

Al: What opportunities for energy efficiency

Luigi Troiano [University of Salerno]
Smart Efficiency - L'Efficienza Energetica intelligente: metodologie, soluzioni e tecnologie Online, 25th November 2020

POPULAR

SCIENCE $=$
THE NEW ARTIFICIAL INTELLIGENCE

SCACCO ALL'UMANO …

Haryard Business

Internarionale

WHAT IS AI?

The field of computer science that studies the methods and technologies to replicate with machines those cognitive capabilities associated to human, animal or life intelligence, such as learning, reasoning, adapting and self-organizing skills in the context of partial information and limited resources.

THE AI LEVELS

\#1 - Al will understand more, so it can do more - Breakthrough techniques will help AI learn with less data, better understand human language.
\#2 - Al won't take your job, but it will change how you work - Al will take on easily automated tasks, while workers lean into soft skills
\#3 - Al will engineer Al for trust - Component will infuse trust throughout the Al lifecycle, building confidence in Als recommendations
\#4 - Al's appetite for energy demands greener tech - The material and software AI is based on will be designed for energy efficiency
\#5 - Al-powered lab assistants will discover new materials - Al will drive breakthroughs for new industry products

Sriram Raghavan - Vice President, IBM Research AI

1956 Dartmouth Conference: The Founding Fathers of AI

John MacCarthy

Herbert Simon

Marvin Minsky

Arthur Samuel

Claude Shannon

Oliver Selfridge

Ray Solomonoff

Nathaniel Rochester

Alan Newell

Trenchard More

Brief History of Neural Network

THE AI TRIBES

DATA DRIVEN MODELS

Arthur Samuel
December 5, 1901 - July 29, 1990

ARTIFICIAL

INTELLIGENCE
Early artificial intelligence

MACHINE

DEEP
 LEARNING

Deep learning breakthroughs drive AI boom

1950's 1960's 1970's 1980's 1990's 2000's 2010's

Since an early flush of optimism in the 1950's, smaller subsets of artificial intelligence - first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions.

THE EXPANDING UNIVERSE OF MODERN Al

Receptive Fields (Huber \& Wiesel, 1959)

Hill, R. S. and Walsh, C. A. Molecular insights into human brain evolution. Nature 437, 64-67 (2005)

THE CORTEX

Nature Reviews | Neuroscience

Hoerder-Suabedissen A. and Molnár Z. Development, evolution and pathology of neocortical subplate neurons. Nature Reviews Neuroscience 16, 133-146 (2015)

A CHANGE IN THE WORKFLOW

Classic Machine Learning [1990 : now]

Deep/End-to-End Learning [2012 : now]

Example [Conv Net]

ARCHITECTURE OF "MAINSTREAM" PATTERN RECOGNITION SYSTEMS

- Modern architecture for pattern recognition
- Speech recognition: early 90's - 2011

DEEP LEARNING = LEARNING HIERARCHICAL REPRESENTATIONS

It's deep if it has more than one stage of non-linear feature transformation

CONVOLUTIONAL NEURAL NETWORK (CNN)

The manifold hypothesis

Discovering the hidden structure in high-dimensional data

- Learning representations of data:
- Discovering \& disentangling the independent explanatory factors
- The manifold hypothesis:
- Natural data lives in a low-dimensional (non-linear) manifold

Discovering the hidden structure in high-dimensional data

- Example: all face images of a person
- 1000×1000 pixels $=1,000,000$ dimensions
- But the face has 3 Cartesian coordinates and 3 Euler angles and humans have less than about 50 muscles in the face
- Hence the manifold of face images for a person has <56 dimensions
- The perfect representations of a face image:
- Its coordinates on the face manifold
- Its coordinates away from the manifold
- We do not have good and general methods to learn functions that turns an image into this kind of representation

Disentangling factors of variation
 The ideal disentangling feature extractor

Data manifold \& invariance: Some variations must be eliminated

- Azimuth-Elevation manifold. Ignores lighting. [Hadsell et al. CVPR 2006]

THE EXPONENTIAL GROWTH OF DATA

THE EXPONENTIAL GROWTH OF DATA

THE EXPONENTIAL GROWTH OF DATA

THE BIG BANG IN MACHINE LEARNING

WIRED

LARGE SCALE SUCCESS APPLICATION

- COMPUTER VISION
- NATURAL LANGUAGE PROCESSING
- GAMES
- REALISTIC REPRODUCTION

OPPORTUNITIES FOR ENERGY EFFICIENCY

Al can help to:

1. Efficiently monitor and analyse the energy consumption and conditions of a building
2. This identifies where improvements can be made for energy and costs savings
3. Al solutions can also optimise the indoor comfort and conditions

Areas of application:

- Building Diagnostics
- Understanding the energy profile of buildings
- Building Design
- Assisting the designer in making choices
- Building Supply
- Optimization of the energy provisioning,
- Building Automation
- Control of electrical, heating and other systems

MODELS IN PRACTICE

Seyedzadeh, S., Rahimian, F., Glesk, I. et al. Machine learning for estimation of building energy consumption and performance: a review. Vis. in Eng. 6, 5 (2018). https://doi.org/10.1186/s40327-018-0064-7

APPLICATION

Seyedzadeh, S., Rahimian, F., Glesk, I. et al. Machine learning for estimation of building energy consumption and performance: a review. Vis. in Eng. 6, 5 (2018). https://doi.org/10.1186/s40327-018-0064-7

CHALLENGES

A MODERN ENTERPRISE HAS TO CONSIDER

- SKILLS
- STRATEGY
- ENVIRONMENT

SKILLS

AN AI SCIENTIST IS PROFICIENT IN:

- Data Science (***)
- Coding (**)
- IT Architecture (*)
- Domain (***)
- HPC (**)

al ADOPTION IN DIFFERENT COUNTRIES BY INDUSTRY

EXHIBIT $2 \mid$ Across countries, technology companies are leaders in leveraging AI
Share of active players in AI by country/industry cluster

	China	USA	France	Germany	Switzerland	Austria	Japan	Total
Consumer	84\%	41\%	57\%	39\%	65\%	32\%	35\%	50\%
Energy	\%	73\%	48\%	50\%	n.a.	67\%	38\%)	67\%
Financial services	\%	61\%	45\%	34\%	67\%	22\%	42\%	52\%
Health care)	49\%	51\%	43\%)	33\%	23\%	49\%
Industrial		49\%	43\%	60\%	35\%	44\%	32\%	55\%
Technology, media, telecom	9\%	65\%	63\%	64\%	43\%	67\%	60\%	71\%
Total	85\%	51\%	49\%	49\%	46\%	42\%	39\%	55\%

Note: Values denote the percentage share of active players in each country and/or industry. Colors highlight their relative positioning. " n .a." denotes clusters with insufficient survey statistics. ${ }^{3}$
https://www.forbes.com/sites/louiscolumbus/2018/12/16/how-china-is-dominating-artificial-intelligence/\#7570f5a22b2f

ENVIRONMENT

Four Quadrants for Overall AI Citation Impact (vertical axis) and the Total number

 of Academic-Corporate AI Papers (horizontal axisSource)

AI ADOPTION BY INDUSTRY

EXHIBIT 3 | Leadership on Al adoption is scattered within industries

Share of active players by industry

Let's be inspired by nature, but not too much

- It's nice imitate Nature,
- But we also need to understand
- How do we know which details are important?
- Which details are merely the result of evolution, and the constraints of biochemistry?
- For airplanes, we developed aerodynamics and compressible fluid dynamics.
- We figured that feathers and wing flapping weren't crucial
- QUESTION: What is the equivalent of aerodynamics for understanding intelligence?

L'Avion III de Clément Ader, 1897
(Musée du CNAM, Paris)
His Eole took off from the ground in 1890, 13 years before the Wright Brothers, but you probably never heard of it.

SCHOOLS OF THOUGHTS

Daniel Newman (Futurum) identifies 5 schools of thoughts concerning AI attitude:

- Utopian Thought
- Dystopian Thought
- Tech-Optimistic Thought
- The Realist Thought
- Lack of Productivity Thought

WHAT I WOULD LIKE BY AI SYSTEMS

- ACCOUNTABILITY
- TRANSPARENCY
- TESTABILITY
- RELIABILITY
- SAFETY
"Assuming the computer industry can keep producing better hardware, I think 'business as usual' is going to take us a long way. Obviously, if we get big conceptual breakthroughs, it'll take us further. I think one of the big breakthroughs that's going to come is we're going to understand the brain." Geoffrey Hinton (2016)

Luigi Troiano

(Asst.) Professor of Data Science, Big Data and Al at...

University of Sannio

THANK YOU

Università degli Studi del Sannio-
Benevento

Vew profile
Linked in
https://www.linkedin.com/in/luigitroiano/

