

FORMAT REPORT DI DIAGNOSI

Edificio esempio

Via, .. - CAP - CITTA'

Attività 1.2.1 - Realizzazione di un manuale per la corretta redazione della diagnosi energetica di edifici pubblici a partire delle esperienze già realizzate da ENEA

Nicolandrea Calabrese

Americo Carderi

Carmen Lavinia

Francesca Caffari

Elisa Passafaro

Laboratorio efficienza energetica negli Edifici e Sviluppo Urbano

Gennaio 2019

Modalità di compilazione del Report

Il seguente elaborato costituisce un modello per la redazione del Report di Diagnosi.

Non è da intendersi come uno schema rigido, ma potrà essere modificato in base alle esigenze di diagnosi e alla situazione specifica, nel rispetto della procedura descritta nelle linee guida.

Nei diversi capitoli sono presenti dei riquadri con le indicazioni sui contenuti minimi da trattare, nonché delle note che costituiscono una guida per operare e che non dovranno comparire nell'elaborato finale.

Si precisa, inoltre, che gli interventi descritti nel capitolo 6 sono solo alcuni degli interventi possibili. Nel caso si propongano interventi non presenti nel modello di report, dovranno essere descritti utilizzando a modello quelli presenti.

INDICE

<u>1.</u>	PREMESSA	<u> 7</u>
<u>2.</u>	PRESENTAZIONE GENERALE DEL SITO	8
<u>3.</u>	DESCRIZIONE DEL SISTEMA EDIFICIO-IMPIANTO	9
3.1.	Involucro	10
3.1.	1 PARETI VERTICALI ESTERNE	11
3.1.2	2 Copertura	12
3.1.3	3 SOLAI INFERIORI	13
3.1.4	4 SOLAI INTERMEDI	14
3.1.	5 SERRAMENTI	15
3.2.	SISTEMI DI CLIMATIZZAZIONE INVERNALE/ESTIVA E DI PRODUZIONE DI ACS	17
3.2.	1 IMPIANTO DI RISCALDAMENTO	17
3.2.2	2 IMPIANTO DI PRODUZIONE DI ACQUA CALDA SANITARIA	20
3.2.3	3 IMPIANTO DI VENTILAZIONE MECCANICA CONTROLLATA	21
3.2.4	4 IMPIANTO DI CLIMATIZZAZIONE ESTIVA	22
3.2.	5 SISTEMA DI TERMOREGOLAZIONE	23
3.2.6	SERVIZIO PER IL TRASPORTO DI PERSONE O COSE	24
3.3.	IMPIANTI ELETTRICI	25
3.3.	1 ILLUMINAZIONE	26
<u>4.</u>	ANALISI DEI CONSUMI ENERGETICI	27
4.1.	METANO	28

4.2.	ENERGIA ELETTRICA	30
4.3.	PRINCIPALI INDICATORI DI PRESTAZIONE ENERGETICA	32
4.4.	FABBISOGNO DI ENERGIA PRIMARIA ED EMISSIONI DI CO ₂	33
4.5.	VALUTAZIONE DEI COSTI PER L'APPROVVIGIONAMENTO ENERGETICO E PER LA GESTIONE	33
<u>5.</u> <u>S</u>	SIMULAZIONE SISTEMA EDIFICIO IMPIANTO	34
5.1.	RISULTATI SIMULAZIONE SISTEMA EDIFICIO IMPIANTO	35
5.2.	VALIDAZIONE DEL MODELLO	36
<u>6. II</u>	NTERVENTI DI RIQUALIFICAZIONE ENERGETICA	38
6.1.	INDIVIDUAZIONE DELLE POTENZIALI AREE D'INTERVENTO	38
6.2.	INTERVENTI SULL'INVOLUCRO	40
6.2.1	COIBENTAZIONE PARETI PERIMETRALI	40
6.2.2	COIBENTAZIONE COPERTURA	44
6.2.3	COIBENTAZIONE SOLAIO	48
6.2.4	SOSTITUZIONE INFISSI	52
6.3.	INTERVENTI SUGLI IMPIANTI MECCANICI	57
6.3.1	SOSTITUZIONE CALDAIA TRADIZIONALE CON CALDAIA A CONDENSAZIONE	57
6.3.2	INSTALLAZIONE VALVOLE TERMOSTATICHE SUI RADIATORI	59
6.3.3	SISTEMA DI BUILDING AUTOMATION AND CONTROL SYSTEM	60
6.4.	ÎNTERVENTI SUGLI IMPIANTI ELETTRICI	65
6.4.1	SOSTITUZIONE DELLE POMPE CON NUOVE AD ALTA EFFICIENZA AZIONATE DA INVERTER	65
6.4.2	SOSTITUZIONE DEI CORPI ILLUMINANTI SPAZI COMUNI CON LAMPADE LED	66
6.4.3	INSTALLAZIONE SENSORI DI PRESENZA NEI WC	68

6.5.	UTILIZZO DI FONTI RINNOVABILI	. 69
6.5.1	IMPIANTO FOTOVOLTAICO	. 69
6.5.2	SOLARE TERMICO	. 72
6.6.	SCENARI DI INTERVENTO E ANALISI COSTI BENEFICI	. 75
7. (CONCLUSIONI	. 80

(Documenti da allegare)

- Allegato 1: Piante dell'edificio con l'indicazione degli ambienti climatizzati
- Allegato 2: Abaco serramenti
- Allegato 3: Schema funzionale centrale termica
- Allegato 4: Calcoli simulazione numerica sistema edificio-impianto

1. PREMESSA

a) OBIETTIVI DELL'ANALISI ENERGETICA

L'obiettivo del presente studio è lo svolgimento di un'attività di analisi finalizzata a definire lo stato di fatto dell'edificio dal punto di vista energetico-prestazionale e all'individuazione di interventi di riqualificazione energetica da promuovere per incrementare l'efficienza energetica dello stesso, con particolare attenzione a quelli che risultano economicamente più convenienti.

Descrivere brevemente le fasi della diagnosi, specificando:

- Modalità di reperimento dati (sopralluoghi, documentazione)
- Servizi energetici analizzati
- Metodologia utilizzata per la determinazione della prestazione energetica dell'edificio

b) ARTICOLAZIONE DEL RAPPORTO DI ANALISI ENERGETICA

Indicare sinteticamente il contenuto dei capitoli della presente relazione:

- Presentazione generale del sito
- Descrizione del sistema edificio impianto
- Analisi dei consumi energetici
- Simulazione sistema edificio impianto
- Interventi di riqualificazione energetica e modalità di finanziamento degli interventi
- Conclusioni

2. PRESENTAZIONE GENERALE DEL SITO

Localizzazione dell'edificio nel contesto urbano e breve analisi storica.

Figura 1: Inquadramento sito oggetto di DE

DATI GEOGRAFICI	udm
Città	
Altitudine	m slm
Latitudine nord	· · · · · · · · · · · · · · · · · · ·
Longitudine est	··· ···

Tabella 1: Dati geografici edificio oggetto di DE

CLIMATIZZAZIONE INVERNALE	
Zona Climatica	
Temperatura esterna di progetto	°C
Gradi Giorno	GG
Durata convenzionale del periodo di riscaldamento:	

Tabella 2: Dati climatizzazione invernale edificio oggetto di DE

CLIMATIZZAZIONE ESTIVA	
Temperatura esterna bulbo asciutto	°C
Temperatura esterna bulbo umido	°C
Umidità relativa	%
Escursione termica giornaliera	°C

Tabella 3: Dati climatizzazione invernale edificio oggetto di DE

3. DESCRIZIONE DEL SISTEMA EDIFICIO-IMPIANTO

La caratterizzazione energetica del sistema edificio-impianto consiste nel ricostruire il comportamento energetico dell'involucro edilizio (opaco e trasparente) in relazione al contesto climatico in cui è inserito e con il quale interagisce, oltre a tener conto delle grandezze che influenzano i consumi specifici quali le condizioni di esercizio, gli affollamenti, i profili di utilizzo dell'edificio e degli impianti.

Il presente paragrafo riporta una descrizione approfondita del sistema "edificio-impianto", da cui partire per analizzarne il comportamento. Si precisa che il volume considerato per la valutazione delle prestazioni energetiche dell'edificio sarà unicamente quello riscaldato. Pertanto, le superfici confinanti con ambienti in cui non è presente il sistema di riscaldamento verranno considerate come disperdenti verso ambienti non climatizzati.

Nella tabella che segue si riportano le principali caratteristiche dimensionali dell'edificio oggetto di diagnosi:

	Superficie lorda	Superficie lorda	Superficie netta	Volume lordo
	totale m²	riscaldata m²	riscaldata m²	riscaldato m³
EDIFICIO				

Tabella 4: Dati caratteristici

3.1. Involucro

Di seguito si analizzano gli elementi edilizi disperdenti costituenti l'involucro dell'edificio analizzato.

Attraverso la documentazione resa disponibile dal committente, integrata dai dati reperiti direttamente dal personale tecnico nel corso dei sopralluoghi in sito, è stato definito, con la maggiore accuratezza possibile in relazione all'accessibilità dei luoghi e dei singoli componenti, lo stato di fatto delle strutture opache e trasparenti disperdenti, con la valutazione della trasmittanza termica degli elementi.

*Relativamente ai paragrafi da 3.1.1 a 3.1.5., compilare solo i paragrafi relativi agli elementi tecnici disperdenti riscontrati nel caso in esame e cancellare gli elementi tecnici non presenti.

Descrizione generale delle tipologie dei diversi elementi tecnici.

Figura 2: Vista edificio 1

Figura 3: Vista edificio 2

3.1.1 Pareti Verticali Esterne

Descrizione delle stratigrafie degli elementi tecnici ed eventuali risultati ottenuti mediante strumentazione tecnica. Indicazione delle caratteristiche termo-fisiche dei componenti analizzati.

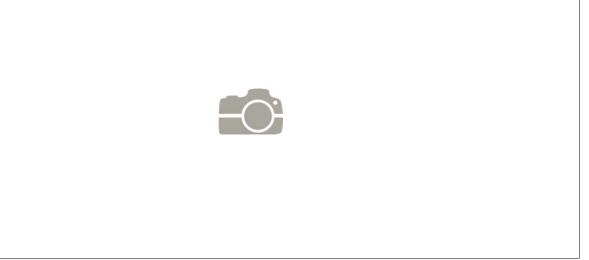


Figura 4: Pareti verticali

3.1.2 Copertura

Descrizione delle stratigrafie degli elementi tecnici ed eventuali risultati ottenuti mediante strumentazione tecnica. Indicazione delle caratteristiche termo-fisiche dei componenti analizzati.

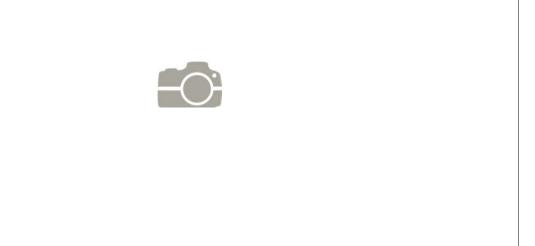


Figura 5: Copertura

3.1.3 Solai inferiori

Descrizione delle stratigrafie degli elementi tecnici ed eventuali risultati ottenuti mediante strumentazione tecnica. Indicazione delle caratteristiche termo-fisiche dei componenti analizzati.

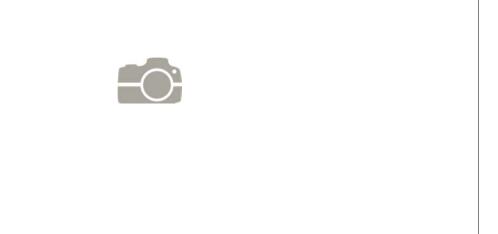


Figura 6: Solaio inferiore

3.1.4 Solai intermedi

Descrizione delle stratigrafie degli elementi tecnici ed eventuali risultati ottenuti mediante strumentazione tecnica. Indicazione delle caratteristiche termo-fisiche dei componenti analizzati.

Figura 7: Solaio intermedio

3.1.5 Serramenti

Descrizione delle tipologie di serramenti presenti (distinguendo per dimensioni, tipo di telaio e tipo di vetro) e degli eventuali sistemi oscuranti. Indicazione delle caratteristiche termo-fisiche dei componenti analizzati.

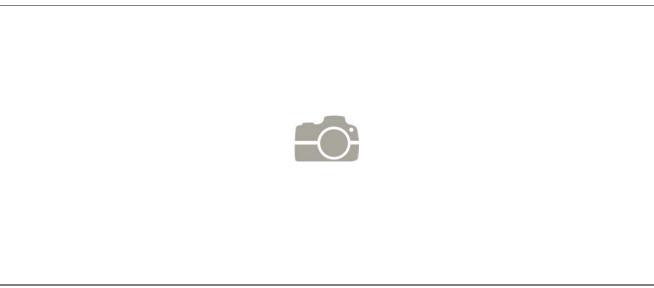


Figura 8: Serramenti

I risultati dei rilievi sono riassunti nella tabella sottostante.

Tipologia infisso	Sup. modulo	Moduli	Sup. totale	Tipologia	Componente vetrata modulo	
1111330	m²	n°	m ²	%	m²	%
INFISSO 1						
INFISSO 2						
INFISSO 3						
INFISSO						
TOTALE						

Tabella 5: Superfici serramenti

3.2. Sistemi di climatizzazione invernale/estiva e di produzione di acs

Descrizione dei servizi energetici presenti, dei relativi impianti e individuazione dei locali
serviti da ciascun impianto.

3.2.1 Impianto di riscaldamento

Descrizione dell'impianto di riscaldamento (aree servite, generatori, circuiti, pompe, eventuali accumuli, terminali...).

Centrale termica	Localizzazione	Generatori presenti	Utenze servite

Tabella 6: Elenco delle centrali e sottocentrali presenti nel sito

Nelle seguenti figure si riportano gli schemi funzionali della centrale termica e delle sottocentrali:

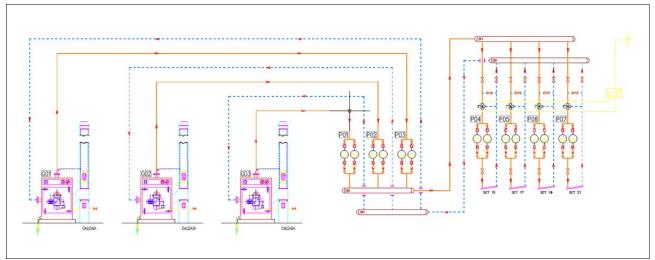


Figura 9: Esempio schema funzionale centrale termica riscaldamento

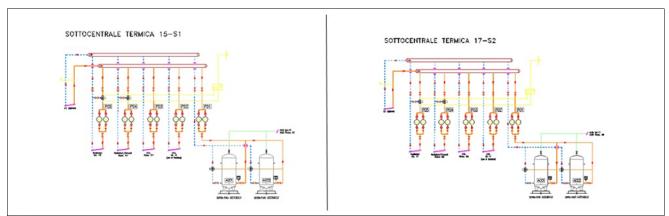


Figura 10: Esempio schema funzionale sottocentrali termiche

Indicazione del tipo di generatore/i presenti e del vettore energetico utilizzato.

Le tabelle seguenti fanno riferimento all'ipotesi in cui il sistema di generazione sia costituito da caldaie a gas.

Nella seguente tabella si riportano le principali caratteristiche dei generatori:

DATI TECNICI		
N° caldaie in centrale		
Marca e modello		
Tipologia	Tradizionale/ condensazione	
Potenza termica utile	kW	
Potenza termica nominale	kW	
Potenza termica utile minima	kW	
Potenza termica nominale minima	kW	
Rendimento al 100% del carico	%	
Rendimento al 30% del carico	%	
Anno di installazione		
Tipologia di bruciatore	Modulante	
Marca e modello bruciatore		
Stato di esercizio		
Obsoleto Suffic	eiente Performante	

Tabella 7: Caratteristiche generatori

Di seguito le caratteristiche delle elettropompe:

DATI TE	CNICI
Marca	
Modello	
Portata max	
Prevalenza max.	
Potenza motore elettrico	
Numero	
Inverter	

Tabella 8: Caratteristiche elettropompe

3.2.2 Impianto di produzione di acqua calda sanitaria

Descrizione dell'impianto di produzione di acqua calda sanitaria. Nel caso in cui sia combinato con l'impianto di riscaldamento, all'intero sistema può essere dedicato un unico capitolo. In caso di produzione separata, invece, è necessario descrivere gli elementi che compongono l'impianto, così come indicato nel capitolo dedicato al riscaldamento (**Tabella 7**, **Tabella 8**).

21

3.2.3 Impianto di ventilazione meccanica controllata

Indicazione delle aree servite dalla ventilazione meccanica e descrizione dell'impianto.								

Nella seguente tabella si riportano le principali caratteristiche delle Unità di Trattamento Aria (UTA) installate, con indicazioni che riguardano i locali serviti, la collocazione delle macchine, la marca, la portata, il tipo di funzionamento, evidenziando quelle in funzione durante i sopralluoghi effettuati.

Marca	m³/h	A servizio	Collocazione	Ore/giorno funzionamento	Giorni	In funzione
						SI/NO
						SI/NO
						SI/NO
						SI/NO
						SI/NO

Tabella 9: Dati principali UTA

3.2.4 Impianto di climatizzazione estiva

Individuazione delle a	ree servite dalla	a climatizzazione	estiva,	descrizione	degli	impianti e
localizzazione dei grup	opi frigo.					

Nella seguente tabella si riportano le caratteristiche delle macchine frigorifere ed il dettaglio degli ambienti serviti:

Marca	Modello	Collocazione	A servizio	Potenza frigorifera utile (KW _F)	Potenza elettrica assorbita (KW _E)	Gas refrig.

Tabella 10: Caratteristiche gruppi frigoriferi

Figura 11: Foto gruppi frigo

3.2.5 Sistema di termoregolazione

Descrizione del sistema di termoregolazione presente (regolazione manuale con termostato in caldaia, compensazione climatica con sonda esterna, regolazione per singolo ambiente o per zona) e indicazione della presenza eventuale di sistemi di monitoraggio e controllo (Building Management System).

É necessario inoltre indicare gli orari di attivazione degli impianti di riscaldamento e di climatizzazione estiva (**Tabella 11, Tabella 12**).

Centrale termica	Periodo di accensione	Giorni/settimana	Ore/giorno					
Gentrale termica								
Tabella 11: Orario attivazione centrale termica								
Gruppi frigo	Periodo di accensione	Giorni/settimana	Ore/giorno					
Gruppi irigo								

Tabella 12: Orario attivazione gruppi frigo

3.2.6 Servizio per il trasporto di persone o cose

Descrizione del servizio di trasporto di persone e cose (ascensori, montacarichi).							

Di seguito le informazioni relative agli impianti presenti:

DATI TECNICI							
Tipo di impianto							
Numero impianti							
Portata							
N° medio corse giornaliere							
Velocità							

Tabella 13: Dati tecnici impianto di trasporto

3.3. Impianti elettrici

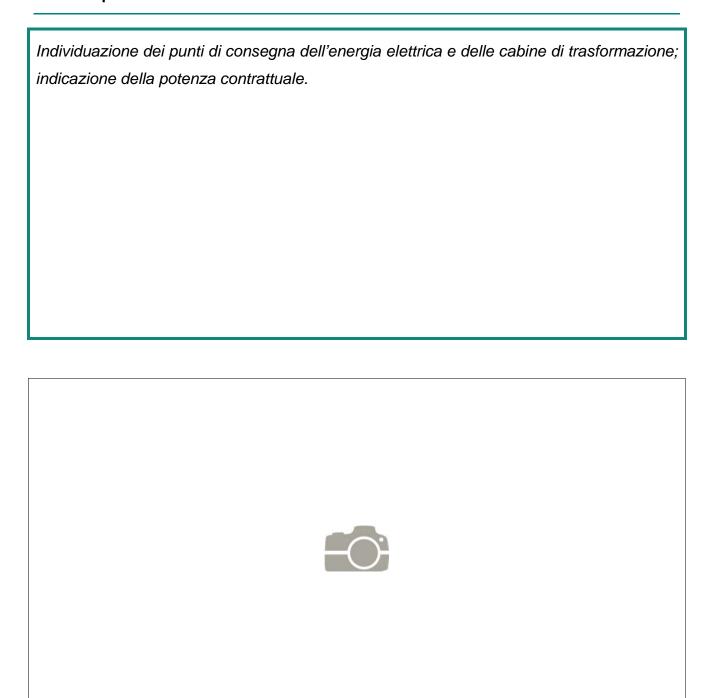


Figura 12: Dislocazione punti di consegna energia elettrica e cabine di trasformazione

3.3.1 Illuminazione

Descrizione delle tipologie di corpi illuminanti presenti nell'edificio.

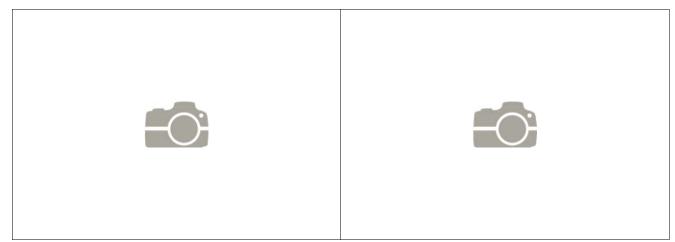


Figura 13: Tipologia corpo illuminante 1

Figura 14: Tipologia corpo illuminante 2

Di seguito il riepilogo dei corpi illuminanti analizzati:

Tipologia corpo illuminante	Ubicazione	Potenza totale corpo illuminante (kW)	Numero

Tabella 14: Corpi illuminanti

4. ANALISI DEI CONSUMI ENERGETICI

Si riporta nei successivi paragrafi una valutazione dei consumi energetici dell'edificio.

L'obiettivo è quello di definire un consumo di baseline, da utilizzare come riferimento per valutazione degli interventi migliorativi. Affinché l'analisi sia attendibile, è opportuno esaminare almeno i dati di tre anni, attraverso l'andamento mensile, che consente di valutarne la coerenza e di ricercare le cause di eventuali anomalie (cambiamento di destinazione d'uso, dei profili di utilizzo dell'edificio...).

I consumi, relativi ad ogni vettore energetico presente, vanno poi analizzati per individuare le voci di consumo dovute ai diversi servizi energetici.

Individuare i servizi energetici presenti nell'edificio e i vettori energetici utilizzati.

A titolo d'esempio, i paragrafi successivi si riferiscono a consumi di metano ed energia elettrica.

4.1. Metano

Nella tabella seguente si riportano i consumi di metano di tre anni:

2016	Gen.	Feb.	Mar.	Apr.	Mag.	Giu.	Lug.	Ago.	Set.	Ott.	Nov.	Dic.	Totale
Consumi gas metano [Sm³]													
2017	Gen.	Feb.	Mar.	Apr.	Mag.	Giu.	Lug.	Ago.	Set.	Ott.	Nov.	Dic.	Totale
Consumi gas metano [Sm³]													
2018	Gen.	Feb.	Mar.	Apr.	Mag.	Giu.	Lug.	Ago.	Set.	Ott.	Nov.	Dic.	Totale
Consumi gas metano [Sm³]					45.0								

Tabella 15: Consumi metano mensili

Esplicitare il calcolo del consumo di riferimento (individuato come media dei due anni più simili) e individuare i servizi energetici cui è finalizzato il prelievo di metano:

- riscaldamento invernale;
- produzione ACS;
- ecc...

Se non si dispone dei consumi separati ma di un unico dato di bolletta, sarà necessario descrivere il procedimento utilizzato per ripartire i consumi. A tal fine si suggerisce di utilizzare il procedimento descritto nell'Appendice A in coda alle linee guida.

Il fabbisogno termico risulta quindi così suddiviso:

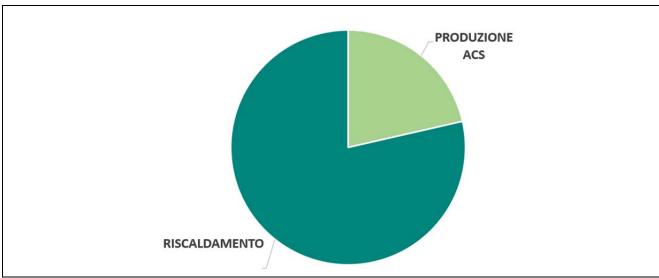


Figura 15 – Ripartizione consumi

Nel seguente grafico si riporta la suddivisione mensile dei consumi termici in Sm³ di metano:

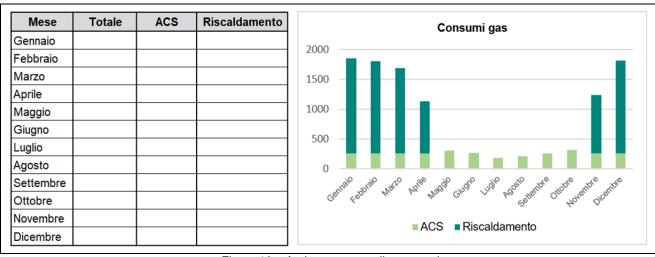


Figura 16 – Andamento mensile consumi

4.2. Energia elettrica

Nella tabella seguente si riportano i consumi di energia elettrica di tre anni:

2016	Gen.	Feb.	Mar.	Apr.	Mag.	Giu.	Lug.	Ago.	Set.	Ott.	Nov.	Dic.	Totale
Consumi en. elettrica [kWh _e]													
2017	Gen.	Feb.	Mar.	Apr.	Mag.	Giu.	Lug.	Ago.	Set.	Ott.	Nov.	Dic.	Totale
Consumi en. elettrica [kWh _e]													
2018	Gen.	Feb.	Mar.	Apr.	Mag.	Giu.	Lug.	Ago.	Set.	Ott.	Nov.	Dic.	Totale
Consumi en. elettrica [kWh _e]													

Tabella 16: Consumi energia elettrica mensili

Esplicitare il calcolo del consumo di riferimento (individuato come media dei due anni più simili) e individuare i servizi energetici cui è finalizzato il prelievo di energia elettrica:

- illuminazione;
- climatizzazione estiva;
- ecc...

Se non si dispone dei consumi separati ma di un unico dato di bolletta, sarà necessario descrivere il procedimento utilizzato per ripartire i consumi. È possibile stimare i consumi di apparecchiature e macchine elettriche a partire dai dati di potenza e dai profili di funzionamento, così come descritto nelle linee guida ed esemplificato nelle tabelle seguenti.

Nella tabella seguente è riportato il calcolo del fabbisogno di energia elettrica delle macchine frigorifere, calcolato a partire dalla potenza elettrica nominale e dalle ore di funzionamento:

AMBIENTE SERVITO	MARCA	MODELLO	POTENZA ELETTRICA NOMINALE [kW _e]	ORE DI FUNZIONAMENTO/ANNO	ENERGIA ELETTRICA CONSUMATA [kWh _e]
				TOTALE	

Tabella 17: Fabbisogno elettrico macchine frigorifere

Allo stesso modo è effettuato il calcolo dell'energia consumata per alimentare i sistemi di pompaggio che garantiscono la distribuzione dei fluidi termovettori dalle centrali di produzione e dalle sottocentrali alle varie utenze.

SERVIZIO	COD.	MARCA	MODELLO	POTENZA ELETTRICA NOMINALE [W _e]	ORE DI FUNZIONAMENTO/ANNO	ENERGIA ELETTRICA CONSUMATA [kWh _e]
	P01					
	P02					
	P03					
					TOTALE	

Tabella 18: Fabbisogno elettrico per pompaggi

Il fabbisogno elettrico risulta quindi così suddiviso:

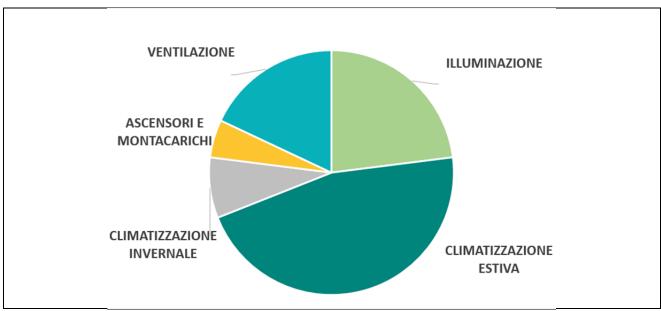


Figura 17 – Ripartizione consumi elettrici

4.3. Principali indicatori di prestazione energetica

Grazie all'analisi dei consumi è possibile calcolare il fabbisogno specifico di energia termica ed elettrica (riferito ai m³ di volume disponibile) dell'edificio.

Compilare le Tabelle in funzione dell'analisi sin qui svolta. Cancellare eventualmente la Tabella non attinente al caso in esame.

Energia elettrica mediamente consumata in un anno [kWh _e]	Volume climatizzato [m³]	Fabbisogno di energia elettrica [kWh _e /m³]

Tabella 19: Consumo specifico di energia elettrica

Energia termica mediamente consumata in un anno [kWh _t]	Volume climatizzato [m³]	Fabbisogno di energia termica [kWh _t /m³]

Tabella 20: Consumo specifico di energia termica

4.4. Fabbisogno di energia primaria ed emissioni di CO₂

Nei precedenti paragrafi sono riportati i consumi energetici. Al fine di valutare globalmente il fabbisogno di energia primaria richiesto dell'edificio, è necessario convertirli in kWh di energia primaria o in tep (tonnellate equivalenti di petrolio): a tale scopo si utilizzano i coefficienti di conversione fissati nella Delibera EEN 3/08 e nella Direttiva europea 2003/87/CE.

TEP energia elettrica	kWh energia primaria	
TEP energia termica	kWh energia primaria	
TOTALE TEP	TOTALE kWh en. primaria	

Tabella 21: Consumi in termini di energia primaria

È possibile, inoltre, valutare le tonnellate di CO₂ annualmente emesse per soddisfare il fabbisogno energetico degli edifici.

CO ₂ da energia elettrica	t
CO ₂ da energia termica	t
TOTALE CO₂	t

Tabella 22: Consumi in termini di energia primaria

4.5. Valutazione dei costi per l'approvvigionamento energetico e per la gestione

Indicare i costi unitari (€/Sm³, €/kWh_e,...) e la spesa annuale per l'approvvigionamento e la gestione, relativamente ad ogni vettore energetico analizzato.

Nella tabella seguente si riportano le singole voci di spesa e il totale della spesa annuale:

Vettore energetico	€/anno	Incidenza
		%
		%
Spesa complessiva		100%

Tabella 23: Costi dell'energia

5. SIMULAZIONE SISTEMA EDIFICIO IMPIANTO

Il presente capitolo deve essere inserito nel report solo nel caso in cui la diagnosi preveda la costruzione di un modello energetico di simulazione del sistema edificio impianto, al fine di valutare il risparmio conseguibile con gli interventi. In accordo con le linee guida, tale simulazione non è necessaria nel caso in cui vengano valutati interventi non interferenti.

È necessario descrivere il metodo utilizzato per la valutazione della prestazione energetica dell'edificio (metodo dinamico, dinamico orario, quasi stazionario) e indicare l'eventuale software di calcolo utilizzato.

È opportuno ripercorrere il procedimento, a partire dall'indicazione dei dati di input inseriti (condizioni al contorno, tipologie di componenti opachi e trasparenti, definizione di zone e locali, caratteristiche dei generatori), anche inserendo immagini e tabelle tratte dal software o dai fogli di calcolo.

5.1. Risultati simulazione sistema edificio impianto

Indicare i risultati ottenuti attraverso il modello di simulazione del sistema edificio impianto in termini di consumo, relativamente ai vettori e ai servizi energetici analizzati, anche riportando immagini e tabelle tratte dai fogli di calcolo o dal software.

Compilare le Tabelle in funzione dell'analisi sin qui svolta. Cancellare eventualmente la Tabella non attinente al caso in esame.

Nella seguente tabella si riporta il riepilogo dei consumi calcolati con la simulazione:

Consumo combustibile	kWh _t
Consumo di energia elettrica	kWh _e

Tabella 24: Consumi da modello

Il modello di calcolo consente anche di effettuare un'analisi approfondita dell'efficienza dell'impianto termico permettendo di individuare i rendimenti dei vari sottosistemi:

IMPIANTO	IDRONICO	IMPIANTO AEREAULICO	
Rendimento sottosistema produzione	%	Rendimento sottosistema produzione	%
Rendimento sottosistema distribuzione	%	Rendimento sottosistema distribuzione	%
Rendimento sottosistema regolazione	%	Rendimento sottosistema regolazione	%
Rendimento sottosistema emissione	%	Rendimento sottosistema emissione	%
Rendimento globale medio stagionale		%	

Tabella 25: Rendimenti dei vari sottosistemi per il riscaldamento

Relativamente all'acqua calda sanitaria si riportano nella successiva tabella i valori dei rendimenti dei vari sottosistemi e del rendimento globale per ACS:

Rendimento sottosistema erogazione	%
Rendimento sottosistema distribuzione	%
Rendimento sottosistema accumulo	%
Rendimento sottosistema generazione	%
Rendimento medio stagionale ACS	%

Tabella 26: Rendimenti dei vari sottosistemi per la produzione di ACS

5.2. Validazione del modello

Il modello sviluppato secondo le ipotesi riportate precedentemente è stato validato a partire dai dati di consumo effettivi.

Indicare lo scostamento tra i risultati della simulazione (consumo operativo) e i consumi ricavati dall'analisi delle bollette (consumo effettivo) e verificare che sia rispettato il limite indicato nelle linee guida per la validazione del modello.

Consumo effettivo	Consumo operativo	Scostamento
		%

Tabella 27: Confronto consumi reali e da modello

Il seguente grafico mette a confronto l'andamento mensile del consumo effettivo ricavato a partire dalle bollette e quello operativo calcolato attraverso il modello.

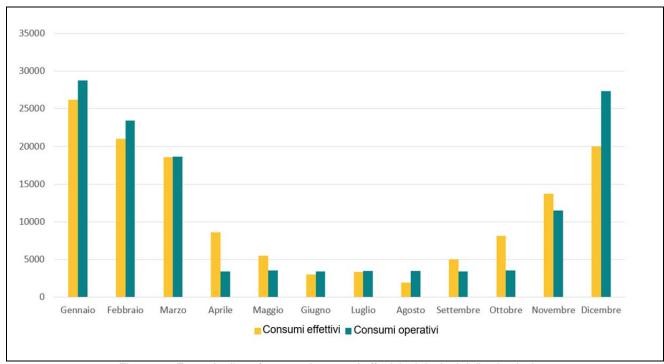


Figura 18: Esempio di confronto tra i consumi effettivi e i risultati della simulazione

6. INTERVENTI DI RIQUALIFICAZIONE ENERGETICA

Di seguito sono descritte le proposte di intervento che si ritiene possano essere realizzate per incrementare l'efficienza energetica degli edifici oggetto di diagnosi.

Indicare la modalità con cui è valutato il risparmio energetico conseguibile con gli interventi. Se si sceglie di effettuare la stima considerando il consumo totale normalizzato è necessario inserire un paragrafo per descriverne la stima.

6.1. Individuazione delle potenziali aree d'intervento

Descrivere le principali criticità rilevate attraverso lo studio delle prestazioni dell'involucro e degli impianti e individuare quindi le potenziali aree di intervento. Potranno essere valutati interventi con diversi livelli di complessità, alcuni raccomandati, altri economicamente non vantaggiosi ma necessari.

Nell'immagine seguente si riporta uno schema di sintesi degli interventi individuati, che saranno valutati nel dettaglio nei capitoli successivi.

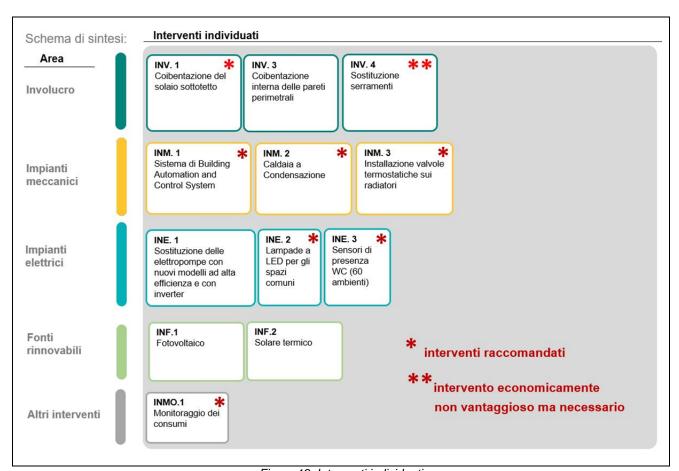


Figura 19: Interventi individuati

Compilare quelli attinenti al caso in esame e cancellare gli altri

^{*}I paragrafi successivi forniscono indicazione su come è opportuno descrivere gli interventi (utilizzarli da modello per descrivere interventi che si intende proporre, ma non indicati di seguito).

6.2. Interventi sull'involucro

6.2.1 Coibentazione pareti perimetrali

Descrivere l'intervento proposto.					

Di seguito si riportano le schede POST OPERAM delle pareti prese in considerazione e le verifiche di assenza di condensa interstiziale e superficiale:

Codice: M1

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: Parete 1

Trasmittanza termica ---- W/m²K

Spessore ---- mm

Temperatura esterna (calcolo potenza invernale) •C

Permeanza ---- 10⁻¹²kg/sm²Pa

Massa superficiale ---- kg/m²

(con intonaci)

 $\begin{array}{lll} \text{Massa} & \text{superficiale} & & \\ \text{(senza intonaci)} & & & \\ \end{array}$

Trasmittanza periodica ---- W/m²K

Fattore di attenuazione ---- Sfasamento onda termica ---- h

IMG. STRATIGRAFIA

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	1	0,130	-	-	1
1	Strato 1						
2	Strato 2						
3	Strato 3						
4	Strato 4						
5	Strato 5						
6	Strato 6						
-	Resistenza superficiale esterna	-	-	0,064	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Caratteristiche igrometriche dei componenti opachi

secondo UNI EN ISO 13788

<u>Descrizio</u>	<u>ne della struttura</u> :	Parete 1				(Codice:	M1
[_] La s	truttura non è soggetta	a fenomeni di c	ondensa	superficiale.				
[_] La s	truttura non è soggetta	a fenomeni di c	ondensa	interstiziale.				
	truttura è soggetta a fe ione estiva.	enomeni di conde	ensa inte	rstiziale, ma l	a quantità è rie	vaporabile durant	e la	
Condizio	ni al contorno							
Temperati	ure e umidità relativa e	sterne variabili, ı	medie m	ensili				
Temperati	ura interna nel periodo	di riscaldamento		20,0	°C			
Criterio pe	er l'aumento dell'umidit	à interna		Classe di co	ncentrazione (del vapore (0,00	06 kg/m	1³)
<u>Verifica c</u>	riticità di condensa s	<u>superficiale</u>						
Verifica co	ndensa superficiale (f _{R:}	$_{\rm SI,max} \leq f_{\rm RSI}$		Positiva				
Mese critic	00							
Fattore di	temperatura del mese	critico f	RSI,max					
Fattore di	temperatura del compo	onente f	RSI					
Umidità re	elativa superficiale acce	ttabile		_	%			

Verifica del rischio di condensa interstiziale

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

Di seguito la tabella riassuntiva delle pareti su cui è stato effettuato l'intervento di coibentazione:

Parete	Superficie	Trasmittanza	U [W/m² K]	Costo in	tervento
	m²	Iniziale	Finale	[€/m²]	[€]
M1					
M2					

Tabella 28: Determinazione dei costi

L'intervento di coibentazione determinerà un risparmio sui consumi di metano. In tabella si riportano il risparmio e il tempo di ritorno dell'investimento.

Intervento	Consumi* [Sm³/anno]		Risparr	Tempo di ritorno	
	ante	post	[kWh]	€	[anni]
Isolamento parete					
Costo del metano:	€/Sm³				

Tabella 29: Determinazione risparmio economico

Utilizzando l'attuale valore del rendimento globale medio stagionale del sistema edificio impianto, il tempo di ritorno degli investimenti nelle strutture più significative è di ____ anni.

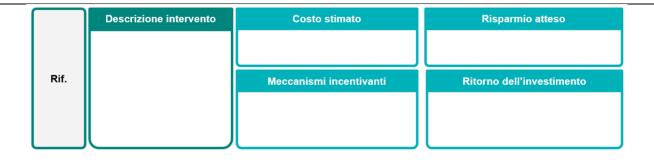


Figura 20: Principali indicatori intervento

6.2.2 Coibentazione copertura

Descrivere l'intervento proposto.

Di seguito si riportano le schede POST OPERAM delle coperture prese in considerazione e le verifiche di assenza di condensa interstiziale e superficiale:

Codice: 51

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: Copertura 1

Trasmittanza termica ----- W/m²K

Spessore ---- mm

Temperatura esterna (calcolo potenza invernale) •C

Permeanza ---- 10⁻¹²kg/sm²Pa

Massa superficiale ---- kg/m²

Massa superficiale ---- kg/m²

(senza intonaci)

Trasmittanza periodica ---- W/m²K

Fattore di attenuazione ----- Sfasamento onda termica ----- h

IMG. STRATIGRAFIA

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	1	0,130	-	-	1
1	Strato 1						
2	Strato 2						
3	Strato 3						
4	Strato 4						
5	Strato 5						
6	Strato 6						
-	Resistenza superficiale esterna	-	-	0,064	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Codice: 51

Descrizione della struttura: Copertura 1

Caratteristiche igrometriche dei componenti opachi

secondo UNI EN ISO 13788

[_]	La struttura non è soggetta a fenomeni c	li condens	sa superficiale.
[_]	La struttura non è soggetta a fenomeni d	li condens	sa interstiziale.
[_]	La struttura è soggetta a fenomeni di con stagione estiva.	ndensa int	terstiziale, ma la quantità è rievaporabile durante la
Cond	dizioni al contorno		
Temp	perature e umidità relativa esterne variabi	li, medie r	mensili
Temp	peratura interna nel periodo di riscaldame	nto	<i>20,0</i> °C
Crite	rio per l'aumento dell'umidità interna		Classe di concentrazione del vapore (0,006 kg/m³)
<u>Veri</u>	fica criticità di condensa superficiale		
Verif	ica condensa superficiale ($f_{RSI,max} \leq f_{RSI}$)		Positiva
Mese	e critico		
Fatto	re di temperatura del mese critico	$f_{\text{RSI},\text{max}}$	
Fatto	re di temperatura del componente	f_{RSI}	
Umic	lità relativa superficiale accettabile		

Verifica del rischio di condensa interstiziale

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

Di seguito la tabella riassuntiva per tipologia di copertura su cui è stato effettuato l'intervento di coibentazione:

Parete	Superficie	Trasmittanza	U [W/m² K]	Costo in	tervento
	m²	Iniziale	Finale	[€/m²]	[€]
C1					
C2					

Tabella 30: Determinazione dei costi

L'intervento di coibentazione determinerà un risparmio sui consumi di metano. In tabella si riportano il risparmio e il tempo di ritorno dell'investimento.

Intervento	Consumi* [Sm³/anno]		Risparr	Tempo di ritorno	
	ante	post	[kWh]	€	[anni]
Isolamento copertura					
Costo del metano:	€/Sm³				

Tabella 31: Determinazione risparmio economico

Utilizzando l'attuale valore del rendimento globale medio stagionale del sistema edificio impianto, il tempo di ritorno degli investimenti nelle strutture più significative è di ____ anni.

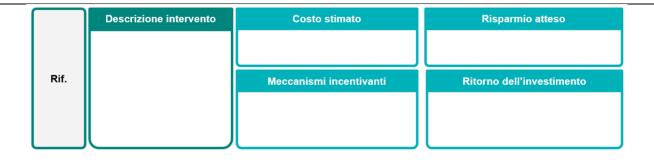


Figura 21: Principali indicatori intervento

6.2.3 Coibentazione solaio

Descrivere l'intervento proposto.

Di seguito si riportano le schede POST OPERAM dei solai presi in considerazione e le verifiche di assenza di condensa interstiziale e superficiale:

Codice: 51

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13370

Descrizione della struttura: Solaio 1

 $\label{eq:weighted} Trasmittanza\ termica \qquad \qquad ---- \qquad W/m^2 K$

Spessore ---- mm

Temperatura esterna (calcolo potenza invernale) ---- °C

Permeanza ---- 10⁻¹²kg/sm²Pa

Massa superficiale ---- kg/m²

(con intonaci)

 $\begin{array}{lll} \text{Massa} & \text{superficiale} & & \\ \text{(senza intonaci)} & & & \\ \end{array}$

Trasmittanza periodica ----- W/m²K

Fattore di attenuazione ----- Sfasamento onda termica ----- h

IMG. STRATIGRAFIA

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	-	-	-
1	Strato 1						
2	Strato 2						
3	Strato 3						
4	Strato 4						
5	Strato 5						
6	Strato 6						
-	Resistenza superficiale esterna	-	-	0,064	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Codice: 51

Descrizione della struttura: Solaio 1

Caratteristiche igrometriche dei componenti opachi

secondo UNI EN ISO 13788

[_]	La struttura non è soggetta a fenomeni c	li condens	a superficiale.						
[_]	La struttura non è soggetta a fenomeni di condensa interstiziale.								
[_]	La struttura è soggetta a fenomeni di condensa interstiziale, ma la quantità è rievaporabile durante la stagione estiva.								
Cond	dizioni al contorno								
Temı	perature e umidità relativa esterne variabi	li, medie r	mensili						
Temį	peratura interna nel periodo di riscaldame	nto	20,0	°C					
Crite	rio per l'aumento dell'umidità interna		Classe di co	ncentrazione de	l vapore (0,000	6 kg/m³)			
<u>Veri</u>	fica criticità di condensa superficiale								
Verif	ica condensa superficiale $(f_{RSI,max} \le f_{RSI})$		Positiva						
Mese	critico								
Fatto	re di temperatura del mese critico	$f_{\text{RSI},\text{max}}$							
Fatto	re di temperatura del componente	f_{RSI}							
Umic	lità relativa superficiale accettabile		_	%					

Verifica del rischio di condensa interstiziale

Non si verifica formazione di condensa interstiziale nella struttura durante tutto l'arco dell'anno.

Di seguito la tabella riassuntiva per tipologia di solaio su cui è stato effettuato l'intervento di coibentazione:

Dovoto	Superficie	Trasmittanza	U [W/m² K]	Costo intervento	
Parete	m²	Iniziale	Finale	[€/m²]	[€]
S1					
S2					

Tabella 32: Determinazione dei costi

L'intervento di coibentazione determinerà un risparmio sui consumi di metano. In tabella si riportano il risparmio e il tempo di ritorno dell'investimento.

Intervento	Consumi* [Sm³/anno]		Risparr	Tempo di ritorno	
	ante	post	[kWh]	€	[anni]
Isolamento solai					
Costo del metano:	€/Sm³				

Tabella 33: Determinazione risparmio economico

Utilizzando l'attuale valore del rendimento globale medio stagionale del sistema edificio impianto, il tempo di ritorno degli investimenti nelle strutture più significative è di ____ anni.

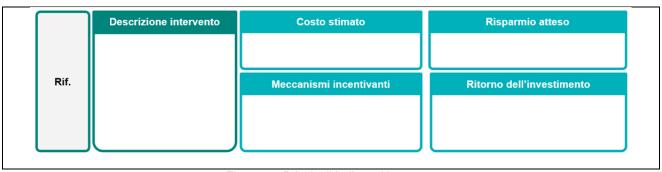


Figura 22: Principali indicatori intervento

6.2.4 Sostituzione infissi

Descrivere l'intervento proposto.

Di seguito si riportano le schede POST OPERAM degli infissi presi in considerazione:

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Fin	estra 1	Codice: W1
Caratteristiche del serramento		
Tipologia di serramento	Singolo/doppio/accoppiato	
Classe di permeabilità	Senza classificazione/Classe 1/Classe 2/ Classe 3/ Classe 4	lmg. infisso
Trasmittanza termica	U_w W/m ² K	
Trasmittanza solo vetro	U_g W/m ² K	
Dati per il calcolo degli apporti si Emissività Fattore tendaggi (invernale) Fattore tendaggi (estivo) Fattore di trasmittanza solare	ε f _{c inv} f _{c est}	
Caratteristiche delle chiusure os	<u>scuranti</u>	
Resistenza termica chiusure	m ² K/W	
f shut		
<u>Dimensioni del serramento</u>		
Larghezza	cm	
Altezza	cm	

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	 W/m ² K
K distanziale	K_d	 W/mK
Area totale	A_{w}	 m^2
Area vetro	A_{g}	 m^2
Area telaio	A_f	 m^2
Fattore di forma	F_f	 -
Perimetro vetro	L_g	 m
Perimetro telaio	L_f	 m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro			
Intercapedine	_		
Secondo vetro			
Resistenza superficiale esterna	-	-	0,064

Legenda simboli

S	Spessore	mm
λ	Conduttività termica	W/mK
R	Resistenza termica	m ² K/W

__ m

Caratteristiche del modulo

Trasmittanza termica del modulo	U		W/m ² K
<u>Muro sottofinestra</u>			
Struttura opaca associata	M1	Parete 1	
Trasmittanza termica	U		W/m ² K
Altezza	H_{sott}		cm
Area			m^2
Ponte termico del serramento			
Ponte termico associato			
Trasmittanza termica lineica	Ψ		W/mK

Lunghezza perimetrale

Di seguito la tabella riassuntiva per infisso su cui è stato effettuato l'intervento di sostituzione:

Infissi	Superficie	Trasmittanza U [W/m² K]		Costo intervento		
	m²	Iniziale	Finale	[€/m²]	[€]	
Tipo 1						
Tipo 2						

Tabella 34: Determinazione dei costi

L'intervento determinerà un risparmio nei consumi di metano. In tabella si riportano il risparmio energetico ed economico e il tempo di ritorno dell'investimento:

Intervento	Consumi * [Sm³/anno]		Rispa	Tempo di ritorno	
	ante	post	[kWh]	€	[anni]
Sostituzione infissi					
Costo del met (*) calcolati	ano:€/Sm³				

Tabella 35 : Determinazione risparmio economico

Considerando l'attuale valore del rendimento globale medio stagionale del sistema edificio impianto, il tempo di ritorno dell'investimento è di ___anni.

Figura 23: Principali indicatori intervento

6.3. Interventi sugli impianti meccanici

6.3.1 Sostituzione caldaia tradizionale con caldaia a condensazione

Descrivere l'intervento proposto

Nel modello di calcolo è stata quindi sostituita la caldaia esistente con una del tipo a condensazione avente le caratteristiche di seguito riportate:

DATI TECNIC	Cl
Marca e modello	
Potenza nominale al focolare	
Perdite camino a bruciatore acceso	
Perdite camino a bruciatore spento	
Perdite al mantello	
Materiale del generatore	
Rendimento al 100% del carico	
Rendimento al 30% del carico	
Luogo di installazione	
Vettore energetico	
Tipo di bruciatore	
Potenza elettrica del bruciatore	

Tabella 36: Caratteristiche nuovo generatore

Descrivere la modalità di calcolo del risparmio energetico ed esplicitarne i risultati.

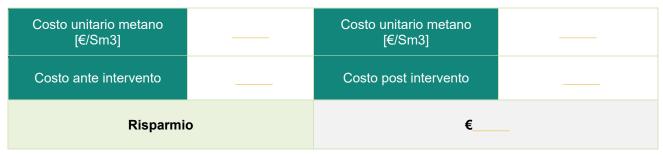


Tabella 37: Analisi risparmio intervento

Il costo dell'intervento è pari a circa____€.

In termini energetici l'intervento permetterebbe di risparmiare _____ tep/anno, cui corrispondono _____ tCO₂/anno.

Nel seguente schema si riporta un risparmio complessivo dell'intervento:

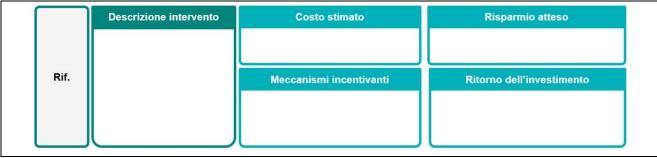


Figura 24: Principali indicatori intervento

6.3.2 Installazione valvole termostatiche sui radiatori

	l'intervento	proposto,	la	modalità	di	calcolo	del	risparmio	energetico	ed
esplicitarne	i risultati.									

Nell'ipotesi di avere i seguenti dati:

- Installazione di ____valvole;
- ____€ (prezzo singola valvola posata e fornita in opera).

Costo unitario metano [€/Sm3]		Costo unitario metano [€/Sm3]	
Costo ante intervento	€	Costo post intervento	€
Risparmio		€	

Tabella 38: Analisi risparmio intervento

In prima analisi è possibile stimare il costo complessivo pari a circa € _____.

In termini energetici l'intervento permetterebbe di risparmiare ____ tep/anno, pari a ____tCO₂/anno.

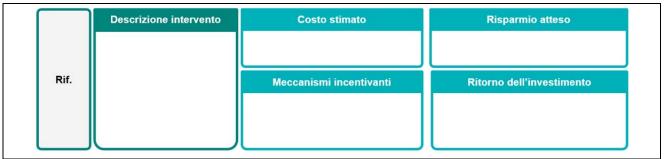


Figura 25: Principali indicatori dell'intervento

6.3.3 Sistema di Building Automation and Control System

Descrivere l'intervento proposto e la metodologia utilizzata per il calcolo del risparmio.

Di seguito si riporta un esempio di valutazione con riferimento al metodo dei BACS Factor.

L'obiettivo è quello di fornire l'energia richiesta, mantenendo al minimo le perdite (di generazione e distribuzione dell'energia). Gli ambienti rappresentano la sorgente della richiesta di energia (necessaria per garantire le condizioni ottimali al loro interno) e quindi devono scambiare le necessarie informazioni con il sistema di generazione.

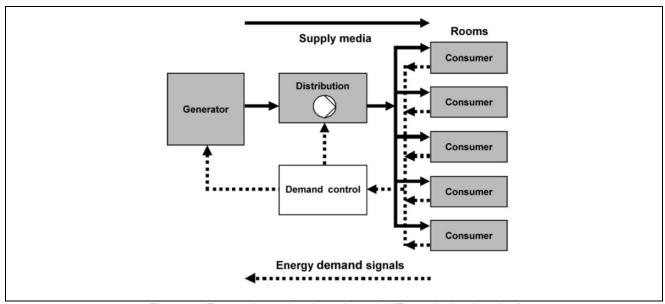


Figura 26: Energy demand and supply model (Example: heating plant)

Di seguito si valuta l'installazione di un Sistema di supervisione, regolazione e controllo (BMS). È questo un intervento che può far conseguire significativi risparmi energetici, in quanto allo stato attuale non è presente alcun impianto di supervisione e controllo.

Si ritiene pertanto prioritaria l'installazione di un Sistema di Building Management System (BMS) unico, che gestisca e controlli tutte le principali apparecchiature (generatori di calore, pompe di calore, elettropompe, ventilconvettori, utenze elettriche) in funzione delle effettive necessità e delle condizioni termoigrometriche esterne.

Per stimare l'incidenza di un sistema BMS si fa riferimento alla norma UNI EN 15232:2012 «Prestazione energetica degli edifici - Incidenza dell'automazione, della regolazione e della gestione tecnica degli edifici»:

 la norma UNI EN 15232 definisce i sistemi BACS (Building Automation and Control Systems) come quei sistemi che offrono il controllo effettivo sul riscaldamento, ventilazione, acqua calda e illuminazione;

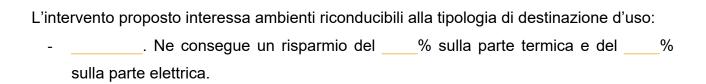
- la norma UNI EN 15232 definisce i sistemi TBM (Technical Building Management)
 come quei sistemi che forniscono informazioni sul funzionamento, la manutenzione
 e la gestione degli edifici;
- la norma UNI EN 15232 definisce quattro diverse CLASSI DI EFFICIENZA per identificare i sistemi di automazione: queste classi (da D ad A) rappresentano sistemi di automazione con efficienza energetica crescente.

Le classi di efficienza dei sistemi di automazione sono così suddivise:

- Classe D (non efficient): comprende gli impianti tecnici tradizionali e privi di automazione, non efficienti dal punto di vista energetico;
- Classe C (standard): corrisponde agli impianti dotati di sistemi digitali tipo BACS ed è considerata la classe di riferimento;
- Classe B (advanced): comprende gli impianti dotati di sistemi BACS e TBM per il controllo centralizzato:
- Classe A (high performance): sono sistemi come la classe B ma con livelli di precisione e completezza del controllo tali da garantire le MASSIME PRESTAZIONI ENERGETICHE.

Si ritiene indispensabile per l'edificio il passaggio alla classe **B** di efficienza del sistema di automazione: in questo capitolo verrà quindi valutata l'opportunità dell'intervento per il passaggio da **C**→**B**.

La stessa norma UNI 15232:2012, attraverso il metodo di calcolo semplificato detto "metodo dei BACS Factor" (procedura di calcolo tabellare che permette una stima rapida del beneficio che un'automazione più avanzata potrà comportare), valuta il risparmio in funzione della destinazione d'uso.



	Ene	rgia termica i	n edifici non r	esidenziali					
	C	lassi e Fattori	di efficienza B	AC	Risparmio			Risparmio	
Tipologia Edificio /	D	C (rif)	В	Α	(rif.	class	e D)	(rif.	C)
Locale	Senza Automazione	Automazione Standard	Automazione Avanzata	Alta efficienza	C/D	B/D	A/D	B/C	A/C
Uffici	1,51	1,00	0,80	0,70	34%	47%	54%	20%	30%
Sale conferenze	1,24	1,00	0,75	0,50	19%	40%	60%	25%	50%
Scuole	1,20	1,00	0,88	0,80	17%	27%	33%	12%	20%
Ospedali	1,31	1,00	0,91	0,86	24%	31%	34%	9%	14%
Hotel	1,31	1,00	0,85	0,68	24%	35%	48%	15%	32%
Ristoranti	1,23	1,00	0,77	0,68	19%	37%	45%	23%	32%
Negozi / Grossisti	1,56	1,00	0,73	0.60	36%	53%	62%	27%	40%

Figura 27: UNI 15232 metodo fattori BACS - Risparmio energia termica per climatizzazione ed Acqua Calda Sanitaria

	Ellel	gia Elettrica	in edifici non	residenzian					
	C	lassi e Fattori	di efficienza B	AC	Ri	isparm	nio	Rispa	armio
Tipologia Edificio /	D	C (rif)	В	Α	(rif.	class	e D)	(rif.	C)
Locale	Senza Automazione		Automazione Avanzata	Alta efficienza	C/D	B/D	A/D	B/C	A/C
Uffici	1,10	1,00	0,93	0,87	9%	15%	21%	7%	13%
Sale conferenze	1,06	1,00	0,94	0,89	6%	11%	16%	6%	11%
Scuole	1,07	1,00	0,93	0,86	7%	13%	20%	7%	14%
Ospedali	1,05	1,00	0,98	0,96	5%	7%	9%	2%	4%
Hotel	1,07	1,00	0,95	0,90	7%	11%	16%	5%	10%
Ristoranti	1,04	1,00	0,96	0,92	4%	8%	12%	4%	8%
Negozi / Grossisti	1,08	1,00	0,95	0,91	7%	12%	16%	5%	9%

Figura 28: UNI 15232 metodo fattori BACS - Risparmio energia elettrica

Destinazione d'uso					
Vettore energetico	consumo ante operam	% risparmio	consumo post operam	risparmio energetico	
Energia eletrica					
Gas metano					

Tabella 39: Risparmio energia termica ed elettrica secondo il metodo fattori BACS

Nella seguente tabella si riporta la determinazione del risparmio annuo conseguibile con la realizzazione dell'intervento:

Risparmio economico conseguibile					
Sm³ di metano risparmiati	Sm³	kWhe risparmiati	kWhe		
Costo del Sm ³	€/Sm³	Costo del kWhe	€/kWh		
Risparmio economico	€	Risparmio economico	€		
Risparmio economico		€/anno			

Tabella 40: Determinazione del risparmio economico dell'intervento

In prima analisi è possibile stimare il costo complessivo per un importo pari a circa _____€.

In termini energetici l'intervento permetterebbe di risparmiare $_$ tep/anno, pari a $_$ tCO $_2$ /anno.

Nella seguente tabella si riporta un risparmio complessivo dell'intervento:

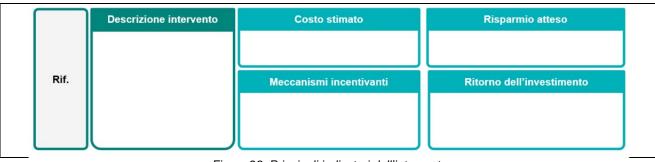


Figura 29: Principali indicatori dell'intervento

6.4. Interventi sugli impianti elettrici

6.4.1 Sostituzione delle pompe con nuove ad alta efficienza azionate da inverter

Descrivere l'intervento proposto e la metodologia utilizzata per il calcolo del risparmio.				

Nella seguente tabella si riporta una stima del risparmio conseguibile:

Fabbisogno energia elettrica pompaggio [kWhe]	
Risparmio con installazione di nuove elettropompe ad alta efficienza con inverter	%
Energia elettrica risparmiata [kWhe]	
Costo del kWhe	€
Risparmio economico	€

Tabella 41: valutazione risparmio annuo

In prima analisi è possibile stimare il costo complessivo pari a circa € ____.

In termini energetici l'intervento permetterebbe di risparmiare _____ tep/anno, pari a _____ tCO₂/anno.

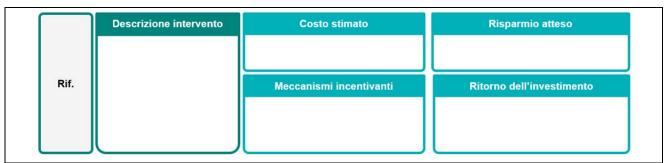


Figura 30: Principali indicatori dell'intervento

6.4.2 Sostituzione dei corpi illuminanti spazi comuni con lampade LED

Descrivere l'intervento proposto e la metodologia utilizzata per il calcolo del risparmio.

Di seguito si riportano le tabelle con la situazione ante progetto e quella con la proposta d'intervento.

Situazione ante progetto							
Tipologia corpo illuminante	Ubicazione	Potenza corpo illuminante (kW)	Numero	Potenza totale (kW)	ore accensione	Consumo (kWh)	Spesa annua (€)
TOTALE							€

Tabella 42 : Illuminazione ante operam

Situazione post-progetto							
Tipologia corpo illuminante	Ubicazione	Potenza corpo illuminante (kW)	Numero	Potenza totale (kW)	ore accensione	Consumo (kWh)	Spesa annua (€)
TOTALE							€

Tabella 43 : Illuminazione post operam

Dalla differenza tra la spesa annua ante progetto e la spesa post si ottiene un risparmio
pari a€.
In prima analisi è possibile stimare il costo complessivo dell'intervento pari a circa €
In termini energetici l'intervento permetterebbe di risparmiare kWh/anno, pari a
tep/anno, pari atCO2/anno.

Nota la spesa da effettuare per sostenere l'intervento e il risparmio annuo è possibile calcolare il tempo di ritorno dell'investimento. Nel seguente schema si riporta un risparmio complessivo dell'intervento:

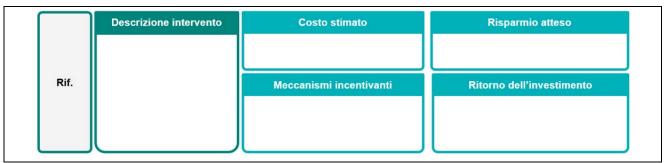


Figura 31: Principali indicatori dell'intervento

6.4.3 Installazione sensori di presenza nei WC

Nell'edificio i bagni sono stati stimati in circa __ ambienti totali. Considerando che tutti i bagni montano lampade del tipo _____, si può ipotizzare un consumo medio di energia elettrica per l'illuminazione di ___ Wh/ m².

Considerando che la superficie totale dei bagni è di __ mq e ipotizzando un'accensione media giornaliera di __ ore al giorno per 365 giorni l'anno, si ottiene un consumo pari a ___ kWh/anno.

Un intervento di efficienza energetica pensato per questi locali è l'installazione di sensori di presenza a fotocellula e temporizzati, l'intervento permetterebbe di diminuire il consumo di energia elettrica dovuto alla mancanza di spegnimento della luce da parte degli utilizzatori, per altro a questo si possono abbinare i seguenti altri vantaggi:

- per la sicurezza, in quanto i sensori avvertono la presenza dell'utente e l'accensione del locale avviene in un tempo più breve rispetto all'accensione manuale;
- per l'aspetto l'igienico, in quanto si eviterebbe il contatto con gli stessi interruttori.

Pertanto, installando un sensore di presenza in ogni ambiente per un costo complessivo di ____ € e supponendo una necessità di luce per un totale di ____ h/gg si potrebbe risparmiare l'energia elettrica per circa ____ kWh/ anno.

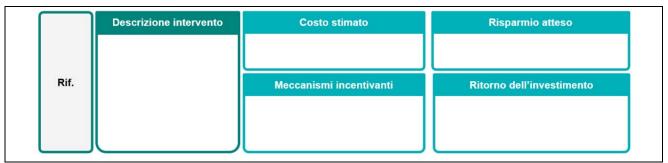


Figura 32: Principali indicatori dell'intervento

6.5. Utilizzo di fonti rinnovabili

6.5.1 Impianto fotovoltaico

Descrivere l'intervento proposto, indicando le caratteristiche dei moduli utilizzati e della struttura di sostegno e specificando la conformità dell'intero impianto alla normativa.

Indicare i dati geografici del sito (latitudine, longitudine e altitudine) e la provenienza dei dati di irraggiamento (es. Atlante Italiano della radiazione solare http://www.solaritaly.enea.it/ e database PV-Syst.), dei dati relativi al vento e al carico di neve (es. NTC) utilizzati per la stima della producibilità dell'impianto.

Figura 33: fotoinserimento/vista planimetrica

Nella tabella seguente si riportano le principali caratteristiche dei moduli utilizzati:

DATI POSIZIONAMENTO PANNELLI	
Orientamento rispetto al sud	
Inclinazione sul piano orizzontale	
DATI MODULI FOTOVOLTAICI	
Marca e modello modulo fotovoltaico	
Numero moduli	
Sup. utile singolo modulo (mq)	
Sup. lorda singolo modulo (mq)	
Potenza di picco singolo modulo (Wp)	
Efficienza nominale singolo modulo	
Fattore di efficienza	

Tabella 44: Caratteristiche impianto fotovoltaico

I moduli fotovoltaici dovranno essere rispondenti alle norme IEC 61215 e IEC 61730 e saranno accompagnati da un data-sheet che riporterà le principali caratteristiche del modulo stesso. Inoltre, il decadimento delle prestazioni degli stessi deve risultare non superiore al 10% della potenza nominale nell'arco dei primi 12 anni e non superiore al 20% nell'arco di 20 anni.

Compatibilmente agli spazi utili, la potenza nominale installabile dell'impianto fotovoltaico
risulta pari a circa kW. Tale potenza è intesa come somma delle potenze di targa o
nominali di ciascun modulo misurata in condizioni standard (STC). Tenendo conto dei dati
di irradiazione del sito di installazione, degli angoli di esposizione dei moduli, delle perdite
dei vari componenti nonché di quelle dovute a fenomeni di ombreggiamento, l'impianto ha
una capacità produttiva teorica annua pari a circa kWh.
L'energia elettrica prodotta dall'impianto fotovoltaico copre il% del fabbisogno di
energia elettrica, cui corrisponde un risparmio di circatep/anno. Dal punto di vista delle
emissioni di CO2, l'impianto fotovoltaico permetterà di evitare l'emissione di circa
tCO2/anno

Di seguito si riporta la stima della producibilità dell'impianto nell'arco dell'anno.

Mese	Irradiazione mensile (kWh/mq)	Producibilità pannelli (kWh)
Gennaio		
Febbraio		
Marzo		
Aprile		
Maggio		
Giugno		
Luglio		
Agosto		
Settembre		
Ottobre		
Novembre		
Dicembre		
Annui		

Tabella 45: Producibilità impianto fotovoltaico

l'investimento comprensivo dell'IVA:

L'impianto permetterebbe di risparmiare circa ___ €/anno (considerando un costo dell'energia elettrica di ___ €/kWh) e presenta un tempo di ritorno semplice di ___anni.

Nel seguente diagramma si riporta il risparmio complessivo dell'intervento considerando

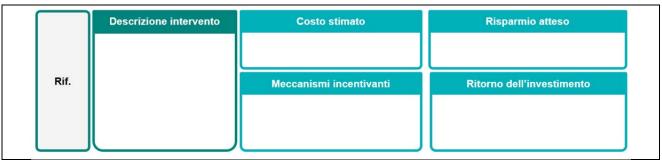


Figura 34: Principali indicatori dell'intervento

6.5.2 Solare termico

Descrivere l'intervento proposto, indicando le caratteristiche dei moduli utilizzati e descrivendo la configurazione complessiva dell'impianto.

Di seguito si riportano lo schema di configurazione dell'impianto

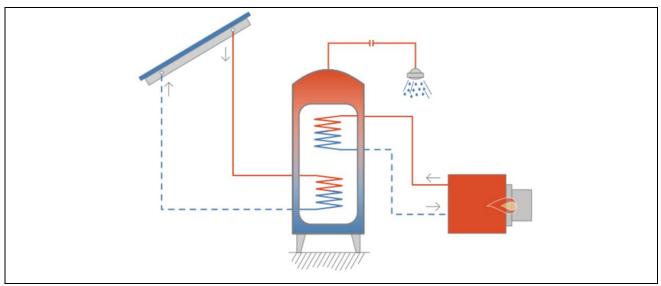


Figura 35: Esempio schema configurazione impianto

I collettori saranno collocati nelle aree evidenziate nell'immagine successiva.

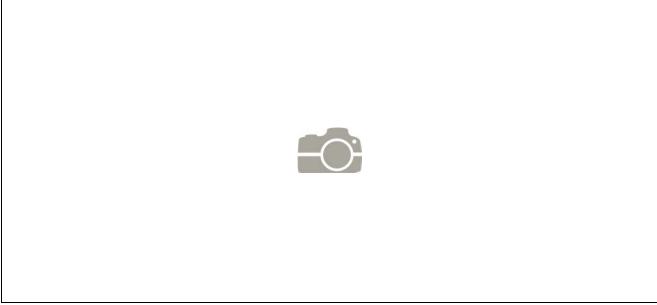


Figura 36: fotoinserimento/vista planimetrica

Nella seguente tabella si riportano le caratteristiche dei collettori solari:

DATI POSIZIONAMENTO COLLETTORI	
Orientamento rispetto al sud	
Inclinazione sul piano orizzontale	
DATI COLLETTORI SOLARI	
Marca e modello collettore solare	
Numero moduli	
Sup. netta singolo collettore (mq)	
Sup. lorda singolo collettore (mq)	
Efficienza ottica (η0)	
Coefficiente di dispersione termica lineare (k1):	
Coefficiente di dispersione termica quadratica (k2):	
Temperatura di stagnazione in condizioni standard (°C)	

Tabella 46: Caratteristiche impianto solare termico

La produzione totale dell'impianto solare termico risulta pari a ___kWh corrispondenti a circa ___ Sm³/anno di gas metano risparmiati in riferimento ai consumi della centrale termica, cui corrisponde un risparmio di ___ tep/anno. Dal punto di vista delle emissioni di CO2, l'impianto solare termico permetterà di evitare l'emissione di circa ___tCO2/anno. La tabella riporta la stima della producibilità dell'impianto nel corso dell'anno:

Mese	Producibilità netta pannelli (kWh)	QW, gen, out, con solare termico (kWh)	QW, gen, out, senza solare termico (kWh)	Percentuale copertura (%)
Gennaio				
Febbraio				
Marzo				
Aprile				
Maggio				
Giugno				
Luglio				
Agosto				
Settembre				
Ottobre				
Novembre				
Dicembre				
Annui				

Tabella 47: Caratteristiche impianto solare termico

L'impianto permetterebbe di risparmiare circa ___ €/anno e presenta un tempo di ritorno semplice di ___ anni a fronte di una vita utile media di un impianto solare termico di anni.

Nel seguente diagramma si riporta il risparmio complessivo dell'intervento:

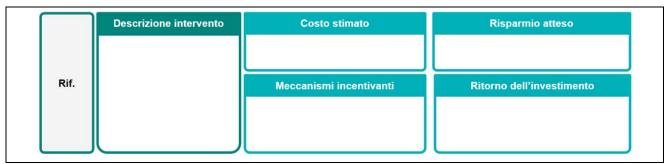


Figura 37: Principali indicatori dell'intervento

6.6. Scenari di intervento e analisi costi benefici

Nelle seguenti tabelle si riportano i dati di riepilogo degli interventi proposti, valutati e confrontati singolarmente con la situazione attuale del sistema edificio-impianto mettendo ben in evidenza:

- √ risparmio energetico [tep];
- √ risparmio economico [€];
- ✓ costo di investimento [€].

	Fabbisogno energia elettrica kWhe/anno		Risparmi	mio energetico conseguibile			
	Fabisogno gas metano Sm³/anno	Rif.	Energia ele	ttrica	Gas naturale		
			kWhe/anno	Rf1%	Sm³/anno	Rf2%	
	Coibentazione dei solai esterni	INV.1					
	Coibentazione del solaio sottotetto	INV.2					
INVOLUCRO	Coibentazione pareti perimetrali	INV.3					
	Sostituzione infissi	INV.4					
	Sistema di Building Automation and Control System	INM.1					
IMPIANTI MECCANICI	Caldaia a condensazione	INM.2					
	Valvole termostatiche radiatori	INM.3					
	Elettropompe di circolazione	INE. 1					
IMPIANTI ELETTRICI	Lampade LED corridoi	INE. 2					
	Sensori presenza WC	INE. 3					
FONTI RINNOVABILI	Fotovoltaico	INF.1					
	Solare termico	INF.2					
ALTRI INTERVENTI	Monitoraggio dei consumi	INMO.1					

Tabella 48: Riepilogo degli interventi considerati con relativo risparmio per fonte

	Fabbisogno energetico attuale (tep/anno)	Risparmio energetico conseguibile			Risparmio	
		Rif.	Rif.	Energia elettrica	Gas metano	
			tep/anno	tep/anno	tep/ann o	%
	Coibentazione dei solai esterni	INV.1				
WW/01 11070	Coibentazione del solaio sottotetto	INV.2				
INVOLUCRO	Coibentazione pareti perimetrali	INV.3				
	Sostituzione infissi	INV.4				
IMPIANTI MECCANICI	Sistema di Building Automation and Control System Caldaia a condensazione	INM.1 INM.2				
	Valvole termostatiche radiatori	INM.3				
	Elettropompe di circolazione	INE. 1				
IMPIANTI ELETTRICI	Lampade LED corridoi	INE. 2				
	Sensori presenza WC	INE. 3				
FONTI RINNOVABILI	Fotovoltaico	INF.1				
	Solare termico	INF.2				
ALTRI INTERVENTI	Monitoraggio dei consumi	INMO.1				

Tabella 49: Riepilogo degli interventi considerati con relativo risparmio in termini di energia primaria

Valutare l'interferenza tra gli interventi proposti. La realizzazione simultanea di vari interventi (pacchetto di interventi) implica infatti, nel caso di interventi interferenti, la loro influenza reciproca sui risparmi finali conseguibili: il risparmio complessivo non equivale alla somma dei singoli risparmi ottenibili realizzando singolarmente i vari interventi.

Di seguito si riepilogano tutti gli interventi considerati, tendendo conto delle influenze reciproche.

	Spesa energetica edificio	Rif.	Risparmio economico	Costo di investimento	Tempo di ritorno semplice	Percentuale risparmio %
	Coibentazione dei solai esterni	INV.1				
	Coibentazione del solaio sottotetto	INV.2				
INVOLUCRO	Coibentazione pareti perimetrali	INV.3				
	Sostituzione infissi	INV.4				
	Sistema di Building Automation and Control System	INM.1				
IMPIANTI MECCANICI	Caldaia a condensazione	INM.2				
	Valvole termostatiche radiatori	INM.3				
IMPLANTI EL ETTRICI	Lampade LED corridoi	INE. 1				
IMPIANTI ELETTRICI	Sensori presenza WC	INE. 2				
	Fotovoltaico	INF.1				
FONTI RINNOVABILI	Solare termico	INF.1				
ALTRI INTERVENTI	Monitoraggio dei consumi	INMO.1				
sc	ENARIO COMPLESSIVO					

Tabella 50: Riepilogo degli interventi totali con relativo risparmio economico

La tabella seguente riporta il riepilogo complessivo di tutti gli interventi analizzati e il risparmio finale conseguibile, non tenendo conto delle influenze reciproche tra i vari interventi:

Intervento	Risparmio	Risparmio	Costo
	Energetico [kWh]	economico [€]	[€]

Intervento	Risparmio Energetico [kWh]	Risparmio economico [€]	Costo [€]
Coibentazione pareti perimetrali			
Coibentazione copertura			
Coibentazione solai			
Sostituzione infissi			
Building Automation and Control System			
Caldaia a condensazione			
Valvole termostatiche radiatori			
Elettropompe circolazione			
Lampade LED corridoi			
Sensori presenza WC			
Fotovoltaico			
Solare termico			
Monitoraggio dei consumi			

Tabella 51: Riepilogo interventi individuati

Qualora si scelga di proporre altri scenari che prevedono la realizzazione simultanea solo di alcuni interventi, riportare il riepilogo di ognuno di essi, sul modello della **Tabella 50**. Inoltre, in tal caso è opportuno specificare per ogni scenario individuato il tempo di ritorno semplice degli investimenti, mettendo in evidenza la convenienza economica di uno rispetto all'altro.

7. CONCLUSIONI

L'analisi energetica dell'edificio è stata condotta con l'obiettivo di individuare eventuali interventi di miglioramento dell'efficienza energetica e, dunque, le opportunità di risparmio energetico in termini di costi-benefici.

Riepilogare il lavoro svolto, indicando sinteticamente le strategie utilizzate nelle fasi di attività in campo, analisi dei consumi reali, definizione dei consumi effettivi di riferimento, costruzione del modello energetico del sistema edificio impianto, riportando i risultati ottenuti con la simulazione. Riassumere, inoltre, le conclusioni raggiunte in seguito allo studio dei possibili interventi di riqualificazione energetica e indicare lo scenario che risulta più conveniente a fronte dell'analisi costi benefici e più in linea con quanto concordato con il committente. Si consiglia di fare riferimento a possibili meccanismi di incentivazione e a forme di cofinanziamento per rendere più vantaggiose le misure di efficienza energetica individuate.