso zone residenziali in Puglia

Biossido di azoto (NO₂)

La concentrazione del biossido di azoto nei siti urbani è notoriamente legata alle emissioni da traffico veicolare. In tutti i siti oggetto di studio, è stata osservata una netta diminuzione delle concentrazioni di NO2 nei tre mesi interessati dal lockdown. A titolo esemplificativo, si riportano solo i grafici relativi alla stazione Bari–Cavour, quale sito rappresentativo degli andamenti degli inquinanti nelle aree urbane pugliesi nel corso del 2020.

In questo sito, ad aprile si è registrata una diminuzione di NO₂ pari al 61%.

Si è osservato, inoltre, che le medie mensili registrate dalle stazioni ubicate nei pressi di edifici scolastici, hanno continuato a mantenersi al di sotto dei valori medi relativi al triennio 2017-2019 anche nei mesi successivi al lockdown.

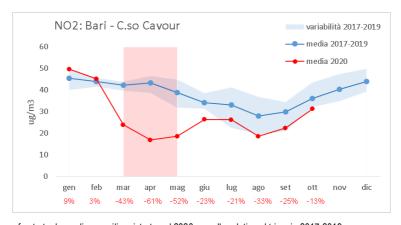


Figura 15.18.2 – NO₂: confronto tra le medie mensili registrate nel 2020 e quelle relative al triennio 2017-2019

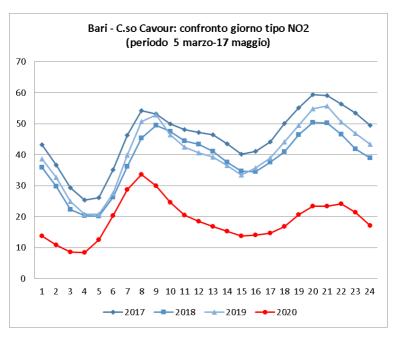


Figura 15.18.3 - NO₂: confronto giorno tipo

Il confronto tra il giorno tipo calcolato nel periodo marzomaggio 2020 (lockdown) e quelli dello stesso periodo ma calcolati per gli anni 2017, 2018 e 2019, mostra chiaramente che le concentrazioni sono significativamente inferiori nel 2020.

Inoltre per il 2020, il picco serale delle ore 21 è nettamente inferiore a quello delle ore 8 differentemente da quanto invece emerge dai giorno tipo degli anni 2017, 2018 e 2019

Benzene

Un altro inquinante caratteristico delle emissioni da traffico veicolare è il benzene.

Anche per il benzene, come per l'NO₂, si osserva una generalizzata riduzione di concentrazione durante il lockdown, che persiste anche nei mesi successivi ma

solo nelle stazioni ubicate in siti fortemente influenzati dal traffico come quello di Bari – C.so Cavour.

Il confronto del giorno tipo del 2020 con quelli dei tre anni antecedenti, mostra concentrazioni confrontabili durante le ore notturne. Durante il resto della giornata, invece, le concentrazioni del 2020 risultano inferiori rispetto a quelle degli altri tre anni.

Questi confronti mettono chiaramente in evidenza che gli stili di vita durante il giorno, nel periodo di lockdown, sono stati completamente differenti rispetto agli anni precedenti, con ricadute positive sulla qualità dell'aria.

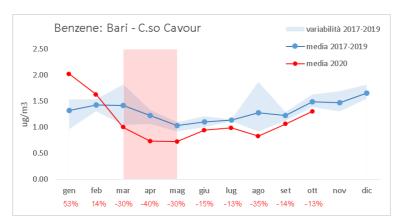


Figura 15.18.4 – Benzene: confronto tra le medie mensili registrate nel 2020 e quelle relative al triennio 2017-2019

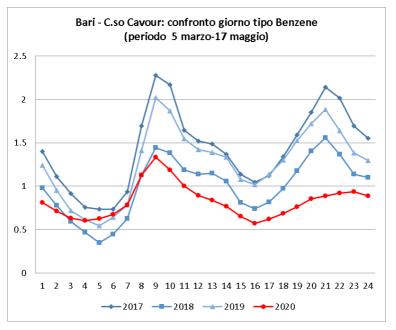


Figura 15.18.5 - Benzene: confronto giorno tipo

Polveri (PM₁₀ – PM_{2.5})

Anche per il PM_{10} e il $PM_{2,5}$, sono stati messi a confronto i valori medi mensili registrati nel 2020, con i valori medi mensili del triennio 2017-2019. Rispetto a quanto osservato per l' NO_2 e il benzene, il calo di concentrazione dovuto alle misure restrittive è meno evidente per PM_{10} e $PM_{2,5}$. Questi inquinanti, infatti, dipendono da molteplici variabili quali le condizioni

meteoclimatiche, le avvezioni di polveri desertiche, le reazioni tra precursori etc..

Tuttavia, per il PM_{10} si è osservata, in ogni stazione, una diminuzione delle concentrazioni nel mese di aprile (in pieno lockdown), che ha continuato ad essere osservata anche nei mesi di giugno, luglio e agosto 2020.

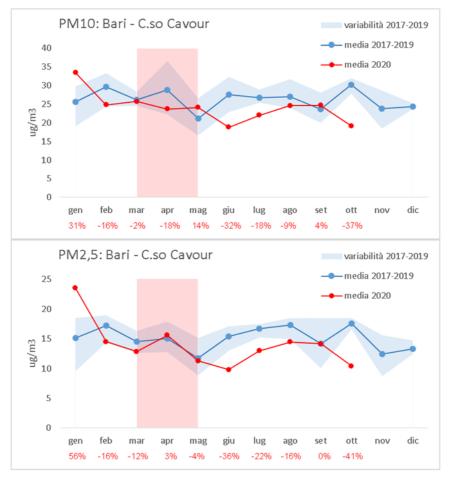


Figura 15.18.6 – PM₁₀ e PM_{2,5} - confronto tra le medie mensili registrate nel 2020 e quelle del triennio 2017-2019.

Per approfondire

Angiuli L., Mazzone F. (2020). Qualità dell'aria in Puglia in concomitanza dell'emergenza CoViD-19.

https://www.snpambiente.it/2020/04/08/qualita-dellaria-in-puglia-in-concomitanza-dellemergenza-covid-19/

Rapporti sugli spostamenti della comunità

HTTPS://WWW.GOOGLE.COM/COVID19/MOBILITY/

15.19 CALABRIA

Periodo dell'indagine

L'indagine di ARPA CALABRIA è basata sui dati di qualità dell'aria disponibili dal 1 gennaio 2020 al 30 aprile 2020.

Inquinanti considerati

Sono stati considerati nell'indagine il biossido di azoto (NO_2), il monossido di azoto (NO) e il PM_{10} .

Periodo di riferimento per confronto

I dati dei mesi di marzo ed aprile 2020 sono stati confrontati con quelli degli stessi mesi del triennio precedente (2017-2019).

Eventuali provvedimenti aggiuntivi

Nella relazione di ARPA CALABRIA (Tuoto et al., 2020) non sono riportate informazioni circa provvedimenti aggiuntivi su scala regionale o locale.

Metodi

Sono stati valutati gli andamenti a partire dai dati aggregati in varie forme (medie mensili, medie giornaliere, giorno tipo). I mesi di marzo ed aprile 2020 Sono stati confrontati alcuni indicatori statistici calcolati per ciascun periodo con quelli del triennio precedente (2017-2019).

Sono state considerati i dati delle 20 stazioni di monitoraggio della rete regionale di qualità dell'aria ubicate nelle 4 zone in cui è suddiviso il territorio ai fini della valutazione della qualità dell'aria ai sensi del D.Lgs 155/2010.

Principali risultati

Per quanto riguarda il 2020 non sono state osservate variazioni significative negli andamenti stagionali con livelli significativamente più alti nei mesi centrali dell'inverno (gennaio e febbraio) e via via decrescenti a

partire dal mese di marzo, come si osserva anche nelle serie storiche degli anni precedenti.

Tuttavia, sia per l'NO₂ che per il PM₁₀ mentre le medie dei primi due mesi dell'anno sono confrontabili con quelle degli analoghi periodi del triennio precedente, nei mesi di marzo e aprile la differenza diventa evidentemente più significativa in particolare nelle stazioni urbane da traffico, con valori sensibilmente inferiori nel 2020 a quelli registrati nel triennio precedente (NO₂, Figura 15.19.1; PM₁₀, Figura 15.19.2).

La riduzione è bene evidenziata dai grafici di "giorno tipo" dove, in particolare si apprezza la riduzione dei picchi delle ore di punta per il traffico (Figura 15.19.3). Tale riduzione è ancora più evidente se si osserva l'analogo grafico relativo al monossido di azoto (Figura 15.19.4).

Nell'insieme, considerando tutti i punti di misura tranne uno (vedi peculiarità regionali) la diminuzione osservata della concentrazione media del biossido di azoto nel periodo di lockdown rispetto allo stesso periodo del triennio precedente è compresa tra il 9% della stazione di fondo urbano di Catanzaro "Parco biodiversità" e il 68% della stazione da traffico di Piazza Castello di Reggio Calabria.

Peculiarità regionali

Nella stazione di Rocca di Neto (KR), è stato registrato un aumento della concentrazione del biossido di azoto e PM₁₀ nel periodo di marzo-aprile 2020 rispetto a quanto osservato nel triennio precedente. Secondo gli autori questo è probabilmente dovuto al contributo del riscaldamento domestico, ma tale aspetto meriterebbe un approfondimento.

L'ARPA CALABRIA riporta anche un interessante approfondimento circa le informazioni che sono state ottenute mediante gli strumenti di osservazione della terra dallo spazio (Oranges e Dattola, 2020).

In particolare sono state analizzati i dati forniti dallo strumento TROPOMI (TROPOspheric Monitoring Instrument) installato a bordo del satellite Sentinel 5P (Sentinel 5 Precursor), messo in orbita il 13 ottobre 2017

dall'Agenzia spaziale europea (ESA) che restituisce quotidianamente i dati di contenuto colonnare totale di biossido di azoto con risoluzione spaziale di 7x7 km.

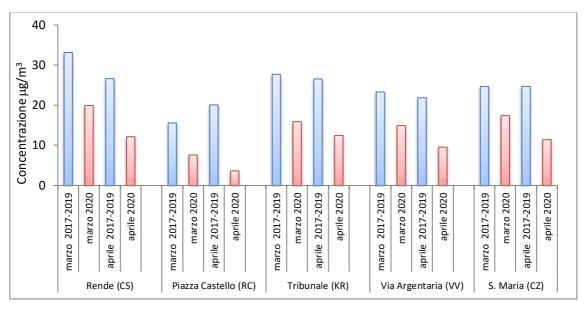
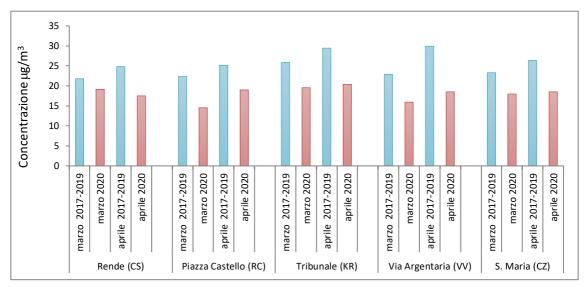



Figura 15.19.1. Andamento della media mensile di NO₂ nelle stazioni urbane da traffico nei mesi di marzo-aprile 2020 e del triennio precedente.

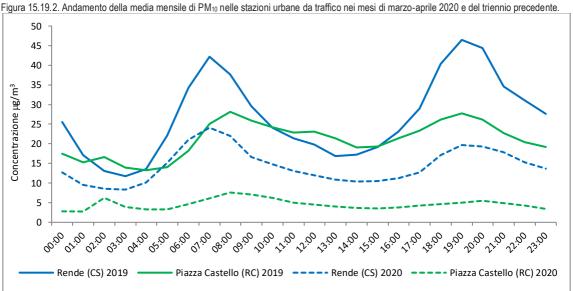


Figura 15.19.3. Concentrazioni orarie NO₂ giorno tipo.

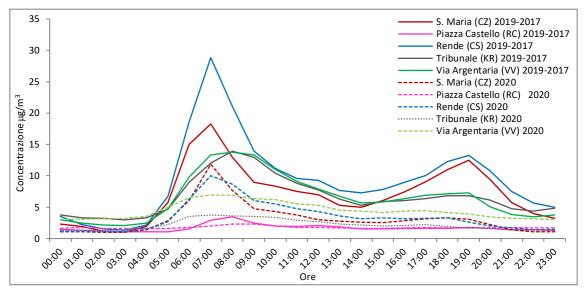


Figura 15.19.4. Concentrazioni orarie NO giorno tipo stazioni da traffico.

Per approfondire

Claudia Tuoto, Emilio Centorrino, Pasquale Crea (2020). L'incidenza del lockdown sull'inquinamento atmosferico in Calabria: una prima valutazione. ARPA CALABRIA. http://www.arpacal.it/allegati/150520_lockdown_calabria.pdf

15.20 SICILIA

Periodo dell'indagine

L'indagine di ARPA SICILIA è basata sui dati di qualità dell'aria disponibili dal 1 gennaio 2020 al 31 marzo 2020.

Inquinanti considerati

Sono stati considerati nell'indagine gli ossidi di azoto (NO_x) , il biossido di azoto (NO_2) , il monossido di azoto (NO), il benzene (C_6H_6) , il PM_{10} e il $PM_{2.5}$.

Periodo di riferimento per confronto

I dati orari sono stati valutati tal quali e aggregati in varie forme (medie mensili, medie giomaliere, giorno tipo). Individuati tre periodi nel 2020 (1 gennaio – 24 febbraio; 25 febbraio – 11 marzo; 11 marzo – 31 marzo), sono state confrontate le serie temporali e confrontati alcuni indicatori statistici calcolati per ciascun periodo.

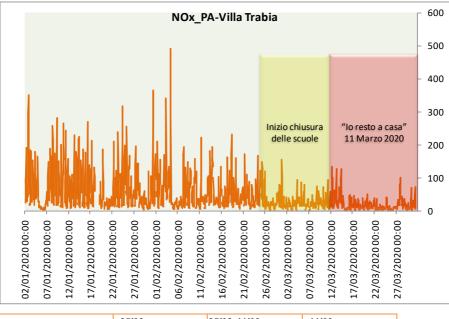
Eventuali provvedimenti aggiuntivi

Nella relazione di ARPA SICILIA non sono riportate informazioni circa provvedimenti aggiuntivi su scala regionale o locale. Si evidenzia comunque che già a partire dal 25 Febbraio, molte scuole erano state chiuse sul territorio siciliano per disinfezione straordinaria dei locali, pur se in modo non sistematico né temporalmente né spazialmente. La chiusura delle scuole di ogni ordine e grado è avvenuta in tutta la Sicilia a partire dal 5 Marzo. Gli autori evidenziano quindi due momenti: quello compreso tra il 25 Febbraio e l'11 Marzo in cui si è avuta una significativa riduzione dei flussi di traffico rispetto al normale e quello successivo all'11 marzo in cui i flussi di traffico sono stati ridotti drasticamente.

Metodi

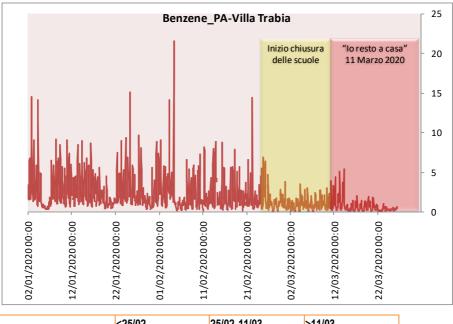
Per interpretare qualitativamente i risultati sono stati utilizzati i dati raccolti dall'ANAS (Osservatorio nazionale del Traffico) in particolare l'Indice di mobilità rilevata. Inoltre sono stati analizzati i dati dell'inventario delle emissioni della Regione Siciliana del 2012 disaggregati

per ciascun inquinante in 11 macrosettori e disponibili a livello comunale per Catania e Palermo nonché per la zona industriale.


Sono stati considerati i dati delle stazioni di monitoraggio ubicate in 4 delle 5 zone in cui è suddiviso il territorio regionale ai fini della valutazione della qualità dell'aria ai sensi del D.Lgs 155/2010: agglomerati di Palermo e Catania, Aree Industriali e zona Altro (stabiliti nella Zonizzazione del territorio regionale).

Principali risultati

A seguito delle misure di contenimento è stata registrata la riduzione di circa il 50% dell'indice di mobilità. Per gli inquinanti per i quali la fonte prevalente è il traffico veicolare (ossidi di azoto e benzene) si osserva dalle serie temporali una significativa riduzione rispetto al periodo pre-lockdown, più marcata nel secondo periodo, a partire dall'11 marzo.


Le riduzioni delle concentrazioni degli inquinanti sono coerenti con la riduzione dell'indice di mobilità e con l'inventario delle emissioni, dove si evince la rilevanza della sorgente traffico per questi inquinanti in particolare negli agglomerati urbani di Catania e Palermo.

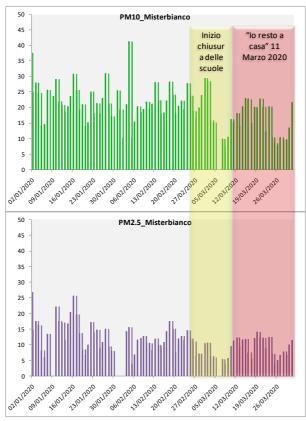
In particolare per gli ossidi di azoto le stazioni di fondo urbano negli agglomerati di Palermo e Catania registrano una riduzione superiore al 60% nella concentrazione oraria rilevata L'entità delle variazioni delle concentrazioni di PM₁₀ e PM_{2,5} è minore rispetto a quanto osservato per gli ossidi di azoto e per il benzene. In alcuni casi nel periodo del lockdown "stretto" (dall'11 marzo) la concentrazione media di particolato risulta superiore rispetto a quella del "primo" lockdown (25 febbraio - 11 marzo), in particolare per la frazione PM_{2,5}. Gli autori evidenziano tra le possibili cause il fatto che, in dipendenza delle possibili condizioni di aerodispersione, la riduzione anche drastica di alcune sorgenti di polveri sottili non sempre conduce ad effetti coerenti sulle concentrazioni di particolato depositato al suolo.

	<25/02	25/02-11/03	>11/03
Concentrazione media, µg/m³	58	26	18
Variazione percentuale rispetto al pe	riodo precedente	-55%	-32%

Figura 15.20.1. Palermo, Villa Trabia. Fondo urbano. Andamento delle concentrazioni di ossidi di azoto (NO_x) e variazioni percentuali rispetto al periodo precedente.

	<25/02	25/02-11/03	>11/03
Concentrazione media, µg/m³	2,39	1,04	0,63
Variazione percentuale rispetto al pe	eriodo precedente	-56,5%	-39,4%

Figura 15.20.2. Palermo, Villa Trabia. Fondo urbano. Andamento delle concentrazioni di benzene e variazioni percentuali rispetto al periodo precedente.


Tabelle 15.20.1. NOx, benzene, PM₁₀ e PM_{2.5}, Concentrazione media prima e durante il lockdown e variazione percentuale rispetto al periodo precedente in alcune zone industriali e agglomerati della Sicilia.

			33		Aree Industriali- Partinico		Aree Industriali- Priolo	
NOx	<11/03	>11/03	<11/03	>11/03	<11/03	>11/03	<11/03	>11/03
Concentrazione media, µg/m³	50.36	17.72	37.36	12.73	78.83	44.22	20.8	8.87
Variazione percentuale rispetto al periodo precedente)	-64.80%		-66%		-44%		-57%

	Agglomer Palermo		Agglomer Catania		Aree Indu Partinico		Aree Indu Milazzo		Aree Indu Augusta	striali-
Benzene	<11/03	>11/03	<11/03	>11/03	<11/03	>11/03	<11/03	>11/03	<11/04	>11/04
Concentrazione media, µg/m³	2.07	0.63	nd	nd	2.16	1.15	0.67	0.43	1.17	0.81
Variazione percentuale rispetto al periodo precedente		-69.80%		nd		-46.80%		-36.2%		-30%

	Agglomerato Catani	a	Zona Aree Industriali (valori medi)		
PM ₁₀	<11/03	>11/03	<11/03	>11/03	
Concentrazione media, µg/m³	20.77	15.91	23.19	18.43	
Variazione percentuale rispetto al periodo precedente		-23.40%		-20.52%	

	Agglomerato Catani	a	Zona Aree Industriali (valori medi)		
PM _{2,5}	<11/03	>11/03	<11/03	>11/03	
Concentrazione media, µg/m³	11.67	9.32	11.79	10.24	
Variazione percentuale rispetto al periodo precedente		-20%		-13.09%	

PM ₁₀	<25/02	<25/02 25/02		>11/03
Concentrazione media, µg/m³	21.54		17.91	15.91
Variazione percentuale rispetto al per	-16.86%	-11.15%		
variazione percentuale rispetto ai per	noud precedente		-10.00 /0	-11.13/0
variazione percentuale rispetto ai per	nodo precedente		-10.00 /0	-11.1370
	nodo precedente		<11/03	>11/03
PM ₁₀ Concentrazione media, μg/m ³	nodo precedente	l	1	111

PM _{2,5}	<25/02	25/02-1	1/03	>11/03
Concentrazione media, µg/m³	icentrazione media, µg/m³ 12.76		7.92	9.30
Variazione percentuale rispetto al period	-37.96%	17.53%		
PM _{2,5}			<11/03	>11/03
Concentrazione media, µg/m³			11.67	9.32

Concentrazione media, µg/m³

Variazione percentuale rispetto al periodo precedente -20%

Figura 15.20.3. Agglomerato di Catania. Misterbianco. Valori medi giornalieri di PM10 e PM2,5 e variazioni percentuali rispetto ai periodi precedenti.

Peculiarità regionali

Nelle stazioni di fondo urbano delle Aree Industriali si rileva una riduzione tra il 44% e il 57% delle concentrazioni di NO₂, che sembra essere superiore all'atteso, tenuto conto dei dati dell'inventario delle emissioni. È possibile che in questo caso sulle riduzioni osservate possa aver contribuito anche la riduzione dell'attività industriale, che pur non essendo la principale sorgente di ossidi di azoto, contribuisce nella zona delle Aree industriali per circa il 40% al carico emissivo complessivo.

Per quanto riguarda il benzene si rilevano percentuali di riduzioni analoghe agli ossidi di azoto, sebbene, in particolare presso la stazione Augusta – Marcellino gli andamenti orari evidenzino la presenza di picchi anche nel periodo in cui sono state adottate le misure più restrittive, verosimilmente a causa delle ricadute degli impianti presenti nell'area ad alto rischio di crisi ambientale (AERCA) di Siracusa.

Per approfondire

Anna Abita, Riccardo Antero, Lucia Basiricò, Giuseppe Madonia, Nicolò Tirone

Analisi preliminare sulla qualità dell'aria nella Regione Sicilia durante l'emergenza epidemiologia cada COVID-19 – Gennaio-Marzo 2020

https://www.arpa.sicilia.it/download/analisi-preliminare-sulla-qualita-dellaria-nella-regione-sicilia-durante-lemergenza-epidemiologica-da-covid-19/

15.21 SARDEGNA

Periodo dell'indagine

Sono stati analizzati i dati delle stazioni da gennaio fino a maggio 2020.

Inquinanti considerati

Sono stati considerati il biossido di azoto (NO_2) e le polveri fini (PM_{10}).

Periodo di riferimento per confronto

Il confronto è stato fatto con i dati dell'anno precedente.

Eventuali provvedimenti aggiuntivi

La Regione Sardegna non ha emesso provvedimenti aggiuntivi rispetto a quelli nazionali.

Metodi

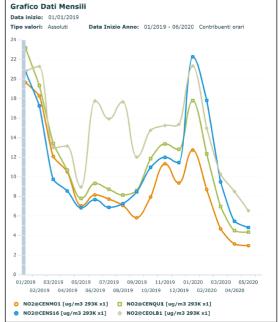
Sono stati utilizzati i dati della qualità dell'aria rilevati dalle stazioni di fondo e di traffico posizionate nell'agglomerato di Cagliari e nell'area urbana di Sassari e Olbia.

Principali risultati

Come conseguenza delle limitazioni imposte ai cittadini, si assiste a una modifica significativa delle concentrazioni degli inquinanti atmosferici nei maggiori centri urbani della Sardegna, con una evoluzione dalla fase 1 (mesi di marzo e aprile) alla fase 2 (mese di maggio).

Si deve tenere conto necessariamente che da marzo le medie di diversi inquinanti, in particolare NO₂ e PM₁₀, subiscono una riduzione importante nel passaggio dal periodo invernale a quello primaverile, ma che è stata nel 2020 comunque ulteriore rispetto all'anno precedente.

Biossido di azoto (NO2)


È evidente una importante riduzione delle concentrazioni di NO₂, inquinante riconducibile principalmente alle emissioni da traffico, misurato dalle stazioni di traffico di Cagliari, Sassari e Olbia, prese in considerazione non solo per l'impatto significativo delle emissioni da traffico, ma anche per l'apporto derivante dai riscaldamenti, porti, aeroporti e ferrovie.

Naturalmente le stazioni di fondo evidenziano una riduzione minore, dal momento che questo inquinante è meno significativo in questo contesto. Infatti le stazioni di traffico hanno subito mediamente una riduzione delle concentrazioni, rispetto al corrispondente mese del 2019, pari al 42% di marzo fino al 57% di aprile. A maggio si assiste ad una minore riduzione, pari al 36% delle concentrazioni di NO₂ delle stazioni di traffico, come conseguenza delle parziali riaperture permesse nella fase 2.

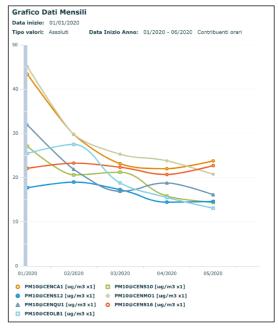
Nelle stazioni di fondo le percentuali di riduzione dell'inquinamento rispetto ai corrispondenti dati del 2019 sono significative ma più contenute, variando dal 33% di marzo, al 50% di aprile e al 39% di maggio.

L'analisi delle concentrazioni conferma a maggio dati in leggero aumento solo nelle stazioni di traffico (Figura 15.21.1).

Stazioni di traffico di Cagliari, Sassari e Olbia Dati da Gennaio 2019 a Maggio 2020 Stazioni di fondo di Cagliari, Sassari e Olbia Dati da Gennaio 2019 a Maggio 2020

Figura 15.21.1. Andamenti delle concentrazioni di NO2 nelle stazioni di traffico e nelle stazioni di fondo urbano di Cagliari, Sassari ed Olbia


Materiale particolato (PM10)


In relazione al PM10, la tendenza alla riduzione dei valori è meno marcata rispetto al 2019, ma occorre evidenziare che le limitazioni recenti hanno influito meno sull'utilizzo degli impianti di riscaldamento, principale fonte emissiva di questo inquinante. In questo caso l'analisi dei dati per tipologia di stazione non evidenzia correlazioni significative e appare svincolato dai flussi di traffico.

A marzo si evidenzia comunque una riduzione delle concentrazioni di tutte le stazioni rispetto al corrispondente mese del 2019 pari al 19%. Ad aprile, in

continuità con la fase 1, i valori di PM10 non mostrano variazioni rispetto al mese precedente con una riduzione rispetto al 2019 del 15%. Infine il dato di tendenza viene ribaltato a maggio con concentrazioni simili 2019, leggermente in rialzo del 10%.

L'analisi delle concentrazioni da marzo a maggio 2020 evidenzia dati stabili per tutte le stazioni, senza improvvise variazioni tra fase 1 e fase 2 ((Figura 15.21.2).

Stazioni di traffico e fondo di Cagliari, Sassari e Olbia Dati da Gennaio 2019 a Maggio 2020 Stazioni di traffico e fondo di Cagliari, Sassari e Olbia Dati da Gennaio 2020 a Maggio 2020

Figura 15.21.2. Andamenti delle concentrazioni di PM₁₀ nelle stazioni di traffico e nelle stazioni di fondo urbano di Cagliari, Sassari ed Olbia

15.22 CONCLUSIONI

Sulla base delle prime osservazioni è emerso un primo dato macroscopico ed esteso all'intera penisola: la riduzione delle concentrazioni degli ossidi di azoto (monossido, che è la forma prevalente emessa direttamente) e biossido, in parte emesso direttamente e in parte formato in atmosfera) del monossido di carbonio, e del benzene.

Tale riduzione, attestata per il biossido di azoto mediamente intorno al 40%, andava, nel periodo osservato, da pochi punti percentuali a valori superiori al 70% in alcuni siti localizzati in prossimità di importanti arterie stradali.

Durante il periodo di lockdown, si sono osservate riduzioni molto significative dei flussi di traffico che hanno raggiunto, su base nazionale, a partire dalla metà del mese di marzo circa il 70% per i veicoli leggeri e il 38% per i pesanti, per poi tornare progressivamente ai livelli precedenti nella prima metà di giugno.

Per quanto riguarda i trasporti su strada i consumi di benzina, gasolio, e GPL sono diminuiti a marzo rispettivamente del 52%, 41% e 53% e ad aprile del 73%, 60% e 73% rispetto allo stesso mese dell'anno precedente. Poiché il trasporto su strada è la principale fonte antropica di ossidi di azoto (su base nazionale oltre il 50% delle emissioni è attribuibile al traffico veicolare), tale riduzione spiega in larga parte quanto osservato in merito alle concentrazioni di biossido di azoto. Va comunque ricordato che anche di fronte a una riduzione così ampia, il confronto con periodi analoghi di anni precedenti rimane affetto da ampia incertezza dovuta alla variabilità delle condizioni meteorologiche che si possono verificare tra un anno e l'altro.

Meno chiara è la situazione relativa al materiale particolato (PM₁₀, PM_{2,5}). Occorre ricordare in questo caso che si tratta di una miscela complessa di particelle solide e liquide disperse in atmosfera.

Le emissioni allo scarico dei veicoli rilasciano direttamente in atmosfera particelle carboniose come

residuo della combustione. Queste costituiscono una delle macrocomponenti del materiale particolato, il carbonio elementare. Alcune sostanze gassose (gli ossidi di azoto, gli ossidi di zolfo - oggi in quantità praticamente trascurabile - i composti organici volatili e l'ammoniaca) emesse anch'esse allo scarico contribuiscono alle concentrazioni osservate di PM₁₀ e PM_{2.5} come precursori del cosiddetto particolato secondario (da esse si formano in atmosfera, attraverso una serie di reazioni chimiche, particelle che costituiscono altre tre macrocomponenti del materiale particolato: il carbonio organico, i nitrati e i solfati d'ammonio). Qualsiasi altro tipo di combustione che abbia origine dall'uso di combustibili fossili rilascia in atmosfera le stesse sostanze che vanno a formare le medesime macrocomponenti.

Anche la combustione della biomassa legnosa è rilevante in particolare per le macrocomponenti di carbonio elementare e carbonio organico con una spiccata variabilità stagionale e regionale (in relazione all'uso più o meno intensivo). Le attività agricole e zootecniche possono anch'esse contribuire alle macrocomponenti citate, qualora vengano svolte attività di abbruciamento di materiale vegetale derivante dalle normali attività agricole e selvicolturali (oggi vietate nel periodo invernale nelle zone, come il bacino padano, a maggior rischio di superamento dei valori limite di legge per il PM₁₀), ma soprattutto sono la fonte assolutamente prevalente di emissioni di ammoniaca. Vanno poi ricordate altre tre macrocomponenti del particolato, che hanno diversa rilevanza in funzione della stagione e della zona geografica: due sono di origine naturale, l'aerosol marino e le particelle che originano da trasporto a lunga distanza di sabbie desertiche, la terza, componente terrigena o di risollevamento dal suolo, in parte ha origine naturale in parte può riportare in dispersione particelle originariamente emesse dai veicoli per fenomeni di attrito, o prodotte da attività di costruzione, cantieristiche o rilasciate da attività di estrazione.

Fatte queste premesse è evidente che occorre valutare oltre alla riduzione delle emissioni da traffico già accennata, anche le sorgenti che possono contribuire alle concentrazioni di particolato, diverse dal traffico veicolare.

Si può osservare che nei mesi di marzo e aprile è stata registrata, rispetto allo stesso mese del 2019, una riduzione della domanda di energia elettrica rispettivamente pari al 10,2% e 17,2% e di conseguenza una riduzione della produzione di energia termoelettrica pari al 16% e 21,4% anche a fronte di un incremento della produzione da fonti rinnovabili in particolare idrica e fotovoltaica.

La produzione industriale è diminuita a marzo del 28.2 % in confronto a marzo 2019.

Per quanto riguarda il riscaldamento civile non si sono osservate particolari riduzioni, anzi da alcune stime preliminari in alcune zone, anche a causa di un mese di marzo mediamente più freddo del solito, sembra possibile che ci sia stato anche in alcune zone un moderato aumento delle emissioni rispetto alla media del periodo (ARPA VENETO).

A livello nazionale infatti, sulla base dei dati riportati da SNAM, nel mese di marzo si è registrato un incremento del 4,6% dei consumi di gas nella rete di distribuzione urbana rispetto allo stesso mese dell'anno precedente registrando però nei mesi di aprile e maggio una riduzione in media circa del 30%. Inoltre, la situazione di lockdown non ha influito in modo significativo sulle emissioni di ammoniaca prodotte dalle attività agricole e zootecniche.

Infine, occorre ricordare c'è stato un episodio piuttosto importante di trasporto di sabbie dal Caucaso verso la fine del mese di marzo, che ha determinato alcuni giorni di livelli di PM_{10} particolarmente elevati rispetto alle medie del periodo.

L'insieme di queste considerazioni può costituire una preliminare motivazione alla minore, e non significativa in alcuni casi, riduzione dei livelli di PM₁₀ e PM_{2,5} registrata nel periodo di lockdown.

È evidente dunque che la semplice osservazione dei livelli di PM_{10} e $PM_{2,5}$ non può essere messa in relazione in modo semplice con la riduzione delle sorgenti, ma occorre calcolare delle stime credibili della riduzione delle emissioni dirette e di quelle dei precursori durante il periodo, ed utilizzare modelli numerici e metodi statistici per pervenire a stime quantitative della eventuale riduzione della concentrazione (e della sua variabilità spaziale e temporale) attribuibile alle misure intraprese durante il periodo in osservazione.

Certamente uno studio sistematico, che analizzi l'intero periodo, con l'uso di tecniche modellistiche e statistiche di normalizzazione meteorologica, permetterà di "isolare" e quantificare l'effetto del lockdown anche per il materiale particolato e di fornire più in generale stime sufficientemente accurate.

BIBLIOGRAFIA

Aalto P., Hämeri K., Paatero P., Kulmala M., Bellander T., Berglind N., Bouso L., Castaño-Vinyals G., Cattani G., Cyrys J., Von Klot S., Lanki T., Marconi A., Nyberg F., Pekkanen J., Peters A., Sjöval B., Sunyer J., Zetzsche K., Forastiere F., 2005: Aerosol number concentration measurements in five European cities using TSI-3022 condensation particle counter over three year period during HEAPSS (Health Effects of Air Pollution on Susceptible Subpopulations). J. Air Waste Manage Assoc.; 55(8), 1064-76.

Alexander L. V., Zhang X., Peterson T. C., Caesar J., Gleason B., Klein Tank A.M.G., Haylock M., Collins D., Trewin B., Rahimzadeh F., Tagipour A., Rupa Kumar K., Revadekar J., Griffiths G., Vincent L., Stephenson D.B., Burn J., Aguilar E., Brunet M., Taylor M., New M., Zhai P., Rusticucci M. Vazquez-Aguirre J.L., 2006, Global observed changes in daily climate extremes of temperature and precipitation, J. Geophys. Res., 111, D05109. doi:10.1029/2005JD006290.

Anttila P, Tuovinen JP. Trends of primary and secondary pollutant concentrations in Finland in 1994-2007. *Atmospheric Environment*, 2010, (44), 30-41.

Avnery S, Denise L, Mauzerall DL, Liu J, Horowitz LW. Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution. *Atmospheric Environment 2011*, (45), 2297-2309.

ARPAE, 2018: La qualità dell'aria in Emilia Romagna. Edizione 2018.

ARPA PUGLIA 2018: Relazione annuale sulla Qualità dell'Aria in Puglia Anno 2018.

ARPAT, 2018: Analisi del trend degli inquinanti (PM₁₀, PM_{2,5}, NO₂, ozono) (2003-2018): in Relazione annuale sullo stato della qualità dell'aria nella regione Toscana - Anno 2018.

Belleudi V., Faustini A., Stafoggia M., Cattani G., Marconi A., Perucci C.A., Forastiere F., 2010: Impact of Fine and Ultrafine Particles on Emergency Hospital Admissions for Cardiac and Respiratory Diseases. Epidemiology 21 (3)

Canepari S., Perrino, C., Olivieri, F., Astolfi, M. L., 2008: Characterisation of the traffic sources of PM through size-segregated sampling, sequential leaching and ICP analysis. Atmospheric Environment 42, 8161-8175.

Carslaw, D.C. and K. Ropkins, "Openair — an R package for air quality data analysis". *Environmental Modelling & Software.*, 2012, (27-28), 52-61.

de Leeuw, F., 2012, AirBase: a valuable tool in air quality assessments at a European and local level, ETC/ACM Technical Paper 2012/4.

Desiato F., Fioravanti G., Piervitali E., 2013, Variazioni e tendenze degli estremi di temperatura in Italia, Rapporto ISPRA / Stato dell'Ambiente 37/2013.

Dlugokencky, E., J., and Bruhwiler, L. (2009). "Observational constraints on recent increases in the atmospheric CH4 burden", Geophys. Res. Lett., 2009, 36 (18), 1-5.

- D. Lgs n. 351, 4 agosto 1999. Attuazione della Direttiva 96/62/CE in materia di valutazione e di gestione della qualità dell'aria ambiente. GU n. 241, 13 ottobre 1999.
- D. Lgs 21 maggio 2004, n. 183. Attuazione della direttiva 2002/3/CE relativa all'ozono nell'aria. SO n. 194 alla Gazzetta Ufficiale n.171 del 23 luglio 2004.
- D. Lgs 3 agosto 2007, n. 152. Attuazione della direttiva 2004/107/CE concernente l'arsenico, il cadmio, il mercurio, il nichel e gli idrocarburi policiclici aromatici nell'aria ambiente. SO n. 194 alla Gazzetta Ufficiale n. 213, del 13 settembre 2007.
- D. Lgs 13 agosto 2010, n. 155. Attuazione della direttiva 2008/50/CE relative alla qualità dell'aria ambiente e per un'aria più pulita in Europa. SO n.217 alla Gazzetta Ufficiale n. 216, del 15 settembre 2010.
- D.M. 20 maggio 1991. Criteri per la raccolta dei dati inerenti la qualità dell'aria. GU n. 126, 31 giugno 1991.
- D.M. 25 novembre 1994. Aggiornamento delle norme tecniche in materia di limiti di concentrazione e di livelli di attenzione e di allarme per gli inquinamenti atmosferici nelle aree urbane e disposizioni per la misura di alcuni inquinanti di cui al decreto ministeriale 15 aprile 1994. S.O. n. 159 alla G.U. n.290 del 13-12-1994.
- D.M. 2 aprile 2002, n. 60. Recepimento della direttiva 1999/30/CE del Consiglio del 22 aprile 1999 concernente i valori limite di qualità dell'aria ambiente per il biossido di zolfo, il biossido di azoto, gli ossidi di azoto, le particelle e il piombo e della direttiva 2000/69/CE relativa ai valori limite di qualità dell'aria ambiente per il benzene ed il monossido di carbonio. Gazzetta Ufficiale Suppl. n. 77 alla G.U. n. 87, 13 aprile 2002.
- D.M. 13 marzo 2013. Individuazione stazioni di calcolo esposizione media PM_{2,5}. G.U. 27 marzo 2013 n. 73.
- D.P.C.M. 28 marzo 1983. Decreto del Presidente del Consiglio dei Ministri del 28 marzo 1983. Limiti massimi di accettabilità delle concentrazioni e di esposizione relativi ad inquinanti dell'aria nell'ambiente esterno. GU (suppl. ord) n. 145, 28 maggio 1983.
- D.P.R. 24 maggio 1988, n. 203. Attuazione delle direttive CEE numeri 80/779, 82/884, 84/360 e 85/203 concernenti norme in materia di qualità dell'aria, relativamente a specifici agenti inquinanti, e di inquinamento prodotto dagli impianti industriali, ai sensi dell'art. 15 della L. 16 aprile 1987, n. 183. G.U. (S.O. n. 140), 16 giugno 1988.
- EEA, 2012: "Air quality in Europe 2012 report", EEA report 4/2012.
- EEA, 2019: "Air quality in Europe 2019 report", EEA report 10/2019.
- EC, 1997a: Position Paper on air quality: Nitrogen dioxide. European Commission, directorate general XI.
- EC, 1997b: SO2 position paper. European Commission, directorate general XI.
- EC, 1997c: Position paper on lead. European Commission, directorate general XI.
- EC, 1998: Benzene position paper. European Commission, directorate general XI.
- EC, 1999a: Ozone position paper. Luxembourg, office for official publications of the European Communities.
- EC, 1999b: Ambient air pollution: carbon monoxide. European Commission, directorate general XI.
- EC, 2001: Ambient air pollution by As, Cd and Ni compounds. Position Paper. Luxembourg: Office for Official Publications of the European Communities; 2001.

EC, 2004: CAFE Working Group on Particulate Matter. Second Position Paper on Particulate Matter. April 2004. http://europa.eu.int/comm/environment/air/cafe/pdf/working_groups/2nd_position_paper_pm.pdf.

EC, 2005: Biomass Action Plan. European Commission. COM(2005) 628 final.

EC, 2013: Comunicazione della commissione al parlamento europeo, al consiglio, al comitato economico e sociale europeo e al comitato delle regioni: un programma "aria pulita" per l'Europa. COM(2013) 918 final. (2013). https://ec.europa.eu/transparency/regdoc/rep/1/2013/IT/1-2013-918-ITF1-1.Pdf

Eskridge, R.E. "Separating different scales of motion in time series of meteorological variables", *Bulletin of American Meteorological Society*, 1997, (78) 1473–1483.

Fioravanti G., Piervitali E. e Desiato F., 2015, Recent changes of temperature extremes over Italy: an index-based analysis, Theor. Appl. Climatol., Vol. 119, No 1-2 2015, doi:10.1007/s00704-014-1362-1.

Hess A., Hari Iyera, MalmbGardner W., "Linear trend analysis: a comparison of methods 2000. Atmospheric Environment 35 (2001) 5211–5222.

Hirsch, R.M., and Slack, L.R. "A nonparametric trend test for seasonal data with serial dependence". *Water Resources Research*, 1984, (20), 727-732.

Hoogerbrugge R., Denier van der Gon HAC, Van Zanten MC, Matthijesen J.. *Trends in particulate matter*, Bihlthoven, Netherlands research program on particulate matter, report 500099014 (2010).

IARC, 2012: A review of human carcinogens. Part F: Chemical agents and related occupations / IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2009: Lyon, France) IARC mono- graphs on the evaluation of carcinogenic risks to humans; v. 100F.

IARC, 2016: Outdoor air pollution. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, IARC monographs on the evaluation of carcinogenic risks to humans; volume 109, Lyon, France, 2016.

IARC, 2018: Benzene. IARC monographs on the evaluation of carcinogenic risks to humans; volume 120, Lyon, France, 2018.

IEA, 2016: Energy and air pollution. International Energy Agency (2016). https://www.iea.org/publications/freepublications/publication/WorldEnergyOutlookSpecialReport2016EnergyandAirPollution.pdf

ISPRA, 2014: Analisi dei trend dei principali inquinanti atmosferici in Italia (2003 – 2012) Rapporto ISPRA 203/2014

ISPRA 2018: Analisi dei trend dei principali inquinanti atmosferici in Italia (2008 – 2017). Rapporto ISPRA 203/2018

ISPRA, 2020a: Italian Emission Inventory 1990-2018. Informative Inventory Report 2020. ISPRA Serie Rapporti 319/2020

ISPRA, 2020b: Gli indicatori del clima in Italia nel 2019. Rapporto ISPRA, Stato dell'Ambiente 94/2020

Klein Tank A. M. G. e Können G. P., 2003, Trends in Indices of Daily Temperature and Precipitation Extremes in Europe, 1946–99, J. Climate, 16, 3665-3680. doi:10.1175/1520-0442(2003)016 <3665:TIIODT>2.0.CO;2.

Kendall, M. "A New Measure of Rank Correlation", Biometrika, 1938, 30 (1–2): 81–89.

L. 13 luglio 1966, n. 615. Provvedimenti contro l'inquinamento atmosferico. Gazzetta ufficiale Serie Generale n.201 del 13-08-1966.

Luomanmaki K., and Coburn R.F. Effects of metabolism and distribution of carbon monoxide on blood and body stores. Am J Physiol 1969:217:354-363.

Mann, H.B. "Non-parametric test against trend". Econometrica, 1945, (13) 245-259.

Martuzzi, M., Mitis, F., Iavaone, I., Serinelli, M. "Impatto sanitario di PM10 e ozono in 13 città Italiane". APAT, 2006.

Masiol M., Squizzato S, Formenton G., Harrison R.M., Agostinelli C., 2017: Air quality across a European hotspot: Spatial gradients, seasonality, diurnal cycles and trends in the Veneto region, NE Italy. Science of the Total Environment, 576, 210–224.

McLeod, A.I. "Trend analysis methodology for water quality time series". *Environmetrics*, 1991, (2) 169–200.

Migon C, Journel, B, Nicolas E. Measurement of trace metal wet, dry and total atmospheric fluxes over the Ligurian Sea. Atmos Environ 1997;31:889-896.

Mudd JB, Banerjee SK, Dooley MM, Knight KL (1984) Pollutants and plant cells: effects on membranes. In: Koziol MJ, Whatley FR (eds) Gaseous air pollutants and plant metabolism. Butterworths, London, pp 105–116

Nriagu, JO (Ed.). Changing Metals Cycles and Human Health. Berlin: Life Science Research Reports, 28; 1984.

OMS, 2000: Air quality guidelines for Europe. Second Edition, Copenhagen, World Health Organisation. Regional Office for Europe Regional Publications, European Series, n. 91.

OMS, 2006: Air Quality Guidelines. Particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global Update 2005. Copenhagen, OMS Regional Office for Europe Regional Publications. http://www.OMS.int/phe/health_topics/outdoorair/outdoorair/agg/en/.

OMS, 2016: Ambient air pollution: A global assessment of exposure and burden of disease. World Health Organization (2016). http://www.who.int/phe/publications/air-pollution-global-assessment/en/

Pastorello C., Caserini S., Galante S., Dilara P., Galletti F. Importance of activity data for improving the residential wood combustion emission inventory at regional level. Atmospheric Environment 45 (2011) 2869-2876. Peterson T.C., Folland C., Gruza G., Hogg W., Mokssit A. e Plummer N., 2001, Report on the activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998-2001. World Meteorological Organization, Rep. WCDMP-47, WMO-TD 1071, Geneva, Switzerland, 143 pp.

R Development Core Team (2008). "R: A language and environment for statistical computing". R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.Rproject.Org

Rao, S.T., Zurbenko, I.G. "Detecting and tracking changes in ozone air quality". *Journal of Air and Waste Management Association*, 1994, (44) 1089–1092.

Toreti A. e Desiato F., 2008, Changes in temperature extremes over Italy in the last 44 years, International J. of Climatology, 28, 733-745.doi:10.1002/joc.1576.

UE, 1996: Direttiva 96/62/CE del Consiglio del 27 settembre 1996 in materia di valutazione e di gestione della qualità dell'aria ambiente. Gazzetta ufficiale CE L 296, 21 novembre 1996.

UE, 1998: Direttiva 98/70/CE del Consiglio del 13 ottobre 1998 relativa alla qualità della benzina e del combustibile diesel e recante modificazione della Direttiva 93/12/CEE del Consiglio. Gazzetta ufficiale CE L 350, 28 dicembre 1998.

UE, 1999: Direttiva 1999/30/CE del Consiglio del 22 aprile 1999 concernente i valori limite di qualità dell'aria ambiente per il biossido di zolfo, il biossido di azoto, gli ossidi di azoto, le particelle e il piombo. Gazzetta Ufficiale CE L 163, 29 giugno 1999.

UE, 2000: Direttiva 16 novembre 2000, n. 2000/69/CE, concernente i valori limite per il benzene ed il monossido di carbonio nell'aria ambiente. Gazzetta Ufficiale CE L 312, 13 dicembre 2000.

UE, 2001: Direttiva 2001/81/CE del Parlamento Europeo e del Consiglio del 23 ottobre 2001 relativa ai limiti nazionali di emissione di alcuni inquinanti atmosferici.

UE, 2002: Direttiva 12 febbraio 2002, n. 2002/3/CE, Direttiva del Parlamento europeo e del Consiglio relativa all'ozono nell'aria. Gazzetta Ufficiale CE L 67, 9 marzo 2002.

UE, 2004a: Decisione della Commissione del 29 aprile 2004 relativa al questionario annuale da redigere ai sensi delle direttive 96/62/CE e 1999/30/CE del Consiglio e delle direttive 2000/69/CE e 2002/3/CE del Parlamento europeo e del Consiglio.

UE, 2004b: Direttiva 15 dicembre 2004, n. 2004/107/CE, Direttiva del Parlamento europeo e del Consiglio relativa ad arsenico, cadmio, mercurio, nichel e idrocarburi policiclici aromatici nell'aria. Gazzetta Ufficiale CE L 23, 26 gennaio 2005.

UE, 2008: Direttiva 2008/50/CE del Parlamento Europeo e del Consiglio del 21 maggio 2008 relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa. Gazzetta Ufficiale CE L 152, 11 giugno 2008.

UE, 2011: Decisione di esecuzione della Commissione del 12 dicembre 2011 recante disposizioni di attuazione delle direttive 2004/107/CE e 2008/50/CE del Parlamento europeo e del Consiglio per quanto riguarda lo scambio reciproco e la comunicazione di informazioni sulla qualità dell'aria ambiente.

Veron AJ, Church TM, Russel AR, Patterson CC, Erel Y. Response of lead cycling in the surface Sargasso Sea to changes in tropospheric input. J Geophys Res 1993; 98:18269-18276.

Wellburn A.R., Majernik O., Wellburn Florence A.M. Effects of SO2 and NO2 polluted air upon the ultrastructure of chloroplasts. Environmental Pollution (1970). 1972; 3(1):37-39.

Wellburn A.R., Wilson J., Aldridge P.H. Biochemical responses of plants to nitric oxide polluted atmospheres. Environmental Pollution Series A, Ecological and Biological 1980, 22(3):219-228. https://doi.org/10.1016/0143-1471(80)90016-1.

Weschler CJ. Ozone's impact on public health: contributions from indoor exposures to ozone and products of ozone-initiated chemistry. Environ Health Perspect 2006;114:649.653. 1489-1496.

